1
|
Liu S, Sun C, Zhang X, Shu R, Zhang J, Wang B, Wang K, Dou L, Huang L, Yang Q, Wang J. Advances in enhancement-type signal tracers and analysis strategies driven Lateral flow immunoassay for guaranteeing the agri-food safety. Biosens Bioelectron 2025; 268:116920. [PMID: 39531800 DOI: 10.1016/j.bios.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a classical and continuously developing on-site sensor, Lateral flow immunoassay (LFIA) exhibits promising potential for advanced point-of-care testing (POCT). Especially given the significance of agri-food in human dietary structure and the ever-increasing agri-food safety concerns, improved analysis performance of LFIA is urgently required. Recently, flourishing enhancement-type signal tracers (STs) and brilliant enhancement-type analysis strategies have been actively pursued in the development of LFIA because these patterns endow immense feasibility in manufacturing target-oriented sensing platforms. To facilitate further advancements in this field, this review comprehensively examines the recent developments in enhancement-type STs (e.g., load-, green-, recognizable-, Janus-, and dyestuffs-type STs) and enhancement-type analysis strategies (e.g. immuno-network, in-situ growth, nanozymes, multi-signal readout, and software-assisted quantitative analytical strategies) that significantly improve precise analysis efficiency. Moreover, by conducting a comprehensive evaluation of the major advancements and aiming to identify future trends in LFIA-based sensor, the objective of this review is to provide recommendations for future research based on the challenges and opportunities of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiyue Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Biao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kexin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lunjie Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, Sichuan, China
| | - Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, Liaoning, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Korzhan L, Kulichenko S, Lelyushok S, Klovak V. Coomassie Brilliant Blue G for Smart Colorimetric Determination of the Ionic Surfactants in Triton X-100 Solutions. APPLIED SPECTROSCOPY 2024; 78:1105-1114. [PMID: 39094003 DOI: 10.1177/00037028241267900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The conditions for the smart colorimetric determination of cetylpyridinium chloride and sodium dodecyl sulfate by reaction with Coomassie brilliant blue G (CBBG) have been proposed. The nature of the absorption and fluorescence spectra of aqueous solutions of CBBG as a function of acidity has been investigated. A variety of reagent forms and associations with ionic surfactants have been demonstrated. The composition of the associates formed in the CBBG-cationic surfactant system has been established. The increase in the analytical signal of the cationic surfactant and the stabilization of the colloid-chemical state of the system during reactions in the organized medium of the nonionic surfactant Triton X-100 has been demonstrated. These effects are realized through association in premicellar solutions and as a result of the solubilization of components in Triton X-100 micellar solutions. The addition of long-chain cationic surfactants to the reagent occurs with the replacement of the heteroatom proton. The absorption of CBBG-cationic surfactant associates solutions increases with the length of the cationic surfactant hydrocarbon chain. Ethanol additives decrease the aggregation of CBBG. The technique of cationic surfactant determination has been tested in the analysis of the pharmaceutical. The results show that the simplicity of analytical signal registration with satisfactory correctness and acceptably high sensitivity of determination is an advantage of the developed technique.
Collapse
Affiliation(s)
- Liudmyla Korzhan
- Analytical Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Sergey Kulichenko
- Analytical Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Serhii Lelyushok
- Analytical Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Viktoriia Klovak
- Analytical Chemistry Department, Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
3
|
Liu M, Wang Y, Xiao J, Liu Y, Ren Y, Gao X. Colorimetric immunoassay of furazolidone metabolites based on iron-copper bimetallic organic framework nanoenzyme. Mikrochim Acta 2024; 191:575. [PMID: 39235626 DOI: 10.1007/s00604-024-06657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Based on the peroxidase activity of Cu-hemin metal-organic framework (Cu-hemin MOF) nanozyme, a colorimetric enzyme-linked immunosensor was developed for the detection of furazolidone (FZD). Cu-hemin MOF is a bimetallic nanozyme that exhibited a stronger catalytic effect compared with single-metal organic framework nanoenzymes. Cu-hemin-MOF catalyzes hydrogen peroxide (H2O2) to produce hydroxyl radicals (•OH), which oxidizes the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB). The absorbance change is at 650 nm. The content of AOZ in animal food can be quickly and accurately determined by changes in absorbance. The linear range of the colorimetric biosensor for detecting FZD was 0.01 ~ 62.52 ng/mL, and the limit of detection was as low as 0.01 ng/mL. The recovery of spikes samples was in the range 94.2-108.0 % and reproducibility was less than 4.8%. In addition, the cross-reaction rate was less than 0.1% when detecting other metabolites except AOZ, indicating that the sensor has good applicability and specificity. This study not only provides a better understanding of the relationship between the dispersion of nanoenzymes and enzyme-like activity but also offers a general method for detecting antibiotics using the nanoenzyme colorimetric method.
