1
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
2
|
Zhang H, Luo B, Liu K, Wang C, Hou P, Zhao C, Li A. Development of surface molecular-imprinted electrochemical sensor for palmitic acid with machine learning assistance. Talanta 2024; 275:126124. [PMID: 38663067 DOI: 10.1016/j.talanta.2024.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
Palmitic acid (PA) is a kind of saturated high fatty acid, which is involved in physiological safety and food quality. A surface molecularly imprinted polymer (MIP) electrochemical sensor was prepared on MXene surface using dopamine (DA) as functional monomer. The electrode was modified with gold nanoparticles (AuNPs), ferrocene-graphene oxide-multiwalled carbon nanotubes (Fc-GO-MWCNT) composite to enhance the electroactive area and conductivity. The sensor was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), electrochemical impedance spectroscopy (EIS) and Differential pulse voltammetry (DPV), respectively. The parameters concerning this assay and various regeneration conditions have been carefully studied. The sensor can detect PA in the range of 1 nM-1 mM (R2 = 0.995), the limit of detection (LOD) is 0.48 nM (S/N = 3), and the limit of quantification (LOQ) is 1.61 nM. The artificial neural network (ANN) model in machine learning is further used to analyze the data collected by the sensor. The results show that the back propagation (BP) neural network in ANN is more suitable for the intelligent analysis of PA. The practicality of the sensor was confirmed by detecting PA in pork samples. This is the first MIP-based electrochemical sensor for PA, and it has great potential in practical applications.
Collapse
Affiliation(s)
- Heng Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Bin Luo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ke Liu
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Cheng Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Peichen Hou
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chunjiang Zhao
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aixue Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
3
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
4
|
Cao J, Liu Y, Wang W, Du P, Liu G, Ma Y, Wang Y. Facile fabricate sandwich-structured molecularly imprinted dopamine polymer for simultaneously specific capture of Low-density lipoprotein and eliminate "bad cholesterol". J Chromatogr A 2024; 1724:464910. [PMID: 38657316 DOI: 10.1016/j.chroma.2024.464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 μg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.
Collapse
Affiliation(s)
- Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Gang Liu
- Shandong Provincial Animal Husbandry General Station, Jinan 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro‑Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuanshang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Li D, Tang N, Tian X. Synthesis of Boronate Affinity-Based Oriented Dummy Template-Imprinted Magnetic Nanomaterials for Rapid and Efficient Solid-Phase Extraction of Ellagic Acid from Food. Molecules 2024; 29:2500. [PMID: 38893376 PMCID: PMC11173610 DOI: 10.3390/molecules29112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Ellagic acid (EA) is a natural polyphenol and possesses excellent in vivo bioactivity and antioxidant behaviors, which play an important role in the treatment of oxidative stress-related diseases, such as cancer. Additionally, EA is also known as a skin-whitening ingredient. The content of EA would determine its efficacy. Therefore, the accurate analysis of EA content can provide more information for the scientific consumption of EA-rich foods and cosmetics. Nevertheless, the analysis of EA in these samples is challenging due to the low concentration level and the presence of interfering components with high abundance. Molecularly imprinted polymers are highly efficient pretreatment materials in achieving specific recognition of target molecules. However, the traditional template molecule (EA) could not be absolutely removed. Hence, template leakage continues to occur during the sample preparation process, leading to a lack of accuracy in the quantification of EA in actual samples, particularly for trace analytes. In addition, another drawback of EA as an imprinting template is that EA possesses poor solubility and a high price. Gallic acid (GA), called dummy templates, was employed for the synthesis of MIPs as a solution to these challenges. The approach used in this study was boronate affinity-based oriented surface imprinting. The prepared dummy-imprinted nanoparticles exhibited several significant advantages, such as good specificity, high binding affinity ((4.89 ± 0.46) × 10-5 M), high binding capacity (6.56 ± 0.35 mg/g), fast kinetics (6 min), and low binding pH (pH 5.0) toward EA. The reproducibility of the dummy-imprinted nanoparticles was satisfactory. The dummy-imprinted nanoparticles could still be reused even after six adsorption-desorption cycles. In addition, the recoveries of the proposed method for EA at three spiked levels of analysis in strawberry and pineapple were 91.0-106.8% and 93.8-104.0%, respectively, which indicated the successful application to real samples.
