1
|
Liu J, Cui S, Ye Z, Chen J, Tang M, Chen C, Xu Y, Wang Z, Yang W, Zhang Z, Wang X. Transcriptomic analysis reveals the hepatopancreas metabolic mechanisms of mud crab Scylla paramamosain fed diets with terrestrial animal fat sources replacing fish oil. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101435. [PMID: 39922112 DOI: 10.1016/j.cbd.2025.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The transcriptome analysis following an 8-week feeding trial was employed to investigate the impacts of dietary terrestrial animal fats (TAFs includes lard oil (LO), beef tallow (BT) and poultry oil (PO)) replacing fish oil (FO) on the metabolic mechanism in hepatopancreas of mud crabs (Scylla paramamosain). The fatty acid (FA) transport, biosynthesis and lipid absorption and digestion were reduced through the regulation of PPAR pathway and the mRNA expressions of monoglyceride lipases (mgls), phosphatidate phosphatase-1 (pap1), acyl-sn-glycerol-3-phosphate acyltransferase delta (plcd), cAMP-dependent protein kinase catalytic (pkac), FA-binding protein 1 (fabp-1), FA transport protein 4 (fatp-4), short/branched chain specific acyl-CoA dehydrogenase (acdsb) and enoyl-CoA delta isomerase 2 (eci2), etc., after replacing FO with BT or LO. At the same time, dietary BT and LO regulated glycolysis, gluconeogenesis and insulin signals through increasing the genes of pyruvate dehydrogenase E1 (pdh), phosphoenolpyruvate carboxykinase (pepck) and phosphatidylinositol 3-kinase (pi3k) and regulated immunity status by down regulating the mRNA expressions of heat shock proteins 27 (hsp 27), cytochrome P450 (cyp 450), etc. Replacing FO with PO enhanced phospholipid storage, fat deposition, and inhibited glucose transport by up regulating pap1, mgls, lipin 1, lipinβ and down regulating glycosyl transferase (gt) and glucose transporter type 4 (glut4) expressions. The present study showed the signaling pathways and genes that were significantly regulated by TAFs replacing dietary FO, and revealed molecular mechanisms of TAFs in S. paramamosain. This would be conducive to the application of TAFs in aquatic feed.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihui Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihao Ye
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Tang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaojia Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifang Xu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Yang
- Fujian Key Laboratory of Functional Aquafeed and Culture Environment Control, China
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Functional Aquafeed and Culture Environment Control, China.
| |
Collapse
|
2
|
Fei S, Chen Z, Liu H, Jin J, Yang Y, Han D, Zhu X, Xie S. Dietary carbohydrate to lipid ratio affects growth, reproductive performance and health of female yellow catfish ( Pelteobagrus fulvidragrus): A lipidomics analysis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:429-441. [PMID: 39640551 PMCID: PMC11617697 DOI: 10.1016/j.aninu.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 12/07/2024]
Abstract
This study aimed to examine the impact of dietary carbohydrate to lipid (CHO/L) ratio on the growth, reproductive, and offspring performance of broodstock yellow catfish, and to elucidate the metabolic differences between mothers and offspring using lipidomics. Five isonitrogenous and isoenergetic diets with varying CHO/L ratios (0.65, 1.44, 2.11, 3.13, and 5.36) were fed to five groups of female broodfish with three replicates per group and 35 female broodfish per replocate in a pond-cage culture system. After an eight-week feeding trial, the dietary CHO/L ratio had a significant impact on the growth and reproductive performance of female yellow catfish. The weight gain ratio (WGR) and specific growth rate (SGR) in the CHO/L0.65 and CHO/L2.11 groups were significantly higher than those in the CHO/L5.36 group (P < 0.05). The fertilization and hatching rates were the highest when the dietary CHO/L ratio was 0.65 and 2.11, respectively. When the dietary CHO/L ratio was 3.13 and 5.36, the plasma contents of testosterone (T) was significantly lower than those of other groups (P = 0.013), and the plasma vitellogenin (VTG) content was the lowest when the CHO/L ratio was 5.36. The plasma contents of estradiol (E2) significantly decreased with increasing dietary CHO/L ratio (P L = 0.012). Lipidomic analysis revealed that the ovary primarily consisted of five subclasses in terms of lipid composition, namely triglyceride, fatty acyl, sterol, glycerophospholipid, and sphingolipid; however, sphingolipids were not detected in the larvae. The relative expression levels of the ovarian lipid metabolism-related genes sterol regulatory element binding protein 1 (srebp1), acetyl-CoA carboxylase (acc), delta (12)-oleate desaturase (fad2), and elongation of very long chain fatty acids protein 5 (elvol5) significantly increased with increasing dietary CHO/L ratio (P < 0.05). The relative expression levels of lipid metabolism-related genes srebp 1, peroxisome proliferator activated receptor α (pparα), carnitine palmitoyl transferase 1 isoform (cpt), adipose triglyceride lipase (atgl), fad2, and elvol5 in offspring larvae were initially increased and then decreased with increasing dietary CHO/L ratios until reaching a maximum at a ratio of 2.11 (P < 0.05). In conclusion, based on the broken-line regression of the dietary CHO/L ratio and egg diameter, the optimal dietary CHO/L ratio was 1.91 for broodfish yellow catfish. A high CHO/L ratio diet results in increased lipogenesis and hepatic lipid accumulation in maternal organisms, leading to impaired reproductive performance and reduced offspring quality.