Collapse
Affiliation(s)
- Menglong Liu
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Ying Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Jingyi Xiao
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yiyao Liu
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yi Ren
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Xue Gao
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, 121013, Liaoning, China.
| |
Collapse
|
4
|
Li X, Qian H, Tao J, Cao M, Wang M, Zhai W. Preparation of Hybrid Magnetic Nanoparticles for Sensitive and Rapid Detection of Phorate Residue in Celery Using SERS Immunochromatography Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1046. [PMID: 38921922 PMCID: PMC11206780 DOI: 10.3390/nano14121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, it has been restricted for use in many countries. Analytical methods for the rapid and sensitive detection of phorate residues in agricultural products are urgently needed. In this study, a new method was developed by combining surface-enhanced Raman spectroscopy (SERS) and immunochromatography assay (ICA). Hybrid magnetic Fe3O4@Au@DTNB-Ab nanoprobes were prepared by modifying and growing Au nanoseeds on an Fe3O4 core. SERS activity of the nanoprobe was optimized by adjusting the concentration of the Au precursor. A rapid and sensitive assay was established by replacing the traditional colloidal gold-based ICA with hybrid SERS nanoprobes for SERS-ICA. After optimizing parameters including coating antibody concentrations and the composition and pH of the buffer solution, the limit of detection (LOD) for phorate could reach 1 ng/mL, with a linear range of 5~100 ng/mL. This LOD is remarkably lower than the maximum residue limit in vegetables and fruits set by the Chinese government. The feasibility of this method was further examined by conducting a spiking test with celery as the real sample. The result demonstrated that this method could serve as a promising platform for rapid and sensitive detection of phorate in agricultural products.
Collapse
Affiliation(s)
- Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residue in Agricultural Product, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (H.Q.)
| | - Hean Qian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residue in Agricultural Product, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (X.L.); (H.Q.)
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (J.T.); (M.C.)
| | - Jin Tao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (J.T.); (M.C.)
| | - Mingshuo Cao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (J.T.); (M.C.)
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (J.T.); (M.C.)
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (J.T.); (M.C.)
| |
Collapse
|
5
|
Zhang S, Wang S, Fan YY, Liu WC, Zheng YN, Wang Z, Ren S, Li W. Preparation of a new resource food-arabinogalactan and its protective effect against enterotoxicity in IEC-6 cells by inhibiting endoplasmic reticulum stress. Int J Biol Macromol 2023; 249:126124. [PMID: 37543271 DOI: 10.1016/j.ijbiomac.2023.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Plant polysaccharides can be used as bioactive natural polymers that provide health benefits, however high molecular weight neutral polysaccharides have not shown good bioactivity. In this study, high molecular weight neutral arabinogalactan was isolated and structurally characterized to investigate it antioxidant activity against IEC-6 cells. In this study, a neutral polysaccharide (AG-40-I-II) was obtained from the roots of Larix gmelinii (Rupr.) Kuzen. and purified using ethanol fractional precipitation and purification on a DEAE-52 cellulose column and a Superose 12 gel filtration column. The structural characteristics of AG-40-I-II was detected by chemical and spectroscopic methods. The results showed that the average molecular weight of AG-40-I-II was 18.6 kDa, the main chain was composed of →4)-β-D-Gal-(1, → 4, 6)-β-D-Gal-(1 and →4)-β- D-Glc-(1, the side chain is composed of T-β-L-Araf(1 → 6). The effect of AG-40-I-II on H2O2-induced IEC-6 cell injury was determined by MTT method. Besides, AG-40-I-II could reduce the level of MDA and increase SOD activity on IEC-6 cells, which could significantly inhibit the production of ROS. Importantly, AG-40-I-II inhibited the splicing of XBP1 by IRE1α through the ERS pathway and reduced the cell apoptosis induced by H2O2. In summary, the results of this study indicate that AG-40-I-II, as a natural source of plant polysaccharides, has good antioxidant activity, and is expected to become a safe plant source of natural antioxidants, which has great potential in biomedicine potential.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu-Ying Fan