Collapse
Affiliation(s)
- Daojin Li
- Henan Key Laboratory of Fuction-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (N.T.); (X.T.)
| | | | | |
Collapse
|
6
|
Shi Y, Hu K, Mei L, Chao L, Wu M, Chen Z, Wu X, Qiao J, Zhu P, Miao M, Zhang S. Platforms of graphene/MXene heterostructure for electrochemical monitoring of rutin in drug and Tartary buckwheat tea. Talanta 2024; 270:125548. [PMID: 38104427 DOI: 10.1016/j.talanta.2023.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The use of two-dimensional heterostructure composite as electrode modification material has become a new strategy to improve the electrocatalytic activity and electroactive sites of electrochemical sensor. Herein, a soluble heterostructure, namely rGO-PSS@MXene, was designed and synthesized by integrating poly (sodium p-styrenesulfonate)-functionalized reduced graphene oxide into MXene nanosheets via ultrasonic method. The interactive heterostructure can effectively alleviate the self-stacking of MXene and rGO, endowing them with superior electron transfer capacity and large specific surface area, thereby producing prominent synergistic electrocatalytic effect towards rutin. In addition, the excellent enrichment effect of rGO-PSS@MXene for rutin also plays an important role through the electrostatic and π-π stacking interactions. The electrochemical characteristics of rutin on the sensor were examined in detail and a sensitive sensing method was proposed. Under optimized conditions, the method showed satisfactory linear relationship for rutin in the concentration range of 0.005-10.0 μM, with limit of detection of 1.8 nM (S/N = 3). The quantitative validation results in herbal medicine and commercial Tartary buckwheat tea were highly consistent with the labeled quantity and the results of HPLC determination, respectively, suggesting the sensor possessed excellent selectivity and accuracy. This proposed strategy for rutin determination is expected to expand the application of MXene heterostructure in electrochemical sensors, and is envisioned as a promising candidate for quality monitoring of drugs and foods.
Collapse
Affiliation(s)
- Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China; People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, PR China
| | - Kai Hu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, PR China.
| | - Liqin Chao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Mingxia Wu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Zhihong Chen
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Xiangxiang Wu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Jingyi Qiao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Pingsheng Zhu
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China.
| | - Sisen Zhang
- People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, PR China.
| |
Collapse
|
7
|
Zhong L, Zhong J, Gu Z, Zhang X, Zhou Q, Zhai H. Synthesis of composite materials combining magnetic metal-organic frameworks and conjugated organic frameworks for selective extraction of carbendazim and thiabendazole residues from Chinese herbal medicine samples. J Chromatogr A 2023; 1712:464474. [PMID: 37924618 DOI: 10.1016/j.chroma.2023.464474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
A magnetic metal-organic framework MIL-68(Al) and a covalent organic framework were used as magnetic solid-phase extraction (MSPE) adsorbents in combination with high-performance liquid chromatography ultraviolet detection (HPLC-UV) to detect carbendazim (CBZ) and thiabendazole (TBZ). The main parameters affecting the extraction in the MSPE process were studied and optimized. Fe3O4@MIL-68(Al) coated with 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde (Fe3O4@MIL-68(Al)@TAPB-PDA-COF) was analyzed and verified. The material was proven to be suitable for adsorbing CBZ and TBZ. Various adsorption models were used to study its adsorption mechanism. The adsorption results were in good agreement with the pseudo-second-order kinetic model and Langmuir isotherm model. The maximum adsorption capacities of Fe3O4@MIL-68(Al)@TAPB-PDA-COF over CBZ and TBZ were 54.24 and 67.87 mg g-1, respectively, and the equilibrium adsorption time was 200 min. Fe3O4@MIL-68(Al)@TAPB-PDA-COF with excellent recyclability showed higher adsorption capacity and selectivity. A method based on Fe3O4@MIL-68(Al)@TAPB-PDA-COF combined with HPLC-UV was established under the optimal extraction conditions and used to separate and detect trace imidazole drugs in Chinese herbal samples, achieving a low limit of detection (0.65-1.30 μg L-1) with excellent linear correlation (r > 0.999). The recovery rate and relative standard deviation were 86.05-99.78 % and 0.15-4.90 %, respectively. Therefore, the Fe3O4@MIL-68@TAPB-PDA-COF can be regarded as an effective adsorbent for the pretreatment of CBZ and TBZ drugs in Chinese herbal samples.