Collapse
Affiliation(s)
- Shuzhan Fei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Zheng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuoqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Li X, Chen L, Wen H, Wang X, Peng D, Zhang J, Liu Y, Jiang M, Dong L, Huang F, Tian J. Muscle metabolism in response to oxidized fish oil feed in juvenile Nile tilapia. WATER BIOLOGY AND SECURITY 2024:100321. [DOI: 10.1016/j.watbs.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Hao M, Zhu J, Xie Y, Cheng W, Yi L, Zhao S. Targeted metabolomics of muscle amino acid profles and hepatic transcriptomics analyses in grass carp ( Ctenopharyngodon idellus) fed with broad beans. Heliyon 2024; 10:e38323. [PMID: 39386830 PMCID: PMC11462030 DOI: 10.1016/j.heliyon.2024.e38323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
While tissue amino acid compositions reflect that of the dietary protein source, and the liver orchestrates amino acid metabolism. In this study, we investigated the muscle amino acid profiles in ordinary and crisp grass carp. The 22 amino acids were measured, and seventeen showed significant concentration differences. To understand the molecular mechanisms behind changes, we analyzed the liver transcriptome, and the 2519 differentially expressed genes (DEGs) were identified, with 1156 up-regulated and 1363 down-regulated genes. DEGs were enriched in ribosome-related biological processes. KEGG pathway analysis showed enrichment in tryptophan metabolism, lysine degradation, valine, leucine and isoleucine degradation, galactose metabolism, and glutathione metabolism with up-regulated genes, arginine and proline metabolism, arginine biosynthesis and alanine, aspartate, amino sugar and nucleotide sugar metabolism, N-Glycan biosynthesis and glutamate metabolism with down-regulated genes. A protein-protein interaction network with 260 nodes and 249 edges was constructed, and 3 modules were extracted. The top 10 hub genes with close connections to other nodes were ITM1, STT3B, SEL1L, UGGT1, MLEC, IL1B, ALG5, KRTCAP2, NFKB2, and IRAK3. In summary, this study identified candidate genes and focused on amino acid and glycan metabolism pathways, providing a reference for further investigation into liver amino acid metabolism in grass carp fed with broad beans.
Collapse
Affiliation(s)
- Meilin Hao
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Junhong Zhu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuxiao Xie
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenjie Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lanlan Yi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sumei Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
5
|
Peng Z, Zhang Y, Ai Z, Wei L, Liu Y. Effect of radio frequency roasting on the lipid profile of peanut oil and the mechanism of lipids transformation: Revealed by untargeted lipidomics approach. Food Res Int 2024; 190:114592. [PMID: 38945611 DOI: 10.1016/j.foodres.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
Radio frequency (RF) heating has been proved an alternative roasting method for peanuts, which could effectively degrade aflatoxins and possesses the advantages of greater heating efficiency and penetration depth. This study aimed to investigate the influences of RF roasting on the lipid profile of peanut oil under 150 °C target temperature with varied peanut moisture contents (8.29 % and 20 %) and holding times (0, 7.5, and 15 min), using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS)-based lipidomics. In total, 2587 lipid species from 35 subclasses were identified. After roasting, the contents of sterol lipid (ST) and subclasses of glycerophospholipids (GPs) and glycoglycerolipids increased significantly, while fatty acid (FA), Oxidized (Ox-) FA, cholesterol (CE), and all subclasses of glycerolipids (GLs) decreased, and 1084 differential lipids were screened. The highest ST and lowest CE contents in peanut oil were achieved by medium roasting (7.5 min). The raise in moisture content of peanut simply affected a few GPs subclasses adversely. Compared with hot air (HA) roasting, RF decelerated lipid oxidation, showing higher levels of diacylglycerol, triacylglycerol and FA, with no additional negative impact and only 69 exclusive differential lipids. During RF roasting, hydrolysis and oxidation of fatty acyl chains into secondary oxides were the central behaviors of lipids transformation. This study could provide insights into the lipid changes and transformation mechanism of peanut oil by RF roasting processing.
Collapse
Affiliation(s)
- Zekang Peng
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Ziping Ai
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lixuan Wei
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, P. O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
6
|
Wang S, Song Y, Luo L, Zhang R, Guo K, Zhao Z. Untargeted LC-MS metabolomics reveals the metabolic responses in the Eriocheir sinensis gills exposed to salinity and alkalinity stress. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109908. [PMID: 38580071 DOI: 10.1016/j.cbpc.2024.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
In recent years, saline-alkaline aquaculture development has become an important measure for China to expand its fishery development space to ensure food safety. Previous studies have verified that salinity and alkalinity positively influence the quality of Chinese mitten crabs (Eriocheir sinensis). However, the regulatory mechanism of E. sinensis endures saline-alkaline stress which remains obscure. This study investigated the metabolic changes in puberty-molting E. sinensis gills exposed to freshwater (FW), sodium chloride salinity of 5 ppt (SW), and carbonate alkalinity 10.00 mmol/L (AW) for 50 days using untargeted liquid chromatography-mass spectrometry metabolomics (LC-MS). A total of 5802 (positive-ion mode) and 6520 (negative-ion mode) peaks were extracted by LC-MS, respectively. A total of 188 (50 upregulated and 138 downregulated), 141 (94 upregulated and 47 downregulated), and 130 (87 upregulated and 43 downregulated) significantly regulated metabolites (SRMs) were observed in the FW-SW, FW-AW, and SW-AW treatments, respectively, wherein 42 generic SRMs were also found by Venn diagram analysis. Seven of the top 10 SRMs with the highest (variable importance in projection) VIP values were similarly identified in FW-SW and SW-AW. Integrated analysis of key metabolic pathways revealed glycerophospholipid, choline in cancer, phenylalanine, and butanoate metabolism. Overall, significant differences were observed in the metabolites and key metabolic pathways of E. sinensis gill exposed to salinity and alkalinity stress. These results will be helpful in understanding the environmental adaptability of aquatic crustaceans to saline-alkaline water.
