1
|
Srivastava A, Rastogi A, Jaswal AS, Sahu JK, Agarwal GP, Mishra S. Nanofiltration-based purification process for whole-cell transformed prebiotic galactooligosaccharides. Bioprocess Biosyst Eng 2025; 48:621-631. [PMID: 39903231 DOI: 10.1007/s00449-025-03132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The enrichment of galactooligosaccharides (GOS), synthesized by whole cells of Kluyveromyces marxianus 3551 in a 5.0-L bioreactor, was investigated in this study. The synthesized sugar mixture containing 17.89% (w/w of total carbohydrates) of GOS with 15.57% (w/w of total carbohydrates) of lactose, and 66.54% (w/w of total carbohydrates) monosaccharides as impurities, was subjected to nanofiltration for enrichment of GOS. Three distinct spiral wound membranes, namely, NFPS-01(polysulfone), NFCA-02 (cellulose acetate), and NFPES-03 (polyethersulfone) were tested out of which the NFPES-03 performed the best for fractionation of the GOS mixture. The polyethersulphone membrane (cut-off 400-1000 Da) was evaluated at 30 ℃ and 50 ℃, at different transmembrane pressures or TMP (15, 20, 25 bar) and a combination of high temperature (50 ℃) and low pressure (15 bar) gave the greatest difference in the trisaccharide and disaccharide/monosaccharide rejection percentages, resulting in enrichment of GOS. An analysis of the sugar concentrations in the retentate samples by high-performance liquid chromatography indicated the percentage recovery of GOS in the integrated process to be 88.8%. Measurement of the growth profile of several microbes on the nano-filtered GOS demonstrated its effectiveness as a prebiotic source.
Collapse
Affiliation(s)
- Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
- Food Bioprocess Engineering Research Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
| | - Arjun Rastogi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Avijeet S Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Jatindra K Sahu
- Food Bioprocess Engineering Research Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Gopal P Agarwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| |
Collapse
|
2
|
Liao J, Wang M, Li H, Li T, Deng Z, Li J, Zheng L, Yan Y, Duan S, Zhang B. Human Milk Oligosaccharide LNnT Promotes Intestinal Epithelial Growth and Maturation During the Early Life of Infant Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6678-6690. [PMID: 40048505 DOI: 10.1021/acs.jafc.4c10055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Lacto-N-neotetraose (LNnT) is a prevalent neutral core human milk oligosaccharides (HMOs) recognized for its numerous benefits to infant health. In infant formula, galactooligosaccharide (GOS) are frequently used as substitutes for HMOs. However, the regulatory roles of LNnT and GOS in early intestinal development are not yet fully understood. This study aims to elucidate the effects of LNnT and GOS on intestinal development during early life. Our findings show that administering LNnT or GOS significantly increased the spleen and liver indices of infant mice at postnatal day 21. Immunofluorescence and qPCR analysis showed that feeding LNnT significantly promoted the proliferation and differentiation of intestinal stem cells (ISCs) in the colon of infant mice at postnatal day 21, and increased the expression of differentiation markers of goblet cells, intestinal epithelial cells, Paneth cells, and intestinal endocrine cells. Conversely, feeding GOS had no significant effect on the proliferation and differentiation of ISCs. Furthermore, intestinal microbiota analysis showed that LNnT increased the microbiota associated with intestinal regeneration and ISCs proliferation and differentiation in infant mice at postnatal day 21. In conclusion, LNnT promoted ISCs proliferation and differentiation in the colon and alters the composition and function of the intestinal microbiota to support intestinal development in infant mice.