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Northeast Normal University, Changchun 130024, China
| | - Wen-Cong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
Sun W, Jiang L, Hao X, Fan X, Qin Y, Huang T, Lou Y, Liao L, Zhang K, Chen S, Qin A. Cane Molasses Derived N-Doped Graphene Quantum Dots: Dynamic Quenching Synergistically Photoinduced Electron Transfer for the Instant Detection of Nitrofuran Antibiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4394-4405. [PMID: 36913721 DOI: 10.1021/acs.langmuir.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of a highly selective, simple, and rapid detection method for nitrofuran antibiotics (NFs) is of great significance for food safety, environmental protection, and human health. To meet these needs, in this work, cyan-color highly fluorescent N-doped graphene quantum dots (N-GQDs) were synthesized using cane molasses as the carbon source and ethylenediamine as the nitrogen source. The synthesized N-GQDs have an average particle size of 6 nm, a high fluorescence intensity with 9 times that of undoped GQDs, and a high quantum yield (24.4%) which is more than 6 times that of GQDs (3.9%). A fluorescence sensor based on N-GQDs for the detection of NFs was established. The sensor shows advantages of fast detection, high selectivity, and sensitivity. The limit of detection for furazolidone (FRZ) was 0.29 μM, the limit of quantification (LOQ) was 0.97 μM, and the detection range was 5-130 μM. The fluorescence quenching mechanism of the sensor was explored by fluorescence spectroscopy, UV-vis absorption spectroscopy, Stern-Volmer quenching constant, Zeta potential, UV-vis diffuse reflectance spectroscopy, and cyclic voltammetry. A fluorescence quenching mechanism of dynamic quenching synergized with photoinduced electron transfer was revealed. The developed sensor was also successfully applied for detecting FRZ in various real samples, and the results were satisfactory.
Collapse
Affiliation(s)
- Wei Sun
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Li Jiang
- College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Xinyu Hao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Xingang Fan
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Yingxi Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Tao Huang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Ying Lou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Lei Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Shuoping Chen
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education, College of Materials Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
7
|
Ratiometric fluorescent immunochromatography for simultaneously detection of two nitrofuran metabolites in seafoods. Food Chem 2023; 404:134698. [DOI: 10.1016/j.foodchem.2022.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
|
8
|
Wang S, Du T, Liu S, Li Y, Wang Y, Zhang L, Zhang D, Sun J, Zhu M, Wang J. Dyestuff chemistry auxiliary instant immune-network label strategy for immunochromatographic detection of chloramphenicol. Food Chem 2023; 401:134140. [DOI: 10.1016/j.foodchem.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
|
9
|
Self-propelled Janus nanomotor as active probe for detection of pepsinogen by lateral flow immunoassay. Mikrochim Acta 2022; 189:468. [DOI: 10.1007/s00604-022-05538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
10
|
Multiplex immunochromatographic platform based on crystal violet tag for simultaneous detection of streptomycin and chloramphenicol. Food Chem 2022; 393:133351. [PMID: 35689929 DOI: 10.1016/j.foodchem.2022.133351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/23/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Antibiotic abuse has caused serious health risks for human beings for long. To address the problem, novel and facile detection techniques are highly desired. Here, an effective multiplex immunochromatographic platform (MICP) with synthesis-free and cost-effective merits is established for simultaneous detection of antibiotics on a single immunochromatographic assay (ICA) strip. Adopting crystal violet (CV) as a signal tag for multiplex ICA allows for direct coupling with multiple antibodies in several minutes. By combining CV and ICA perfectly, this convenient strategy offers improvements in convenience, speed, flexibility, and portability, eventually ensuring the optimized effectiveness of this approach. As a result, the established platform is successfully used to detect streptomycin (STR) and chloramphenicol (CAP) with visual detection mode, and the obtained total recoveries of milk and honey real samples changed from 83.82 to 113.38% with total RSD values of 0.48 to 4.15%.
