1
|
Zeng J, Song Y, Fan X, Liu Y, Cong P, Jiang X, Xu J, Xue C. Lipid-involved browning mechanism during the drying process of squid. Food Chem 2025; 465:142016. [PMID: 39561594 DOI: 10.1016/j.foodchem.2024.142016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
The present study evaluated lipid-involved browning mechanism during the drying process of squid. Initially, different lipid-Maillard reaction (MR) models were conducted based on the composition of squid (lipids, reducing sugars and amino acids). The degree of MR as well as α-dicarbonyl compounds (α-DCs) and lipid oxidation-mediated browning products (pyrroles and lipofuscin-like pigments) were detected. The results indicated that arginine and ribose were blamed for the browning of dried squid. Moreover, lipid oxidation provided glyoxal and methylglyoxal to participate in MR, and long-time heating and salting produced more α-DCs and accelerated browning. Meanwhile, dried squid contained hydrophilic pyrrole (17.45 μg/g lipid) and hydrophobic pyrrole (113.00 μg/g lipid), and the content of lipofuscin-like pigments increased by 1.5-fold after drying. Finally, defatting treatment demonstrated that the browning of dried squid was moderately alleviated by fat removal (L* ↑, a* ↓ and b* ↓). These findings offer a novel perspective on moderately preventing the browning of dried aquatic products.
Collapse
Affiliation(s)
- Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Xiaoming Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
| |
Collapse
|
2
|
Lioupi A, Papaioannou A, Iakovakis A, Kaidatzis I, Theodoridis G, Virgiliou C. Development and validation of a rapid and simple HILIC-MS/MS method for the determination of biogenic amines in tuna fish. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124204. [PMID: 38964136 DOI: 10.1016/j.jchromb.2024.124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
The production of biogenic amines (BAs), which are markers of both quality and safety in fish and fishery products, is influenced by the harvesting technique, handling, and other operations including those carried out on board the vessel. Scombroid dark-meat fish (e.g. tuna) are the fish species most frequently linked to histamine poisoning. The most commonly found BAs in fish are histamine, tyramine, putrescine, and cadaverine, which are produced when microbes decarboxylate the corresponding free amino acids. In this study, a rapid and cost-effective HILIC-MS/MS method was developed and validated for the determination of putrescine, cadaverine, histamine and tyramine in tuna samples. A simple sample preparation procedure was followed using the solvent mixture MeOH/H2O (50/50, v/v), 0.1 % acetic acid for protein precipitation and analyte extraction. Intra- and inter-day accuracy, expressed as %Recovery (%R), ranged from 88.0 % (Cad) to 102.7 % (Tyr) and from 85.0 % (Cad) to 99.8 % (Tyr), respectively. Intra- and inter-day precision, expressed as %Relative Standard Deviation (%RSD), ranged from 0.4 % (Tyr, Put) to 3.3 % (His) and from 0.7 % (Tyr) to 5.0 % (Cad), respectively. Limits of detection (LOD) and quantification (LOQ) varied from 0.0009 to 0.0940 mg/kg and from 0.0030 mg/kg to 0.3100 mg/kg, respectively, depending on the analyte. Regarding the potential toxic effects linked to biogenic amines in foods, samples examined in this study showed no risk. The proposed method is an important analytical tool for routine analysis of BAs in fish products.
Collapse
Affiliation(s)
- Artemis Lioupi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, 57001, Greece; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, 57001, Greece
| | - Aristea Papaioannou
- School of Chemical Engineering, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Achilleas Iakovakis
- Veltia Labs for Life, Food Contaminants Laboratory, Thessaloniki, 57022, Greece
| | - Ioannis Kaidatzis
- Veltia Labs for Life, Food Contaminants Laboratory, Thessaloniki, 57022, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, 57001, Greece; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, 57001, Greece
| | - Christina Virgiliou
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, 57001, Greece; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki, 57001, Greece; School of Chemical Engineering, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece.