Collapse
Affiliation(s)
- Lijuan Zhong
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jiapeng Zhong
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Zhenwei Gu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Xiaohui Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
8
|
Chai J, Zheng J, Tong Y, Chai F, Tian M. Construction of the molecularly imprinted adsorbent based on shaddock peel biochar sphere for highly sensitive detection of ribavirin in food and water resources. ENVIRONMENTAL RESEARCH 2023; 236:116756. [PMID: 37507037 DOI: 10.1016/j.envres.2023.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Ribavirin (RBV) that is not metabolically released into the environment can contaminate the environment and even make organisms resistant to it. Therefore, it is of great significance to establish a simple and effective method for adsorbing RBV in the environment. In this study, a novel biochar-based boronate affinity molecularly imprinted polymers (C@H@B-MIPs) were synthesized. This is the first time that shaddock peel biochar sphere was used as a carrier for specific recognition of RBV. The polymerization conditions were optimized and the binding properties of RBV were studied. Benefiting from the synergistic effect of boronate affinity and surface imprinting, the C@H@B-MIPs showed rapid equilibrium kinetics of 15 min, high adsorption capacity of 18.30 mg g-1, and excellent reusability for RBV. The linear range was 0.05-100 mg L-1, and the detection limit was 0.023 mg L-1. This method was triumphant applied to the selective adsorption of RBV in food and water resources with recovery rates of 81.4-97.7%. This study provides a practical platform for the manufacture of efficient biomass-based adsorbents.
Collapse
Affiliation(s)
- Jinyue Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Junlei Zheng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| |
Collapse
|
9
|
Zhang L, Feng Z, Fu M, Huang R, Chen W. Facile synthesis of flower-like sandwich-structured molecularly imprinted polymers for efficient recognition of target protein from egg white. Food Chem 2023; 421:136165. [PMID: 37094399 DOI: 10.1016/j.foodchem.2023.136165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
In this work, a facile method for synthesis of flower-like sandwich-structured molecularly imprinted polymers (NiO@PDA/MIPs) was proposed for protein recognition. Polydopamine modified flower-like NiO was used as substrate to immobilize the target protein (ovalbumin, OVA), and dopamine was utilized as functional monomer to form the imprinted layer. The whole preparation process was conducted in aqueous solution at room temperature. The key preparation conditions were studied systematically. Owing to the large surface-to-volume of the flower-like structure and the multifunctional groups on the polydopamine layer, the NiO@PDA/MIPs showed large binding capacity (143.2 mg/g), efficient adsorption kinetics (60 min) and excellent selectivity toward OVA. Meanwhile, the NiO@PDA/MIPs possessed satisfactory stability and reusability. Finally, successful capture of OVA from egg white suggested its potential value in practical applications.
Collapse
Affiliation(s)
- Lirui Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Zhenzhen Feng
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Min Fu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Renhe Huang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wei Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
10
|
Tarannum N, Khatoon S, Yadav A, Yadav AK. SERS-Based Molecularly Imprinted Polymer Sensor for Highly Sensitive Norfloxacin Detection. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Chai J, Chen X, Jin C, Chai F, Tian M. Selective enrichment of Rutin in sunscreen by boronate affinity molecularly imprinted polymer prior to determination by high performance liquid chromatography. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Highly-efficient selective recognition and rapid enrichment of chrysin by magnetic surface molecularly imprinted polymer. Food Chem 2022; 405:134993. [DOI: 10.1016/j.foodchem.2022.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
13
|
Yang Y, Shen X. Preparation and Application of Molecularly Imprinted Polymers for Flavonoids: Review and Perspective. Molecules 2022; 27:7355. [PMID: 36364181 PMCID: PMC9653670 DOI: 10.3390/molecules27217355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 08/24/2023] Open
Abstract
The separation and detection of flavonoids from various natural products have attracted increasing attention in the field of natural product research and development. Depending on the high specificity of molecularly imprinted polymers (MIPs), MIPs are proposed as efficient adsorbents for the selective extraction and separation of flavonoids from complex samples. At present, a comprehensive review article to summarize the separation and purification of flavonoids using molecular imprinting, and the employment of MIP-based sensors for the detection of flavonoids is still lacking. Here, we reviewed the general preparation methods of MIPs towards flavonoids, including bulk polymerization, precipitation polymerization, surface imprinting and emulsion polymerization. Additionally, a variety of applications of MIPs towards flavonoids are summarized, such as the different forms of MIP-based solid phase extraction (SPE) for the separation of flavonoids, and the MIP-based sensors for the detection of flavonoids. Finally, we discussed the advantages and disadvantages of the current synthetic methods for preparing MIPs of flavonoids and prospected the approaches for detecting flavonoids in the future. The purpose of this review is to provide helpful suggestions for the novel preparation methods of MIPs for the extraction of flavonoids and emerging applications of MIPs for the detection of flavonoids from natural products and biological samples.