Collapse
Affiliation(s)
- Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Engineering Technology Research Center of Saline-Alkaline Water Fisheries (Harbin), Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Yingying Song
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Engineering Technology Research Center of Saline-Alkaline Water Fisheries (Harbin), Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Engineering Technology Research Center of Saline-Alkaline Water Fisheries (Harbin), Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Engineering Technology Research Center of Saline-Alkaline Water Fisheries (Harbin), Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Engineering Technology Research Center of Saline-Alkaline Water Fisheries (Harbin), Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
7
|
Hao M, Yi L, Cheng W, Zhu J, Zhao S. Lipidomics analysis reveals new insights into crisp grass carp associated with meat texture. Heliyon 2024; 10:e32179. [PMID: 38868033 PMCID: PMC11168433 DOI: 10.1016/j.heliyon.2024.e32179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Feeding faba beans to grass carp could crisp its muscle texture to avoid softening, the relationship between texture formation throughout the crisping process and the critical lipids regulating the fish quality has not yet been clarified. Herein, an 60-day nutritional trial and untargeted lipidomic analysis was used to study the changes of lipids in crisp grass carp dorsal muscle. A total of 1036 lipids were remarkably different between ordinary and crisp grass carp. The concentrations of the LPC, LPE, PG, Cer, Hex2Cer, SM, MG and MGMG were positively correlated with hardness and springiness, and the CL, TG, PMe, WE, dMePE and AcCa were negative correlation. High content of lipids involved in storage in ordinary grass carp, such as glycerophospholipids, polyunsaturated and saturated fatty acid content. In contrast, high content of membrane components in crisp grass carp, such as monounsaturated fatty acid, sphingolipid and glycerolipids content, and the distribution of PUFA in lipid molecules was related to lipid biosynthesis. This study might provide some insights into improved knowledge of the association between meat texture and lipid molecules in fish fed with faba bean.
Collapse
Affiliation(s)
- Meilin Hao
- College of Biology and Agriculture (College of Food Science and Technology), Zunyi Normal College, Zunyi, 563006, China
| | - Lanlan Yi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenjie Cheng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junhong Zhu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Sumei Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
8
|
Wang X, Cui S, Liu J, Ye Z, Xu Y, Wang Z, Tang M, Zhang Z, Zhang Y, Huang W. The same species, different nutrients: Lipidomics analysis of muscle in mud crabs (Scylla paramamosain) fed with lard oil and fish oil. Food Chem 2024; 440:138174. [PMID: 38160593 DOI: 10.1016/j.foodchem.2023.138174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Aiming to assess the effects of lard oil (LO) and fish oil (FO) on the nutritional value of mud crabs (Scylla paramamosain), non-targeted lipidomics analysis was performed on the muscle of crabs after eight weeks of feeding trail. Compared to FO, dietary LO reduced the content of phosphatidylethanolamine (PE) and phosphatidylserine (PS) with 18:0 bound at sn-1/3 site, the content of ether phospholipids containing 20:5n-3 (EPA) and 22:6n-3 (DHA) combined at sn-2 site, and increased the content of ether PE containing 18:0 and 18:1n-9. Furthermore, the deposition of 16:0, 16:1n-7, 18:2n-6, 18:3n-3, 20:4n-6, EPA and DHA at each site of PE, PS, phosphatidylcholine and/or triacylglycerols were reduced by dietary LO, while the DHA content at the sn-2 position of PE was increased. In conclusion, the nutritional value of mud crabs was reduced by dietary LO with the manifestation of variation in FA composition and positional distribution on phospholipids.
Collapse
Affiliation(s)
- Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Special Aquatic Formula Feed of Fujian Province, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou 350002, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs (Jimei University), P.R.China; Key Laboratory of Aquaculture Biotechnology (Ningbo University), Ministry of Education, P.R.China.
| | - Shihui Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjin Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihao Ye
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifang Xu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Tang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China
| | - Weiqing Huang
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China
| |
Collapse
|
9
|
Deng Y, Xie S, Zhan W, Peng H, Cao H, Tang Z, Tian Y, Zhu T, Jin M, Zhou Q. Dietary Astaxanthin Can Promote the Growth and Motivate Lipid Metabolism by Improving Antioxidant Properties for Swimming Crab, Portunus trituberculatus. Antioxidants (Basel) 2024; 13:522. [PMID: 38790627 PMCID: PMC11117615 DOI: 10.3390/antiox13050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to assess the influence of varying dietary levels of astaxanthin (AST) on the growth, antioxidant capacity and lipid metabolism of juvenile swimming crabs. Six diets were formulated to contain different AST levels, and the analyzed concentration of AST in experimental diets were 0, 24.2, 45.8, 72.4, 94.2 and 195.0 mg kg-1, respectively. Juvenile swimming crabs (initial weight 8.20 ± 0.01 g) were fed these experimental diets for 56 days. The findings indicated that the color of the live crab shells and the cooked crab shells gradually became red with the increase of dietary AST levels. Dietary 24.2 mg kg-1 astaxanthin significantly improved the growth performance of swimming crab. the lowest activities of glutathione (GSH), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and peroxidase (POD) were found in crabs fed without AST supplementation diet. Crabs fed diet without AST supplementation showed lower lipid content and the activity of fatty acid synthetase (FAS) in hepatopancreas than those fed diets with AST supplementation, however, lipid content in muscle and the activity of carnitine palmitoyl transferase (CPT) in hepatopancreas were not significantly affected by dietary AST levels. And it can be found in oil red O staining that dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas. Crabs fed diet with 195.0 mg kg-1 AST exhibited lower expression of ampk, foxo, pi3k, akt and nadph in hepatopancreas than those fed the other diets, however, the expression of genes related to antioxidant such as cMn-sod, gsh-px, cat, trx and gst in hepatopancreas significantly down-regulated with the increase of dietary AST levels. In conclusion, dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas and im-proved the antioxidant and immune capacity of hemolymph.