| |
Collapse
|
3
|
Hao Y, Ji F, Li T, Tian M, Han X, Chai F. Portable smartphone platform utilizing AIE-featured carbon dots for multivariate visual detection for Cu 2+, Hg 2+ and BSA in real samples. Food Chem 2024; 446:138843. [PMID: 38422643 DOI: 10.1016/j.foodchem.2024.138843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Heavy metals cause serious toxic threats to both environment and human health. The multivariate, instrument-free, portable, and rapid detection strategy is crucial for determination of heavy metals. Herein, aggregation-induced emission (AIE) featured carbon dots (SN-CDs) were fabricated hydrothermally by optimizing co-doping precursors. With bright yellow emission at 560 nm, the SN-CDs were utilized for multivariate sensing Cu2+, Hg2+ and bovine serum albumin (BSA) based on AIE behavior and static quenching effect, with detection limits of 0.46 μmol·L-1, 25.8 nmol·L-1 and 1.52 μmol·L-1. A portable smartphone platform was constructed to enable portable, prompt, and sensitive analysis for Cu2+, Hg2+, and BSA via different strategies in real water and food samples with satisfied recovery. Moreover, a logic gate circuit was designed to provide the possibilities for utilization of intelligent facility. The proposed AIE SN-CDs possessing great contribution in preferable sensing performance, present promising prospects in real-time monitoring of environment and food safety.
Collapse
Affiliation(s)
- Yunqi Hao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Fangyan Ji
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Tingting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Xu Han
- College of Computer Science and Information Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, Heilongjiang Province, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
| |
Collapse
|
4
|
Tsiasioti A, Tzanavaras PD. High performance liquid chromatography coupled with post - Column derivatization methods in food analysis: Chemistries and applications in the last two decades. Food Chem 2024; 443:138577. [PMID: 38309023 DOI: 10.1016/j.foodchem.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
High performance liquid chromatography coupled with post-column derivatization is used for increasing the sensitivity and selectivity of the desirable analytes after the chromatographic separation. The transformation of the analytes can be conducted through the addition of a suitable reagent in the eluted stream or the ultraviolet irradiation of the eluted analytes, forming detectable derivatives for ultraviolet or fluorescence detectors. This review focuses on the developed methods using high performance liquid chromatography coupled with post-column derivatization for the determination of substances in food samples during the last two decades. The significance of the determination of each analyte in foods and the existing guidelines in each case are discussed. Preparation of the samples and the analytical methods are commented. For each analyte, official methods and commercially available systems and reagents are mentioned, as well.
Collapse
Affiliation(s)
- Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| |
Collapse
|
5
|
Hu WY, Mao HT, Yin XY, Chen JY, He AQ, Huang LY, Zhang ZW, Yuan S, Yuan M, Su YQ, Chen YE. Melatonin alleviates Hg toxicity by modulating redox homeostasis and the urea cycle in moss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167958. [PMID: 37866616 DOI: 10.1016/j.scitotenv.2023.167958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Mercury (Hg) is a highly toxic metal and can cause severe damage to many organisms under natural conditions. As an effective free radical scavenger and antioxidant, Melatonin (MT) has played important protective roles in alleviating oxidative damage caused by environmental cues including heavy metal stress in plants. However, the detailed mechanisms of melatonin in alleviating Hg toxicity still remain unclear in plants. Our results showed that the application of melatonin greatly reduced the concentrations of total and intracellular Hg in Taxiphyllum taxirameum. Meanwhile, melatonin significantly improved the antioxidant capacity and thus alleviated oxidative damage to the chloroplasts of T. taxirameum under Hg stress. Metabolic pathway analysis further revealed that melatonin-treated plants exhibited higher levels of 48 metabolites, including sugars, amino acids, and lipids, than non-melatonin-treated plants under Hg stress. Additionally, we further found that melatonin addition greatly improved the concentrations of four organic acids and three amino acids (Orn, Cit and Arg) related to the urea cycle, and thereby changed the levels of putrescine (Put) and spermidine (Spd) in T. taxirameum exposed to Hg stress. Further experiments showed that the high concentration of Put dramatically caused oxidative damage under Hg stress, while Spd effectively alleviated Hg toxicity in T. taxirameum. Taken together, this study provides new insight into the underlying mechanisms of melatonin in alleviating heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Wen-Yue Hu
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Xiao-Yan Yin
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Jing-Yi Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - An-Qi He
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Lin-Yan Huang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, 611130 Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130 Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, 610066 Chengdu, China.
