1
|
Diao M, Li Z, Zhou R, Yan X, Zhang T. The combined antimicrobial activity of α-lactalbumin and thymol against Escherichia coli and Staphylococcus aureus. Food Chem 2025; 473:143048. [PMID: 39884235 DOI: 10.1016/j.foodchem.2025.143048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/26/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Thymol showed good antimicrobial activity, however, the poor aqueous solubility limits it to apply in food industry. α-Lactalbumin can be used to delivery hydrophobic molecules, then enhancing their biological activities. The study investigates the potential of α-lactalbumin to expand the application range of thymol, further to evaluate the antimicrobial activity of the α-lactalbumin-thymol complexation. Multi-spectroscopy techniques and computational simulations have confirmed the successful complexation, driving mainly by van der Waals force. The α-lactalbumin-thymol complexation exhibited the superior antimicrobial activity than thymol against Escherichia coli and Staphylococcus aureus, as indicated by lower or comparable minimum inhibitory concentration (336 μg/mL and 224 μg/mL, respectively), fewer colony forming units, and larger inhibition zone diameters. Furthermore, α-lactalbumin enhanced the degree of membrane damage by thymol. The complexation preserved no obvious cytotoxicity against HeLa cells. This study indicates that the α-lactalbumin-thymol complexation chelates hold promise as natural antimicrobial agents in the food processing industry.
Collapse
Affiliation(s)
- Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ziwei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Runhao Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaoxia Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Zhao J, Jiang C, Lei M, Xie Y, Zhao J, Chen J, Yang M, Xiang D, Tang J, Lin H. Investigation the antioxidant mechanisms of Capsaicinoids on myofibrillar protein based on multispectral and molecular docking. Food Chem 2025; 472:142992. [PMID: 39848043 DOI: 10.1016/j.foodchem.2025.142992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
This study investigated the interactions between Capsaicinoids (CAPs) and beef myofibrillar proteins (MPs) in a peroxyl radical system and elucidated the antioxidant mechanisms of CAPs by multispectral and molecular docking. Results showed that low concentration CAPs prevented the oxidative changes of protein structure caused by the attack of AAPH radicals on MPs, while high concentration of CAPs changed the structure of the proteins to form more small molecule aggregates, and reduce the binding of actin-myosin, which was conducive to the tenderization of the meats. CAPs bound to the MPs through hydrophobic interaction, hydrogen bonding and electrostatic interaction, altering the secondary and tertiary structure of MPs, increasing the α-helix content of MPs, and improving the antioxidant structural stability of MPs. This study can provide a theoretical basis for the utilization of CAPs in prefabrication meat processing, and provide a theoretical support for protein antioxidant strategies in spicy dishes.
Collapse
Affiliation(s)
- Jianhua Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chunyan Jiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Meijuan Lei
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yilin Xie
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Zhao
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaxin Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Mingyuan Yang
- China Agricultural University, Sichuan, Advanced Agricultural & Industrial Institute Chengdu, 611430, China
| | - Dan Xiang
- Chengdu Xiwang Food Co., Ltd., Chengdu 611430, China
| | - Jie Tang
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Hongbin Lin
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
3
|
Precupas A, Gheorghe D, Leonties AR, Popa VT. Resveratrol Effect on α-Lactalbumin Thermal Stability. Biomedicines 2024; 12:2176. [PMID: 39457489 PMCID: PMC11504486 DOI: 10.3390/biomedicines12102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The effect of resveratrol (RESV) on α-lactalbumin (α-LA) thermal stability was evaluated using differential scanning calorimetry (DSC), circular dichroism (CD) and dynamic light scattering (DLS) measurements. Complementary information offered by molecular docking served to identify the binding site of the ligand on the native structure of protein and the type of interacting forces. DSC thermograms revealed a double-endotherm pattern with partial overlapping of the two components. The most relevant effect of RESV is manifested in the narrowing of the protein thermal fingerprint: the first process (peak temperature T1) is shifted to higher temperatures while the second one (peak temperature T2) to lower values. The CD data indicated partial conformational changes in the protein non-α-helix domain at T1, resulting in a β-sheet richer intermediate (BSRI) with an unaffected, native-like α-helix backbone. The RESV influence on this process may be defined as slightly demoting, at least within DSC conditions (linear heating rate of 1 K min-1). On further heating, unfolding of the α-helix domain takes place at T2, with RESV acting as a promoter of the process. Long time incubation at 333 K produced the same type of BSRI: no significant effect of RESV on the secondary structure content was detected by CD spectroscopy. Nevertheless, the size distribution of the protein population obtained from DLS measurements revealed the free (non-bound) RESV action manifested in the developing of larger size aggregates.