Collapse
Affiliation(s)
- Yao Deng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Wenhao Zhan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Haiqing Cao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Zheng Tang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Yinqiu Tian
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| |
Collapse
|
10
|
Chen F, He Y, Li X, Zhu H, Li Y, Xie D. Improvement in Muscle Fatty Acid Bioavailability and Volatile Flavor in Tilapia by Dietary α-Linolenic Acid Nutrition Strategy. Foods 2024; 13:1005. [PMID: 38611311 PMCID: PMC11011702 DOI: 10.3390/foods13071005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
To investigate the modification of muscle quality of farmed tilapia through dietary fatty acid strategies, two diets were formulated. Diet SO, using soybean oil as the lipid source, and diet BO, using blended soybean and linseed oils, each including 0.58% and 1.35% α-linolenic acid (ALA), respectively, were formulated to feed juvenile tilapia for 10 weeks. The muscular nutrition composition, positional distribution of fatty acid in triglycerides (TAGs) and phospholipids (PLs), volatile flavor, lipid mobilization and oxidation were then analyzed. The results showed that there was no distinct difference between the SO and BO groups in terms of the nutrition composition, including crude protein, crude lipid, TAGs, PLs, and amino acid. Although the fatty acid distribution characteristics in ATGs and PLs showed a similar trend in the two groups, a higher level of n-3 PUFA (polyunsaturated fatty acid) and n-3 LC-PUFA (long-chain polyunsaturated fatty acid) bound to the glycerol backbone of TAGs and PLs was detected in the BO group than the SO group, whereas the opposite was true for n-6 PUFA. Additionally, the muscular volatile aldehyde and alcohol levels were higher in the BO group. Moreover, the expression of enzymatic genes and protein activities related to lipid mobilization (LPL, LPCAT, DGAT) and oxidation (LOX and GPX) was higher in the BO group. The results demonstrate that high-ALA diets may improve the fatty acid bioavailability and volatile flavor of tilapia by improving the lipid mobilization and oxidation, which provides new ideas for the improvement of muscle quality in farmed fish.
Collapse
Affiliation(s)
- Fang Chen
- College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China; (F.C.); (Y.H.); (X.L.); (H.Z.); (Y.L.)
| | - Yuhui He
- College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China; (F.C.); (Y.H.); (X.L.); (H.Z.); (Y.L.)
| | - Xinyi Li
- College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China; (F.C.); (Y.H.); (X.L.); (H.Z.); (Y.L.)
| | - Hangbo Zhu
- College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China; (F.C.); (Y.H.); (X.L.); (H.Z.); (Y.L.)
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China; (F.C.); (Y.H.); (X.L.); (H.Z.); (Y.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University, Guangzhou 510642, China; (F.C.); (Y.H.); (X.L.); (H.Z.); (Y.L.)
- Marine Biology Institute & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
11
|
Xu J, Shi M, Chen L, Chi S, Zhang S, Cao J, Tan B, Xie S. Muscular lipidomics and transcriptomics reveal the effects of bile acids on lipid metabolism in high-fat diet-fed grouper. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:127-143. [PMID: 36826624 DOI: 10.1007/s10695-023-01176-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Little information is available on how exogenous bile acids alter lipid metabolism in muscle of fish. In the present study, an 8-week feeding trial were used to investigate the impacts of bile acids on lipid deposition, lipid metabolism, lipidomics, and transcriptomics in muscle of pearl gentian grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) fed a high-fat diet (HD). The HD treatment significantly increased the crude lipid content, while bile acids diet (BD) treatment decreased it (p = 0.057). BD treatment significantly decreased triglycerides level and significantly increased phosphatidylcholines, phosphatidylethanolamines, and phosphatidylglycerol levels. The contents of TG (17:0/18:2/18:2), TG (17:1/18:2/22:6), PC (6:0/22:1), PC (9:0/26:1), PC (26:1/6:0), PC (17:2/18:2), PE (16:0/18:1), PE (18:0/17:1), PG (18:0/20:5), PG (18:3/20:5), PG (19:0/16:1), and PG (18:0/18:1) in muscle were well response to dietary lipid level and bile acids supplementation. HD and BD groups induced a variety of adaptive metabolic responses in transcriptomics. HD treatment increased the lipogenesis and decreased lipolysis, whereas BD treatment decreased the lipogenesis and increased lipolysis. Present study revealed the improvement of muscular lipid metabolism and lipid composition in response to bile acids administration in pearl gentian grouper.