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Tsiasioti A, Tzanavaras PD. Developments in on-line, post separation sample manipulation in the last 22 years: Pharmaceutical and biomedical applications. J Pharm Biomed Anal 2023; 235:115654. [PMID: 37611457 DOI: 10.1016/j.jpba.2023.115654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
On-line post separation sample manipulation is a powerful approach increasing the sensitivity and selectivity in chemical analysis. Post separation sample manipulation includes the treatment of the analytes after their separation through a suitable separation technique, mainly liquid chromatography and capillary electrophoresis. Typically, post separation approaches include either the addition of a reagent/solvent to derivatize the analyte/enhance the sensitivity, pH change, or the conversion of the analyte through a photochemical/electrochemical system (reagent-free systems). This review focuses on the developed methods using post-column manipulation of sample with pharmaceuticals and biomedical applications, covering the period from 2000 to midle-2023. Chemistries combined with fluorescence, UV-vis and mass spectrometric detection are discussed employing both liquid chromatography and electrophoretic techniques for separation. Noteworthy instrumental modifications are also discussed.
Collapse
Affiliation(s)
- Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| |
Collapse
|
7
|
Baltzis D, Tsogas GZ, Zacharis CK, Tzanavaras PD. Smartphone-Based High-Throughput Fluorimetric Assay for Histidine Quantification in Human Urine Using 96-Well Plates. Molecules 2023; 28:6205. [PMID: 37687035 PMCID: PMC10488697 DOI: 10.3390/molecules28176205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A high-throughput fluorimetric assay for histidine was developed, using a 96-well plates platform. The analyte reacts selectively with o-phthalaldehyde under mild alkaline conditions to form a stable derivative. Instrumental-free detection was carried out using a smartphone after illumination under UV light (365 nm). The method was proved to be linear up to 100 μM histidine, with an LLOQ (lower limit of quantification) of 10 μM. The assay was only prone to interference from glutathione and histamine that exist in the urine samples at levels that are orders of magnitude lower compared to histidine. Human urine samples were analyzed following minimum treatment and were found to contain histidine in the range of 280 to 1540 μM. The results were in good agreement with an HPLC corroborative method.
Collapse
Affiliation(s)
- Dimitrios Baltzis
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.B.); (G.Z.T.)
| | - George Z. Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.B.); (G.Z.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.B.); (G.Z.T.)
| |
Collapse
|
8
|
Shi B, Kim S, Moon B. Evaluation of the biogenic amines in low-salt shrimp paste cooked under various conditions. Food Sci Biotechnol 2023; 32:1049-1056. [PMID: 37215255 PMCID: PMC10195943 DOI: 10.1007/s10068-023-01246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
Shrimp paste, a type of traditional Chinese food prepared from shrimp fermented with salt, contains biogenic amines (BAs). In this study, the BA content, salinity, and pH of eight commercial low-salt shrimp pastes were analyzed. In addition, the influences of various cooking conditions on the BA content of it were evaluated by HPLC. The total BA amount per product ranged between 32.39 and 1051.16 mg/kg. The salinity and pH were found significantly inversely correlated with the total BA amount. Of the cooking methods tested, after microwave heating and stir-frying, the total BA amount of shrimp paste, which showed the highest BA amount among 8 samples, declined from 1051.16 to 598.48 and 650.49 mg/kg, respectively; however, boiling or steaming showed no significant effects on the total BA amount. These results indicated possible health risk of low-salt shrimp paste whereas the risk could be reduced by choosing appropriate cooking method.