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| | | | | | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| |
Collapse
|
4
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Romano A, Engelberg Y, Landau M, Lesmes U. Alpha-lactalbumin amyloid-like fibrils for intestinal delivery: Formation, physiochemical characterization, and digestion fate of capsaicin-loaded fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Tarazi Riess H, Shani Levi C, Lesmes U. Inclusion of phenolic bioactives in high amylose corn starch for gastro-intestinal delivery. Front Nutr 2022; 9:981408. [PMID: 36091235 PMCID: PMC9452773 DOI: 10.3389/fnut.2022.981408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Starch is a staple food component with intricate architectures, some of which can be utilized as polysaccharidic delivery vehicles for bioactive compounds. This work describes the use of high amylose corn starch (HACS) to fabricate V-amylose inclusion complexes entrapping capsaicin or curcumin. In line with past studies, X-ray diffraction, differential scanning calorimetry, static laser scattering and scanning electron microscopy help affirm the formation of V6III-type complexes. Such HACS complexes entrap capsaicin and curcumin in structures with higher levels of crystallinity compared to HACS alone (14.61 ± 0.08%, 14.65 ± 0.08% vs. 10.24 ± 0.24%, respectively), high levels of encapsulation efficiency (88.77 ± 5.7% and 66.3 ± 0.99%, respectively) but without significant differences in colloid sizes between the various inclusion complexes (58.25 ± 1.34 μm or 58.98 ± 2.32 μm, respectively). In turn, in vitro gastro-intestinal digestion of HACS complexes with capsaicin or curcumin revealed both, phenolic bioactives significantly (p < 0.05) attenuated the intestinal breakdown of HACS. Interestingly, this attenuated HACS digestibility was accompanied by high gastric retention of the payloads and their sustained release during 2 h of exposure to intestinal conditions. Altogether, this work presents starch-based delivery systems that can entrap phenolic bioactives, release the payload in the intestine and possibly attenuate starch breakdown (because of its increased crystallinity). Thus, this work offers a platform for infusing foods with bioactive phenolics and stall the breakdown of starch.
Collapse
|
7
|
Bovine alpha-lactalbumin particulates for controlled delivery: Impact of dietary fibers on stability, digestibility, and gastro-intestinal release of capsaicin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Razzak MA, Cho SJ. Molecular characterization of capsaicin binding interactions with ovalbumin and casein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
One-Step Encapsulation of Capsaicin into Chitosan-Oleic Acid Complex Particles: Evaluation of Encapsulation Ability and Stability. Polymers (Basel) 2022; 14:polym14112163. [PMID: 35683834 PMCID: PMC9183016 DOI: 10.3390/polym14112163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
Capsaicin (CAP) demonstrates a potential for application in the food and pharmaceutical industries owing to its various attractive health benefits, including anti-cancer, anti-inflammatory, and antioxidant activities. However, the application of CAP is often limited by its low solubility in water, low bioavailability, and strong pungency. In this study, a simple one-step method for the stable encapsulation and dispersion of CAP in aqueous media was developed using polyelectrolyte complex particles formed by chitosan (CHI) and oleic acid (OA). Homogeneous particles with mean diameters below 1 μm were successfully prepared via spontaneous molecular complexation by mixing an aqueous solution of CHI with an ethanolic solution of OA and CAP. CAP was incorporated into the hydrophobic domains of the CHI-OA complex particles through hydrophobic interactions between the alkyl chains of OA and CAP. The factors affecting CAP encapsulation were investigated, and a maximum encapsulation yield of approximately 100% was obtained. The CHI-OA-CAP complex particles could be stored for more than 3 months at room temperature (22-26 °C) without resulting in macroscopic phase separation or degradation of CAP. We believe that our findings provide a useful alternative encapsulation technique for CAP and contribute to expanding its practical application.