Collapse
Affiliation(s)
- Jia Xu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Menglin Shi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liutong Chen
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Junming Cao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China.
| |
Collapse
|
12
|
Ermolenko EV, Sikorskaya TV, Grigorchuk VP. Crabs Eriocheir japonica and Paralithodes camtschaticus Are a Rich Source of Lipid Molecular Species with High Nutritional Value. Foods 2023; 12:3359. [PMID: 37761068 PMCID: PMC10527590 DOI: 10.3390/foods12183359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Due to their valuable meat and hepatopancreas, the world's most famous delicacies, crabs, have become target species of commercial fisheries and aquaculture. By methods of supercritical fluid and high-performance liquid chromatography, coupled with high resolution mass spectrometry, we analyzed triacylglycerols (TG) and phospholipids (PL)-glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)-in the hepatopancreas and muscles of the Japanese mitten crab Eriocheir japonica and the red king crab Paralithodes camtschaticus inhabiting the Sea of Japan. TGs were the main class of lipids in the crab hepatopancreas, while they were found in trace amounts in muscle. TGs of E. japonica differed from those of P. camtschaticus by a higher content of 16:0, 16:1, 18:2, and 20:4 FA and a lower content of eicosapentaenoic and docosahexaenoic acids. The Japanese mitten crab differed from the red king crab by a lower content of molecular species with eicosapentaenoic acid in PC and PI; an increased content of arachidonic acid in PE, PS, and PI; and a lower content of molecular species with docosahexaenoic acid in PE in the hepatopancreas and muscles. The high nutritional value of the crabs E. japonica and P. camtschaticus was confirmed by a high content of molecular species of lipids with n-3 polyunsaturated fatty acids. The data of the lipid molecular species profile provide new background information for future studies on biochemistry and aquaculture of crabs.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia;
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia;
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Pr-t 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia;
| |
Collapse
|
13
|
Zhang R, Shi X, Liu Z, Sun J, Sun T, Lei M. Histological, Physiological and Transcriptomic Analysis Reveal the Acute Alkalinity Stress of the Gill and Hepatopancreas of Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:588-602. [PMID: 37369881 DOI: 10.1007/s10126-023-10228-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The pacific white shrimp (Litopenaeus vannamei) has gradually become a promising economic species in the development of saline-alkali water fishery. The study related to the stress reaction of pacific white shrimp under alkalinity stress is still limited, which is also a critical limiting factor for its saline-alkaline aquaculture. In this study, we aim to analyse the stress reaction of pacific white shrimp under acute alkalinity stress between control group (alkalinity:40 mg/L) and treatment group (alkalinity:350 mg/L) through histological observation, physiological determination and transcriptome. In the present study, during the process of acute alkalinity stress, the activities of Na+-K+-ATPase, carbonic anhydrase, sodium/hydrogen exchanger in gill related to homeostasis were significantly changed, the activities of superoxide dismutase and catalase related to antioxidant were decreased in both gill and hepatopancreas, and the activities of protease, lipase and amylase in hepatopancreas were decreased. At the same time, different degrees of histological damages were occured in the gill and hepatopancreas under acute alkalinity stress. There were 194 and 236 different expressed genes identified in gill and hepatopancreas respectively. Functional enrichment assessment indicated that the alkalinity stress-related genes in both gill and hepatopancreas were primarily involved in fatty acid metabolism, glycolysis/gluconeogenesis, glycerophospholipid metabolism. The results indicated that the functions of homeostasis regulation, antioxidation and digestion of pacific white shrimp were decreased under acute alkalinity stress, at the same time, the energy metabolism in gill and hepatopancreas were modified to cope with alkalinity stress. This work provides important clues for understanding the response mechanism of pacific white shrimp under acute alkalinity stress.
Collapse
Affiliation(s)
- Ruiqi Zhang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China.
| | - Xiang Shi
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Tongzhen Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Mingquan Lei
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| |
Collapse
|
14
|
Xu J, Huang B, Chi S, Zhang S, Cao J, Tan B, Xie S. Replacement of Dietary Fishmeal with Clostridium autoethanogenum Protein on Lipidomics and Lipid Metabolism in Muscle of Pearl Gentian Grouper. AQUACULTURE NUTRITION 2023; 2023:6723677. [PMID: 37424881 PMCID: PMC10328730 DOI: 10.1155/2023/6723677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Clostridium autoethanogenum protein (CAP) is an economical and alternative protein source. Here, three experimental diets were formulated with CAP replacing 0% (CAP-0), 30% (CAP-30), and 60% (CAP-60) of fishmeal to investigate the alterations of structure integrity, fatty acids profiles, and lipid metabolism in the muscle of pearl gentian grouper. With increasing levels of CAP substitution, the percentages of 16 : 0 or 18 : 0 were decreased in triglycerides (TG) and diacylglycerols (DG); 18 : 1 or 18 : 2 was increased at the sn-1 and sn-2 positions in phosphatidylethanolamines; 20 : 5n-3 was increased in TG and DG. The phosphatidylcholines (PC) (18 : 3/20 : 5), PC(22 : 6/17 : 1), and sphingomyelins (d19 : 0/24 : 4) were identified as potential lipid biomarkers between CAP treatments. The CAP-30 treatment enhanced lipolysis and lipogenesis, while the CAP-60 treatment inhibited lipogenesis. In conclusion, fishmeal replacement with CAP affected the lipid characteristics and lipid metabolism, whereas it did not affect the structural integrity and fatty acids profiles in the muscle of pearl gentian grouper.