Collapse
Affiliation(s)
- BaoZhu Shi
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| | - Siwoo Kim
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| | - BoKyung Moon
- Department of Food and Nutrition, Chung-Ang University, 72-1, Nae-ri, Daedeok-myeon, Anseong-si, Gyeonggi 17546 Republic of Korea
| |
Collapse
|
9
|
Tsiasioti A, Tzanavaras PD. Naphthalene-2,3-dicarboxaldehyde as a pulsed-post column derivatization reagent; comparison with two alternative o-phthalaldehyde based chemistries for the determination of histamine. Food Chem 2023; 424:136462. [PMID: 37263095 DOI: 10.1016/j.foodchem.2023.136462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
In the present study, naphthalene-2,3-dicarboxaldehyde (NDA) was used in on-line post column derivatization (PCD) coupled to liquid chromatography under the new concept of Pulsed-PCD. In Pulsed-PCD, the reagents are introduced into the flowing stream of the mobile phase under precise timing overlapping the eluted analyte. The consumption of the reagents is minimized to a few microliters, resulting in a significant advantage, that is the use of expensive reagents in PCD. For this reason, NDA-CN chemistry was used for the determination of histamine in food samples, such as eggplant and spinach. Two additional methods were developed based on the reaction of histamine with o-phthalaldehyde (OPA), namely the classic OPA - nucleophilic compound reaction and the specific OPA - histamine reaction in alkaline medium. The chromatographic conditions and the Pulsed-PCD conditions were investigated, while the analytical figures of merit were satisfactory. In all three methods, a pulse of 50 μL was used (OPA/NDA + Buffer), reducing dramatically the consumption of PCD reagents.
Collapse
Affiliation(s)
- Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR 54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR 54124, Greece.
| |
Collapse
|
10
|
Hu G, Wang L, Li X, Qi J. Rapidly and accurately screening histidine decarboxylase inhibitors from Radix Paeoniae alba using ultrafiltration-high performance liquid chromatography/mass spectrometry combined with enzyme channel blocking and directional enrichment technique. J Chromatogr A 2023; 1693:463859. [PMID: 36868086 DOI: 10.1016/j.chroma.2023.463859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Histidine Decarboxylase (HDC), an unique enzyme responsible for the synthesis of histamine, which is an important mediator in allergy. Inhibition of HDC activity to decrease histamine production is one way to alleviate allergic symptoms. Traditional Chinese medicines (TCMs) with reported anti-allergy effect is one of important source to search for natural HDC inhibitor. Ultrafiltration combined with high-performance liquid chromatography/mass spectrometry (UF-HPLC/MS) is an effective method for screening HDC inhibitor from TCMs. Nevertheless, false-positive and false-negative results caused by the non-specific binding and the neglection of the trace active compounds are major problems in this method. In this study, an integrated strategy that combined UF-HPLC/MS with enzyme channel blocking (ECB) technique and directional enrichment (DE) technique was developed to seek natural HDC inhibitors from Radix Paeoniae alba (RPA), and at the same time, to reduce false-positive and false-negative results. HDC activity was detected to determine the validity of the screened compounds by RP-HPLC-FD in vitro. Molecular docking was applied to assay the binding affinity and binding sites. As a result, three compounds were screened from low content components of RPA after the DE. Among them, two non-specific compounds were eliminated by ECB, and the specific compound was identified as catechin, which has obvious HDC inhibition activity with IC50 0.52 mM. Furthermore, gallic acid (IC50 1.8 mM) and paeoniflorin (IC50>2 mM) from high content components of RPA were determined having HDC inhibitory activity. In conclusion, the integrated strategy of UF-HPLC/MS combined with ECB and DE technique is an effective mode for rapid and accurate screening and identification of natural HDC inhibitors from TCMs.