Collapse
|
11
|
Yin W, Song L, Huang Y, Chen F, Hu X, Ma L, Ji J. Glycated α-lactalbumin based micelles for quercetin delivery: Physicochemical stability and fate of simulated digestion. Food Chem X 2022; 13:100257. [PMID: 35499028 PMCID: PMC9039997 DOI: 10.1016/j.fochx.2022.100257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
ALA-dextran conjugates were fabricated by Maillard reaction. The conjugates had the high encapsulation efficiency on loading quercetin. The micelles showed excellent pH, ionic strength and photothermal stability. The micelles exhibited sustained release of quercetin by the resistance to enzymes. The excellent stability made the conjugates promising materials for oral delivery.
Glycated protein is a kind of promising material that can improve the bioavailability of bioactive compounds and achieve sustained release under digestion. In this study, the α-lactalbumin (ALA)-dextran conjugates synthesized by Maillard reaction were fabricated to load and protect quercetin. Quercetin-loaded micelles stabilized by the ALA-dextran conjugates 1:4 showed the smallest size (428.57 ± 5.64 nm) with highest encapsulation efficiency (94.38% ± 0.50%) of quercetin. Compared to ALA/dextran mixture complex, the conjugates-based micelles had better pH, ionic strength and photothermal stability. Furthermore, the micelles composed of the conjugates 1:2 and 1:4 showed the best controlled release effect during the simulated digestion, releasing 62.41% and 66.15% of quercetin from the total encapsulated contents, respectively, which was mainly related to the resistance of glycated ALA to the enzymes. The findings indicated that ALA-dextran conjugates could be effectively designed for the ideal delivery system of hydrophobic bioactive compounds in food industry.
Collapse
Affiliation(s)
- Wanting Yin
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Luqing Song
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yanan Huang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| |
Collapse
|
12
|
Diao M, Liang Y, Zhao J, Zhang J, Zhang T. Complexation of ellagic acid with α-lactalbumin and its antioxidant property. Food Chem 2022; 372:131307. [PMID: 34634588 DOI: 10.1016/j.foodchem.2021.131307] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/04/2022]
Abstract
Ellagic acid possesses numerous bioactivities such as antioxidant activity and anti-inflammatory effect. In this work, the binding interaction between ellagic acid and α-lactalbumin was investigated by multi-spectroscopy and the results suggested that ellagic acid could change the conformation of α-lactalbumin. Chromatographic analysis proved the interaction of α-lactalbumin with ellagic acid taken place in less than 30 min and this interaction was stable. Computer simulations showed that both aromatic clusters Ⅰ and Ⅱ of α-lactalbumin were active sites for ellagic acid. Interestingly, both the results of molecular docking and molecular dynamics simulations suggested that ellagic acid tended to bind to aromatic cluster Ⅱ rather than aromatic cluster Ⅰ. Moreover, α-lactalbumin could enhance the antioxidant property of ellagic acid, indicating that the solubility of ellagic acid might be improved by combining α-lactalbumin. Overall, this work suggested that α-lactalbumin exhibited binding affinity for ellagic acid and enhanced its antioxidant property.
Collapse
Affiliation(s)
- Mengxue Diao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
13
|
Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking. Food Chem 2022; 384:132509. [PMID: 35217463 DOI: 10.1016/j.foodchem.2022.132509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 12/29/2022]
Abstract
The interactions between bovine α-lactalbumin and procyanidin B2 were fully investigated by spectroscopic methods and molecular docking. This study hypothesized that ALA could spontaneously interact with procyanidin B2 to form protein-based complex delivery carrier. Far UV CD and FTIR data demonstrated ALA's secondary structures were altered and intrinsic fluorescence quenching suggested ALA conformation was changed with procyanidin B2. Calorimetric technique illustrated ALA-procyanidin B2 complexation was a spontaneous and exothermic process with the number of binding site (n, 3.53) and the binding constant (Kb, 2.16 × 104 M-1). A stable nano-delivery system with ALA can be formed for encapsulating, stabilizing and delivering procyanidin B2. Molecular docking study further elucidated that hydrogen bonds dominated procyanidin B2 binding to ALA in a hydrophobic pocket. This study shows great potential in using ALA as protein-based nanocarriers for oral delivery of hydrophilic nutraceuticals, because procyanidin B2-loaded ALA complex delivery systems can be spontaneously formed.
Collapse
|