Collapse
Affiliation(s)
- Jia Xu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Bocheng Huang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Junming Cao
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- Guangdong Provincial Key Lab of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China
| |
Collapse
|
15
|
Yao J, Zhu J, Zhao M, Zhou L, Marchioni E. Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics. Molecules 2023; 28:molecules28093653. [PMID: 37175063 PMCID: PMC10179896 DOI: 10.3390/molecules28093653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, ultra-high-performance liquid chromatography high-resolution accurate mass-mass spectrometry (UHPLC-HRAM/MS) was applied to characterize the lipid profiles of five crab species. A total of 203 lipid molecular species in muscle tissue and 176 in edible viscera were quantified. The results indicate that Cancer pagurus contained high levels of lipids with a docosahexaenoic acid (DHA) and eicosapntemacnioc acid (EPA) structure in the muscle tissue and edible viscera. A partial least squares discriminant analysis (PLS-DA) showed that PE 16:0/22:6, PE P-18:0/20:5, PA 16:0/22:6 and PC 16:0/16:1 could be used as potential biomarkers to discriminate the five kinds of crabs. In addition, some lipids, such as PE 18:0/20:5, PC 16:0/16:1, PE P-18:0/22:6 and SM 12:1;2O/20:0, could be used as characteristic molecules to distinguish between Cancer magister and Cancer pagurus, which are similar in appearance. This study provides a new perspective on discriminating crab species from MS-based lipidomics.
Collapse
Affiliation(s)
- Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| |
Collapse
|
16
|
Wang D, He Z, Liu M, Jin Y, Zhao J, Zhou R, Wu C, Qin J. Exogenous fatty acid renders the improved salt tolerance in Zygosaccharomyces rouxii by altering lipid metabolism. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
17
|
Gao W, Yuan Y, Huang Z, Chen Y, Cui W, Zhang Y, Saqib HSA, Ye S, Li S, Zheng H, Zhang Y, Ikhwanuddin M, Ma H. Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab ( Scylla paramamosain) from the Perspective of Nutritional Values. Foods 2023; 12:foods12030583. [PMID: 36766112 PMCID: PMC9914210 DOI: 10.3390/foods12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Soft-shell crabs have attracted consumers' attention due to their unique taste and nutritional value. To evaluate the feasibility of harvest optimisation of soft-shell mud crabs, the proximate composition, mineral composition, and total carotenoid, amino acid, and fatty acid contents of edible parts of male and female soft-shell mud crabs at different moulting stages were determined and compared from a nutritional value perspective. The results showed that the sex and moulting stages could significantly affect the nutritional values of the edible portions of soft-shell crabs. The female or male soft-shell crabs in the postmoult Ⅰ stage had a much richer mineral element content than that in other moulting stages. The total carotenoid content in female soft-shell crabs was significantly higher than that in male crabs in all moulting stages, while male soft-shell crabs had better performance in amino acid nutrition than female soft-shell crabs. Moreover, it was found that soft-shell crabs in the postmoult Ⅱ stage had significantly higher contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), while significantly lower contents of saturated fatty acids (SFA) than those in other stages. The present study will provide a reference basis for the diversified cultivation of soft-shell crabs, and further promote the development of the mud crab industry.
Collapse
Affiliation(s)
- Weifeng Gao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Ye Yuan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zhi Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yongyi Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Mhd Ikhwanuddin
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-0754-86503471
| |
Collapse
|
18
|
Zheng ZY, Xie G, Tan GL, Liu WL. Proteolysis modification targeting protein corona affects ultrasound-induced membrane homeostasis of saccharomyces cerevisiae: Analysis of lipid relative contributions on membrane properties. Front Microbiol 2023; 14:1082666. [PMID: 36778851 PMCID: PMC9909265 DOI: 10.3389/fmicb.2023.1082666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Protein corona (PCN) adsorbed on the surface of nanoparticles has brought new research perspectives for the interaction between nanoparticles and microorganisms. In this study, the responses of saccharomyces cerevisiae' membrane lipid composition, the average length of the fatty acyl chains and the average number of unsaturation of fatty acids to ultrasound combined with nano-Fe3O4@PCN with time-limited proteolysis (nano-Fe3O4@TLP-PCN) was investigated. Methods Lipidomic data was obtained using Ultra-high performance liquid chromatography coupled with a Q-Exactive plus mass spectrometer. The membrane potential, proton motive force assay and the membrane lipid oxidation were measured using Di-BAC4(3), DISC3(5) and C11-BODIPY581/591 as the probes. Combined with the approach of feasible virtual samples generation, the back propagation artificial neural network (BP-ANN) model was adopted to establish the mapping relationship between lipids and membrane properties. Results The time-limited proteolysis targeting wheat PCN-coated Fe3O4 nanoparticles resulted in regular changes of hydrodynamic diameters, ζ-potentials, and surface hydrophobicity. In addition, with the prolongation of PCN proteolysis time, disturbances of 3 S.cerevisiae membrane characteristics, and membrane lipidomic remodeling in response to ultrasound+ nano-Fe3O4@PCN were observed. The analysis of relative importance which followed revealed that ergosterol, phosphatidylserine, and phosphatidylinositol phosphate had the greatest influence on membrane potential. For membrane lipid oxidation, ceramide, phosphatidylethanolamine, and sitosterol ester contribute 16.2, 14.9, and 13.1%, respectively. The relative contributions of six lysolecithins to the dissipation of proton motive force remained limited. Discussion An adaptation mechanism of cell membrane to proteolyzed PCN, wherein lipidome remodeling could preserved functional membrane phenotypes was revealed. Furthermore, it is highlighted that the relative importances of SiE, Cer, PE and PIP in determining membrane potential, PMF dissipation and membrane lipid oxidation by establishing FVSG-BP-ANN model.