Collapse
Affiliation(s)
- Guizhou Hu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210012, PR China
| | - Xinqi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
11
|
Development and evaluation of pulsed - Post column derivatization in liquid chromatography as a concept to minimize reagent consumption. J Chromatogr A 2023; 1690:463791. [PMID: 36682104 DOI: 10.1016/j.chroma.2023.463791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In the current article, we propose an alternative approach to reduce the consumption of the reagents in liquid chromatography coupled to on-line post column derivatization. In our proposal post column reagents do not flow continuously but they are instead introduced as well-defined pulses (at microliter levels) that are merged on-line with the eluted analytes through precise tuning (Pulsed-Post Column Derivatization, Pulsed-PCD). The profiles of the pulses in terms of time and flow rate were investigated "visually" using caffeine as model compound (at 274 nm). The robustness of the procedure was evaluated by Monte Carlo simulations and was verified taking into account the precisions of typically used propulsion systems. As a proof of concept, we selected the determination of histidine in human urine after separation by cation exchange chromatography and Pulsed-PCD derivatization with o-phthalaldehyde. The consumption of the derivatizing reagent was downscaled to the microliter level per run, while the analytical results were within the expected ranges (110 - 1520 µmol L-1) and with good agreement with the corroborative method based on classic HPLC-PCD.
Collapse
|
12
|
Hydrophobic Mesoporous Silica-Coated Solid-Phase Microextraction Arrow System for the Determination of Six Biogenic Amines in Pork and Fish. Foods 2023; 12:foods12030578. [PMID: 36766106 PMCID: PMC9914681 DOI: 10.3390/foods12030578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, a functionalized mesoporous silica-coated solid-phase microextraction (SPME) Arrow system was developed for the enrichment of six biogenic amines (BAs) from pork and fish samples before gas chromatographic separation with a mass spectrometer as a detector. MCM-41 was utilized as the substrate material and thereby functionalized by titanate and sodium dodecyl sulfate to adjust its surface acidity and hydrophobicity, respectively. The functionalized MCM-41 (named as MCM-T-H) was coated on a bare SPME Arrow using the dipping method and polyacrylonitrile was used as the adhesive. The extraction capacity and selectivity of the MCM-T-H-SPME Arrow for six kinds of derivatized BAs were studied and compared with commercial SPME Arrows. Experimental parameters, e.g., sample volume, derivatization reagent amount, extraction time, and desorption time, which have a dramatic effect on SPME Arrow pretreatment, were optimized. Acidity enhanced MCM-T-H coating showed a much higher affinity to derivatized BAs compared to a commercial SPME Arrow in terms of extraction capacity. In addition, hydrophobicity modification significantly reduced the interference of water molecules on the interaction between MCM-T-H and the derivatized BAs. The MCM-T-H-SPME Arrow showed efficient separation and enrichment capacity for derivatized BAs from complex matrices and therefore, the sample pretreatment time was saved. According to the experimental results, the optimal condition was to add 10 μL derivatization reagent to a 10 mL sample and maintain an agitation speed of 1250 r min-1. The MCM-T-H-SPME showed excellent reproducibility (RSD < 9.8%) and fast adsorption kinetics (30 min) and desorption kinetics (5 min) for derivatized BAs under optimal conditions. In summary, the MCM-T-H-SPME Arrow based method was employed for accurate monitoring of the variations of BAs in pork and fish, and good results were achieved.
Collapse
|
13
|
Tsiasioti A, Tzanavaras PD. Simple and Reliable Determination of the Histamine Content of Selected Greek Vegetables and Related Products in the Frame of “Low Histamine Diet”. Foods 2022. [PMCID: PMC9601828 DOI: 10.3390/foods11203234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The determination of histamine in Greek foods that should potentially be avoided during a “low histamine diet” is reported herein. Cation exchange chromatography combined to selective post column derivatization proved to be an excellent tool for this type of analysis as well, offering accurate results following minimal sample preparation. Tomato-, eggplant- and spinach-related products have been successfully analyzed and were all found to contain histamine. Higher amounts were quantified in eggplants, eggplant salads and spinach in the range of 15.4–34.2 mg kg−1 and lower in fresh tomatoes and related products (0.8–10.6 mg kg−1). The method is capable of determining as low as 0.5 mg kg−1 histamine without matrix effects, with percent recoveries ranging between 87 and 112% (tomatoes and related products), 95 and 119% (eggplants and related products) and 90 and 106% (fresh and frozen spinach).