Collapse
Affiliation(s)
- Jinqiang Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
| | - Minghui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Ting Li
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co. Ltd, Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot 010110, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| | - Yalu Yan
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co. Ltd, Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot 010110, China
| | - Sufang Duan
- Yili Maternal and Infant Nutrition Institute (YMINI), Inner Mongolia Yili Industrial Group, Co. Ltd, Beijing 100070, China
- Inner Mongolia Dairy Technology Research Institute Co. Ltd, Hohhot 010110, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047 Jiangxi, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330051 Jiangxi, China
| |
Collapse
|
3
|
Sa'aid N, Tan JS. From probiotic fermentation to functional drinks: a review on fruit juices with lactic acid bacteria and prebiotics. Prep Biochem Biotechnol 2025:1-20. [PMID: 39968919 DOI: 10.1080/10826068.2025.2467441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In recent years, the demand for probiotic beverages has surged, with dairy products traditionally serving as the primary sources of probiotics. However, many consumers face health issues such as lactose intolerance, milk allergies, and high cholesterol, which prevent them from consuming dairy products. This has led to the exploration of nondairy alternatives, particularly fruit juices, as carriers for probiotics. Lactic acid bacteria (LAB) have been identified as beneficial probiotics that can be incorporated into these beverages. The inclusion of prebiotics, such as inulin and galacto-oligosaccharides (GOS), in fruit juices has shown promise in enhancing the growth and activity of LAB, thereby creating functional beverages that support digestive health. Despite numerous studies on fruit juice fermentation, there is limited data on the optimal pairing of probiotics and prebiotics to develop stable, nondairy functional drinks. This review underscores the potential of lactic acid fermentation and the integration of prebiotics and probiotics in fruit juices, highlighting the necessity for further research to optimize these combinations for enhanced health benefits and improved beverage stability.
Collapse
Affiliation(s)
- Nurhazwani Sa'aid
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
| |
Collapse
|
4
|
Chen T, Wang C, Nie C, Yuan X, Tu A, Li J. Galactooligosaccharide or 2'-Fucosyllactose Modulates Gut Microbiota and Inhibits LPS/TLR4/NF-κB Signaling Pathway to Prevent DSS-Induced Colitis Aggravated by a High-Fructose Diet in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37290013 DOI: 10.1021/acs.jafc.2c08814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A high-fructose diet (HFrD) has been reported to exacerbate dextran sulfate sodium (DSS)-induced colitis. 2'-Fucosyllactose (FL) and galactooligosaccharide (GOS) have been shown, respectively, to have preventive and ameliorative effects on colitis, while limited research has explored whether GOS and FL may be equally protective or preventive in mice with HFrD. Here, we evaluated the protective effects of FL and GOS on colitis exacerbated by feeding HFrD and explored the underlying mechanisms. DSS-induced colitis was studied in four randomized C57BL/6J male mice (n = 8 mice/group). Among them, three groups were fed with HFrD, and two received either GOS or FL treatment, respectively. Gut microbial composition was analyzed by 16S rDNA gene sequencing. Intestinal barrier integrity and inflammatory pathway expression were measured using qPCR, immunofluorescence, and Western blot methods. Compared to the HFrD group, GOS or FL treatment increased the α-diversity of the gut microbiota, reduced the relative abundance of Akkermansia, and increased the content of short-chain fatty acids (SCFAs), respectively. Compared with the HFrD group, GOS or FL treatment improved the loss of goblet cells and the reduction of tight junction protein expression, thereby improving intestinal barrier integrity. Also, GOS or FL inhibited the LPS/TLR4/NF-κB signaling pathway and oxidative stress to suppress the inflammatory cascade compared with the HFrD group. These findings suggest that GOS or FL intake can alleviate HFrD-exacerbated colitis, with no significant difference observed between GOS and FL treatments.