Collapse
|
19
|
Wang Y, Chen XH, Wu XY, Cai GH, Zhai SW. Effects of Dietary Supplementation of Peanut Skin Proanthocyanidins on Growth Performance and Lipid Metabolism of the Juvenile American Eel ( Anguilla rostrata). Animals (Basel) 2022; 12:2375. [PMID: 36139235 PMCID: PMC9495036 DOI: 10.3390/ani12182375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
As a functional feed additive, grape seed proanthocyanidin extract has received a lot of attention due to its biological activity in the health of aquatic animals, but its high cost limits the application of this feed additive in the diet of many fish species. It is thus urgent to develop a new resource of proanthocyanidin extract. We aimed to investigate the effects of dietary supplementation with peanut skin proanthocyanidins (PSPc) on growth parameters and lipid metabolism of juvenile American eel (Anguilla rostrata). Four hundred and fifty juvenile eels were randomly divided into five groups fed diets with five PSPc supplementation levels. The trial lasted for 8 weeks. Dietary PSPc supplementation significantly improved weight gain and feed utilization, and the best growth performance was found in the group fed with 900 mg/kg PSPc. PSPc supplementation significantly affected the crude protein level of whole fish and serum lipid parameters, and the best lipid-lowering effect was found in the fish fed with 900 mg/kg PSPc. Dietary PSPc supplementation increased lipolytic enzyme activities and decrease lipid synthase levels in the liver. The lipid metabolites affected by 900 mg/kg PSPc in the liver were mainly upregulated phosphatidylethanolamine in autophagy, downregulated ceramides in sphingolipid metabolism, upregulated phosphatidylcholine and phosphatidylethanolamine, downregulated 2-lysophosphatidylcholine in glycerophospholipid metabolism, and upregulated phosphatidylcholine in linoleic acid metabolism. In conclusion, an appropriate level of PSPc might effectively improve growth performance and regulate the lipid metabolism of the juvenile American eel, and 900 mg/kg PSPc is recommended in the diet of this fish species.
Collapse
Affiliation(s)
| | | | | | | | - Shao-Wei Zhai
- Engineering Research Center of Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
20
|
Song L, Leng K, Xiao K, Zhang S. Administration of krill oil extends lifespan of fish Nothobranchius guentheri via enhancement of antioxidant system and suppression of NF-κB pathway. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1057-1073. [PMID: 35834112 DOI: 10.1007/s10695-022-01102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Krill oil (KO) extracted from Antarctic krill (Euphausia superba) mainly comprises phospholipids and triglycerides. KO has been shown to prolong the median lifespan of the nematode Caenorhabditis elegans, but to shorten the lifespan of long-lived F1 mice; therefore, it remains controversial over the life-extending property of KO. In this study, we clearly demonstrated that dietary intake of KO extended both the mean and maximum lifespans of aged male Nothobranchius guentheri (p < 0.05), reduced the accumulation of lipofuscin (LF) (p < 0.05) in the gills and senescence-associated β-galactosidase (SA-β-Gal) (p < 0.05) in the caudal fins, and lowered the levels of protein oxidation (p < 0.05), lipid peroxidation (p < 0.01), and reactive oxygen species (ROS) (p < 0.01) in the muscles and livers, indicating that KO possesses rejuvenation and anti-aging activity. We also showed that KO enhanced the activities of antioxidant enzymes catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05), and glutathione peroxidase (GPX) (p < 0.05) in aged male N. guentheri. In addition, KO administration effectively reversed histological lesions including inflammatory cell infiltration and structural collapse in the muscles and livers of aged N. guentheri and suppressed the nuclear factor kappa-B (NF-κB) signaling pathway (p < 0.05), a master regulator of inflammation. Altogether, our study indicates that KO has anti-aging and rejuvenation property. It also suggests that KO exerts its anti-aging and rejuvenation effects via enhancement of the antioxidant system and suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Kailiang Leng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, 266071, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Kun Xiao
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
21
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
22
|
Wang X, Jin M, Cheng X, Hu X, Zhao M, Yuan Y, Sun P, Jiao L, Tocher DR, Betancor MB, Zhou Q. Lipidomic profiling reveals molecular modification of lipids in hepatopancreas of juvenile mud crab (Scylla paramamosain) fed with different dietary DHA/EPA ratios. Food Chem 2022; 372:131289. [PMID: 34818734 DOI: 10.1016/j.foodchem.2021.131289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Untargeted lipidomic analysis was conducted to explore how different dietary docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratio and, specifically, how an optimal ratio (2.3) compared to a suboptimum ratio (0.6) impacted lipid molecular species and the positional distribution of fatty acids in hepatopancreas of mud crab. The results indicated that major category of lipid affected by dietary DHA/EPA ratio was glycerophospholipids (GPs). The optimum dietary DHA/EPA ratio increased the contents of DHA bound to the sn-2 and sn-3 positions of phosphatidylcholine (PC) and triacylglycerol, EPA bound to the sn-2 position of phosphatidylcholine and 18:2n-6 bound to the sn-2 position of phosphatidylethanolamine (PE). Increased dietary DHA/EPA ratio also led to competition between arachidonic acid (ARA) and 18:2n-6 bound to esterified sites. Appropriate dietary DHA/EPA ratio can not only improve the growth performance and nutritional quality of mud crab, but also provide higher quality products for human consumers.