Collapse
|
14
|
Li K, Li H, Yin M, Yang D, Xiao F, Kumar Tammina S, Yang Y. Fluorescence-SERS dual-mode for sensing histamine on specific binding histamine-derivative and gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121047. [PMID: 35217264 DOI: 10.1016/j.saa.2022.121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Histamine (His) is used as an indicator of seafood quality, but it can be toxic at high intakes. A fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode assay system has been developed for His detection. The His detection method was established based on the specific binding capacity of gold nanoparticles (AuNPs) for the FL derivative of His and o-phthalaldehyde (OPA). In this strategy, His reacted with the OPA to form a Schiff base product (O-His) along with a change in FL and SERS activities. The usual nature of AuNPs could display a significant role both enhancement of SERS and quenching of FL signals. The current investigation displayed a good selectivity toward His over all other biogenic amines. Under the optimized analytical conditions, the SERS and FL intensity of the system were linearly proportional to the His concentration in the range of 0.05-4.5 mg/L and 1-20 mg/L with a detection limit of 0.04 mg/L and 0.32 mg/L, respectively. Moreover, the proposed method was successfully applied for His determination in seafood with promising results.
Collapse
Affiliation(s)
- Kexiang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Institute of Agro-products Processing, Yunnan Academy of Agricultural Science, Yunnan Province 650032, China
| | - Mongjia Yin
- Yunnan Lunyang Technology Co., Ltd., Yunnan Province 650032, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Lunyang Technology Co., Ltd., Yunnan Province 650032, China.
| | - Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Sai Kumar Tammina
- School of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
15
|
Kounnoun A, Louajri A, Cacciola F, Baaboua AE, Mondello L, Bougtaib H, Alahlah N, Stitou M, Maadoudi ME. Development of a new HPLC method for rapid histamine quantification in fish and fishery products without sample clean-up. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gao X, Gu X, Min Q, Wei Y, Tian C, Zhuang X, Luan F. Encapsulating Ru(bpy) 32+ in an infinite coordination polymer network: Towards a solid-state electrochemiluminescence sensing platform for histamine to evaluate fish product quality. Food Chem 2022; 368:130852. [PMID: 34419792 DOI: 10.1016/j.foodchem.2021.130852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
In this work, we demonstrate a novel solid-state electrochemiluminescence (ECL) sensor based on the Ru(bpy)32+@terbium-guanosine monophosphate infinite coordination polymer network ((Ru(bpy)32+@Tb-GMP ICPn). Comparing with the traditional luminescence of Ru(bpy)32+ observed in a liquid system, the proposed method of encapsulating Ru(bpy)32+ into ICPn for immobilization greatly improves the ECL signal and efficiency, which is attributed to the unique porous structure and large specific surface area of ICPn. Moreover, the solid-state Ru(bpy)32+ ECL sensor has good biocompatibility and low toxicity. Taking histamine (HA) as a detection model, a good linear relationship between ECL intensity and logarithm of HA concentration was obtained with a low detection limit of 17 nM, and satisfactory results were obtained for detecting HA levels in fish samples as well. The proposed solid-state Ru(bpy)32+ ECL sensor has great application prospects in the safety of food.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaowen Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qi Min
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yueyue Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
17
|
Kouti E, Tsiasioti A, Zacharis CK, Tzanavaras PD. Specific determination of histamine in cheese and cured meat products by ion chromatography coupled to fluorimetric detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|