Collapse
|
11
|
Chen R, Peng X, Song Y, Du Y. A Paper-Based Electrochemical Sensor Based on PtNP/COF TFPB-DHzDS@rGO for Sensitive Detection of Furazolidone. BIOSENSORS 2022; 12:bios12100904. [PMID: 36291041 PMCID: PMC9599777 DOI: 10.3390/bios12100904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 05/31/2023]
Abstract
Herein, a paper-based electrochemical sensor based on PtNP/COFTFPB-DHzDS@rGO was developed for the sensitive detection of furazolidone. A cluster-like covalent organic framework (COFTFPB-DHzDS) was successfully grown on the surface of amino-functional reduced graphene oxide (rGO-NH2) to avoid serious self-aggregation, which was further loaded with platinum nanoparticles (PtNPs) with high catalytic activity as nanozyme to obtain PtNP/COFTFPB-DHzDS@rGO nanocomposites. The morphology of PtNP/COFTFPB-DHzDS@rGO nanocomposites was characterized, and the results showed that the smooth rGO surface became extremely rough after the modification of COFTFPB-DHzDS. Meanwhile, ultra-small PtNPs with sizes of around 1 nm were precisely anchored on COFTFPB-DHzDS to maintain their excellent catalytic activity. The conventional electrodes were used to detect furazolidone and showed a detection limit as low as 5 nM and a linear range from 15 nM to 110 μM. In contrast, the detection limit for the paper-based electrode was 0.23 μM, and the linear range was 0.69-110 μM. The results showed that the paper-based electrode can be used to detect furazolidone. This sensor is a potential candidate for the detection of furazolidone residue in human serum and fish samples.
Collapse
Affiliation(s)
| | | | | | - Yan Du
- Correspondence: or ; Tel.: +86-0791-88120861
| |
Collapse
|
12
|
Xu L, El-Aty AA, Eun JB, Shim JH, Zhao J, Lei X, Gao S, She Y, Jin F, Wang J, Jin M, Hammock BD. Recent Advances in Rapid Detection Techniques for Pesticide Residue: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13093-13117. [PMID: 36210513 PMCID: PMC10584040 DOI: 10.1021/acs.jafc.2c05284] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an important chemical pollutant affecting the safety of agricultural products, the on-site and efficient detection of pesticide residues has become a global trend and hotspot in research. These methodologies were developed for simplicity, high sensitivity, and multiresidue detection. This review introduces the currently available technologies based on electrochemistry, optical analysis, biotechnology, and some innovative and novel technologies for the rapid detection of pesticide residues, focusing on the characteristics, research status, and application of the most innovative and novel technologies in the past 10 years, and analyzes challenges and future development prospects. The current review could be a good reference for researchers to choose the appropriate research direction in pesticide residue detection.
Collapse
Affiliation(s)
- Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A.M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Jia J, Zhang H, Qu J, Wang Y, Xu N. Immunosensor of Nitrofuran Antibiotics and Their Metabolites in Animal-Derived Foods: A Review. Front Chem 2022; 10:813666. [PMID: 35721001 PMCID: PMC9198595 DOI: 10.3389/fchem.2022.813666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Nitrofuran antibiotics have been widely used in the prevention and treatment of animal diseases due to the bactericidal effect. However, the residual and accumulation of their metabolites in vivo can pose serious health hazards to both humans and animals. Although their usage in feeding and process of food-derived animals have been banned in many countries, their metabolic residues are still frequently detected in materials and products of animal-derived food. Many sensitive and effective detection methods have been developed to deal with the problem. In this work, we summarized various immunological methods for the detection of four nitrofuran metabolites based on different types of detection principles and signal molecules. Furthermore, the development trend of detection technology in animal-derived food is prospected.
Collapse
Affiliation(s)
| | | | | | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| | - Naifeng Xu
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| |
Collapse
|
14
|
Emergence of dyestuff chemistry-encoded signal tracers in immunochromatographic assays: Fundamentals and recent food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Huang Q, Dang L. Graphene-labeled synthetic antigen as a novel probe for enhancing sensitivity and simplicity in lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1155-1162. [PMID: 35225992 DOI: 10.1039/d1ay02158c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lateral flow immunoassay (LFIA), which combines immune-specific recognition properties with sensitive nano-signaling features, has emerged as an excellent tool for point-of-care testing (POCT) in food safety and clinical diagnosis. Exploring novel probes with a simple preparation process, improved signal intensity and good stability is conducive to the development and application of LFIA. Herein, a potent non-antibody probe, graphene-labeled synthetic antigen (G-Ag), was created for LFIA, in which graphene endowed a naked-eye visual colorimetric signal with high sensitivity, and the synthetic antigen competed with the target for binding to the antibody on the test line. During the G-Ag probe manufacturing process, only one simple mixing step was needed because graphene nanosheets presented a strong adsorption capacity toward the protein (BSA) on the synthetic antigen, significantly saving time, labor and cost. Especially, the synthetic antigen forms a fabulous probe element without the need for antibody, and thus the proposed LFIA avoids the destruction of antibody activity, and exhibits excellent sensitivity and stability. After optimization, LFIA was successfully applied to analyze clenbuterol; the lowest visually detectable concentration was 0.1 ng mL-1, and the probe could be well-applied in pork, mutton, sausage and bacon samples, demonstrating favorable specificity and repeatability. Owing to the advantages of simplicity, non-antibody probe, sensitivity and reliability, G-Ag probe-based LFIA has application potential for small-molecule target monitoring and rapid detection.