Collapse
Affiliation(s)
- Tao Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Chuqing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Chenxi Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Xiaojin Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Aobai Tu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| | - Juxiu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China
| |
Collapse
|
5
|
Insights into Protective Effects of Different Synbiotic Microcapsules on the Survival of Lactiplantibacillus plantarum by Electrospraying. Foods 2022; 11:foods11233872. [PMID: 36496680 PMCID: PMC9736631 DOI: 10.3390/foods11233872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
This study evaluated the protective effects of different synbiotic microcapsules on the viability of encapsulated Lactiplantibacillus plantarum GIM1.648 fabricated by electrospraying. The optimum amount of substrate for three synbiotic microcapsules separately containing fructooligosaccharide (FOS), fish oil, and the complex of both were 4% FOS (SPI-F-L-P), 20 μL fish oil (SPI-O-L-P) and the complex of 20 μL fish oil, and 2% FOS (SPI-O-F-L-P), respectively. The obtained synbiotic microcapsules had a better encapsulation efficiency (EE) and survival rate (SR) after in vitro digestion than microcapsules without the addition of substrate (SPI-L-P) and SPI-O-F-L-P presented the highest EE (95.9%) and SR (95.5%). When compared to SPI-L-P, the synbiotic microcapsules possessed a more compact structure as proved by the SEM observation and their cell viability were significantly improved in response to environmental stresses (heat treatment, freeze drying, and storage). The synbiotic microcapsules containing the complex of FOS and fish oil showed the best beneficial effect, followed by ones with fish oil and then FOS, suggesting the FOS and fish oil complex has more potential in application.
Collapse
|
6
|
Iqbal MW, Riaz T, Mahmood S, Liaqat H, Mushtaq A, Khan S, Amin S, Qi X. Recent Advances in the Production, Analysis, and Application of Galacto-Oligosaccharides. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Sonia Khan
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Punjab, Pakistan
| | - Sabahat Amin
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Chan MZA, Liu SQ. Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Akter B, Mohd Salleh R, Ng Wai Chun C, Abu Bakar MH, Furusawa G. Identification and growth study of potential probiotic isolated from pineapple, watermelon, and banana peels. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Beauty Akter
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Rabeta Mohd Salleh
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Charles Ng Wai Chun
- Bioprocess Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division School of Industrial Technology Universiti Sains Malaysia Gelugor Penang Malaysia
| | - Go Furusawa
- Centre For Chemical Biology Universiti Sains Malaysia Gelugor Penang Malaysia
| |
Collapse
|
9
|
Paulo AFS, Baú TR, Ida EI, Shirai MA. Edible coatings and films with incorporation of prebiotics -A review. Food Res Int 2021; 148:110629. [PMID: 34507773 DOI: 10.1016/j.foodres.2021.110629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Prebiotics are compounds naturally present in some foods or can be synthesized by microorganisms and enzymes. Among the benefits associated with prebiotic consumption are the modulation of the intestinal microbiota that increase the production of short chain fatty acids and prevent the development of some disorders such as colon cancer, irritable bowel syndrome, diabetes, obesity, among others. Traditionally, prebiotics have been used in diverse food formulations to enhance their healthy potential or to improve their technological and sensory properties. However, different alternatives for the production of prebiotic products are being explored, such as edible coatings and films. Therefore, this review aims to highlight recent research on edible coatings and films incorporated with different prebiotics, the concept of prebiotics, the general characteristics of these materials, and the main production methods, as well as presenting the perspectives of uses in the food industry. Current works describe that polyols and oligosaccharides are the most employed prebiotics, and depending on their structure and concentration, they can also act as film plasticizer or reinforcement agent. The use of prebiotic in the coating can also improve probiotic bacteria survival making it possible to obtain fruits and vegetables with synbiotic properties. The most common method of production is casting, suggesting that other technologies such as extrusion can be explored aiming industrial scale. The use of film and coating carried of prebiotic is an emerging technology and there are still several possibilities for study to enable its use in the food industry. This review will be useful to detect the current situation, identify problems, verify new features, future trends and support new investigations and investments.
Collapse
Affiliation(s)
- Ana Flávia Sampaio Paulo
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, SC, Brazil
| | - Elza Iouko Ida
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil
| | - Marianne Ayumi Shirai
- Post-graduation Program of Food Technology, Federal University of Technology - Paraná, Londrina, PR, Brazil.
| |
Collapse
|