Collapse
Affiliation(s)
- Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Xin Cheng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaoying Hu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mingming Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
23
|
Zhang W, Zhao XY, Wu J, Jin L, Lv J, Gao B, Liu P. Screening and Verification of Molecular Markers and Genes Related to Salt-Alkali Tolerance in Portunus trituberculatus. Front Genet 2022; 13:755004. [PMID: 35211153 PMCID: PMC8861530 DOI: 10.3389/fgene.2022.755004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Salt-alkali tolerance is one of the important breeding traits of Portunus trituberculatus. Identification of molecular markers linked to salt-alkali tolerance is prerequisite to develop such molecular marker-assisted breeding. In this study, Bulked Segregant Analysis (BSA) was used to screen molecular markers associated with salt-alkali tolerance trait in P. trituberculatus. Two DNA mixing pools with significant difference in salt-alkali tolerance were prepared and 94.83G of high-quality sequencing data was obtained. 855 SNPs and 1051 Indels were firstly selected as candidate markers by BSA analysis, out of which, 20 markers were further selected via △index value (close to 0 or 1) and eight of those were successfully verified. In addition, based on the located information of the markers in genome, eight candidate genes related to salt-alkali tolerance were anchored including ubiquitin-conjugating enzyme, aspartate-tRNA ligase, vesicle-trafficking protein, and so on. qPCR results showed that the expression patterns of all these genes changed significantly after salt-alkali stress, suggesting that they play certain roles in salt-alkali adaptation. Our results will provide applicable markers for molecular marker-assisted breeding and help to clarify the mechanisms of salt-alkali adaptation of P. trituberculatus.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of marine technology and environment, Dalian Ocean University, Dalian, China
| | - Xiao Yan Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ling Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Bai F, Wang X, Niu X, Shen G, Ye J. Lipidomic Profiling Reveals the Reducing Lipid Accumulation Effect of Dietary Taurine in Groupers ( Epinephelus coioides). Front Mol Biosci 2022; 8:814318. [PMID: 35004860 PMCID: PMC8740052 DOI: 10.3389/fmolb.2021.814318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
A lipidomic analysis was conducted to provide the first detailed overview of lipid molecule profiles in response to dietary lipid and taurine and associations of liver lipid-lowering effects of dietary taurine with lipid molecular species and the positional distributions of fatty acids in the liver of juvenile orange-spotted groupers (Epinephelus coioides). The results indicated that the liver was more sensitive to varied dietary lipid and taurine contents than the muscle with regard to lipid molecules. A total of 131 differential lipid molecules (DLMs) were observed in the liver of groupers when dietary taurine was increased from 0 to 1% at 15% lipid, among which all the up and down-regulated DLMs are phospholipids (PLs) and triglycerides (TGs), respectively. The liver content of TGs containing 18:2n-6 attached at the sn-2 and sn-3 positions on the glycerol backbone increased with increasing dietary lipid from 10 to 15% but decreased with increasing dietary taurine from 0 to 1%. Therefore, dietary taurine can not only reduce lipid accumulation through decreasing the contents of TGs containing 18:2n-6 at the sn-2 and sn-3 positions but also enhance the anti-inflammatory capacity and health status of groupers. This study will also provide a new insight into the function of taurine in farmed fish.
Collapse
Affiliation(s)
- Fakai Bai
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| | - Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingjian Niu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| | - Guiping Shen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen, China
| | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
25
|
Fu Y, Zhang F, Ma C, Wang W, Liu Z, Chen W, Zhao M, Ma L. Comparative Metabolomics and Lipidomics of Four Juvenoids Application to Scylla paramamosain Hepatopancreas: Implications of Lipid Metabolism During Ovarian Maturation. Front Endocrinol (Lausanne) 2022; 13:886351. [PMID: 35574001 PMCID: PMC9094423 DOI: 10.3389/fendo.2022.886351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
This study was the first to evaluate multiple hormonal manipulations to hepatopancreas over the ovarian development stages of the mud crab, Scylla paramamosain. A total of 1258 metabolites in 75 hepatopancreas explants from five female crabs were induced by juvenile hormone III (JH III), methyl farnesoate (MF), farnesoic acid (FA) and methoprene (Met), as identified from combined metabolomics and lipidomics (LC-MS/MS). 101 significant metabolites and 47 significant pathways were selected and compared for their comprehensive effects to ovarian maturation. While MF played an extensive role in lipid accumulation, JH III and Met shared similar effects, especially in the commonly and significantly elevated triglycerides and lysophospholipids (fold change≥2 and ≤0.5, VIP≥1). The significant upregulation of β-oxidation and key regulators in lipid degradation by FA (P ≤ 0.05) resulted in less lipid accumulation from this treatment, with a shift toward lipid export and energy consumption, unlike the effects of MF, JH III and Met. It was possible that MF and FA played their own unique roles and acted in synergy to modulate lipid metabolism during crab ovarian maturation. Our study yielded insights into the MF-related lipid metabolism in crustacean hepatopancreas for the overall regulation of ovarian maturation, and harbored the potential use of juvenoids to induce reproductive maturity of this economic crab species.
Collapse
Affiliation(s)
- Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Lingbo Ma, ; Ming Zhao,
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Lingbo Ma, ; Ming Zhao,
| |
Collapse
|
26
|
Fatty acid profile of cooked leg meat and raw hepatopancreas of red king crab (Paralithodes camtschaticus) during three-month live holding without feeding at 5 and 10 °C. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Current Progress in Lipidomics of Marine Invertebrates. Mar Drugs 2021; 19:md19120660. [PMID: 34940659 PMCID: PMC8708635 DOI: 10.3390/md19120660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered.
Collapse
|