Collapse
Affiliation(s)
- Qiong Huang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| | - Ling Dang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| |
Collapse
|
16
|
Wu P, Xue F, Zuo W, Yang J, Liu X, Jiang H, Dai J, Ju Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal Chem 2022; 94:4277-4285. [PMID: 35244383 DOI: 10.1021/acs.analchem.1c04909] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In traditional lateral flow immunoassays (LFIA) for pathogens detection, capture antibody (CA) is necessary and usually conjugated to Au nanoparticles (NPs) in order to label the target analyte. However, the acquisition process of the Au-CA nanoprobe is relatively complicated and costly, which will limit the application of LFIA. Herein, p-mercaptophenylboronic acid-modified Au NPs (namely Au-PMBA nanocrabs), were synthesized and applied for a new CA-independent LFIA method. The stable Au-PMBA nanocrabs showed outstanding capability to capture both Gram-negative bacteria and Gram-positive bacteria through covalent bonding. The acquired Au-PMBA-bacteria complexes were dropped onto the strip, and then captured by the detection antibody on the test line (T-line). Take Escherichia coli O157:H7 as an example, the gray value of T-line was proportional to the bacteria concentration and the linear range was 103-107 cfu·mL-1. This CA-independent strategy exhibited higher sensitivity than the traditional CA-dependent double antibody sandwich method, because detection limit of the former one was 103 cfu·mL-1 only by visual observation, which was reduced by 3 orders of magnitude. Besides, this platform successfully screened E. coli O157:H7 in four food samples with recoveries ranging from 90.25% to 107.25%. This CA-independent LFIA showed great advantages and satisfactory potential for rapid foodborne pathogens detection in real samples.
Collapse
Affiliation(s)
- Pengcheng Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
17
|
Li M, Qian ZJ, Peng CF, Wei XL, Wang ZP. Ultrafast Ratiometric Detection of Aflatoxin B1 Based on Fluorescent β-CD@Cu Nanoparticles and Pt 2+ Ions. ACS APPLIED BIO MATERIALS 2022; 5:285-294. [PMID: 35014825 DOI: 10.1021/acsabm.1c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid detection of aflatoxin B1 (AFB1) is a very important task in food safety monitoring. However, it is still challenging to achieve highly sensitive detection without antibody or aptamer biomolecules. In this work, a rapid detection of aflatoxin B1 was achieved using a ratiometric fluorescence probe without antibody or aptamer for the first time. In the ratiometric fluorescence system, the fluorescence emission of AFB1 at 433 nm was significantly enhanced due to the β-cyclodextrin-AFB1 host-guest interaction and the complexation of AFB1 and Pt2+. Meanwhile, the inclusion of aflatoxin B1 also quenched the fluorescence emission of β-CD@Cu nanoparticles (NPs) at 650 nm based on inner filter effect mechanism. On the basis of the above effects, the ratiometric detection of aflatoxin B1 was achieved in the range of 0.03-10 ng/mL with a low detection limit of 0.012 ng/mL (3σ/s). In addition, the β-CD@Cu NPs based nanoprobe could achieve stable response within 1 min to AFB1. The above ratiometric detection also demonstrated excellent application potential in the rapid on-site detection of AFB1 in food due to the advantages of convenience, rapidness, and high accuracy.
Collapse
Affiliation(s)
- Min Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhi-Juan Qian
- Nanjing Customs District Light Industry Products and Children's Products Inspection Center, Yangzhou 225009, P. R. China
| | - Chi-Fang Peng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin-Lin Wei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Zhou-Ping Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
18
|
Xu J, Zhou J, Bu T, Dou L, Liu K, Wang S, Liu S, Yin X, Du T, Zhang D, Wang Z, Wang J. Self-Assembling Antibody Network Simplified Competitive Multiplex Lateral Flow Immunoassay for Point-of-Care Tests. Anal Chem 2022; 94:1585-1593. [DOI: 10.1021/acs.analchem.1c03484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Jing Zhou
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|