Collapse
Affiliation(s)
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| |
Collapse
|
14
|
Cheng Y, Zhao X, Zhang Q, Li X, Wei Z. Constructing imprinted reticular structure in molecularly imprinted hybrid membranes for highly selective separation of acteoside. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Bagheri HF, Arvand M, Habibi MF. An ultra-sensitive tailor-made sensor for specific adsorption and separation of rutin based on imprinted cavities on magnetic sensing platform. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Stimuli-responsive molecularly imprinted polymers as adsorbents of analytes in complex matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Adsorption of flavonoids with glycosides: design and synthesis of chitosan-functionalized microspheres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Xiong Y, Cao Y, Luo L, Li P, Li M, Wang R, Xiao L, Liu X. Synthesis, characterization and absorption evaluation of bifunctional monomer magnetic molecularly imprinted polymers nanoparticles for the extraction of 6-benzylaminopurine from vegetables. Food Chem 2022; 386:132792. [PMID: 35367797 DOI: 10.1016/j.foodchem.2022.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
An adsorbent-magnetic molecularly imprinted polymers nanoparticles (MMIPs NPs) were synthesized for the extraction of 6-benzylaminopurine (6-BA) using Fe3O4 as magnetic core. The MIPs were prepared with methacrylic acid and sodium p-styrene sulfonate as bifunctional monomers. The adsorbents were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometer, thermogravimetric analysis and vibrating sample magnetometer. The adsorption properties were evaluated by static, kinetic and selective adsorption experiments. The MMIPs NPs exhibit a high adsorption capacity (37.63 mg g-1) and favorable imprinting factor (2.88) toward 6-BA. The chromatogram of 6-BA extraction using the MMIPs NPs as the adsorbent demonstrates that the matrix interference has been minimized. More importantly, MMIPs NPs can be applied to extracting 6-BA from mung bean sprout and cucumber with satisfactory recoveries (91.14-104.52%), and can be reused for at least five times. This work provides a new strategy to efficiently extract 6-BA from vegetables.
Collapse
Affiliation(s)
- Yingzi Xiong
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yanan Cao
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Lei Luo
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Pao Li
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Maiquan Li
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Xia Liu
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
19
|
Song H, Wang F, Zhao Y, Gao R, He Y, Yan Q, Chen X, Pfefferle LD, Xu S, Sheng Y. Spatially-directed magnetic molecularly imprinted polymers with good anti-interference for simultaneous enrichment and detection of dual disease-related bio-indicators. NANOSCALE 2022; 14:11343-11352. [PMID: 35894543 DOI: 10.1039/d2nr03356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the changes of biomarkers directly reflect the occurrence of degenerative diseases, accurate detection of biomarkers is of great significance for disease diagnosis and control. However, single index detection has high uncertainties to accurately reflect the pathological characteristics because of the complexity of the human internal environment and the extremely trace concentration of indicators. To this end, a method for simultaneous detection of dual-biomarkers based on anti-interference magnetic molecularly imprinted polymers (D-mag-MIPs) is thereby proposed, and successfully applied in human urine analysis for the detection of Parkinson's disease bio-indicators 4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA). In this work, carboxyl functionalized ferric oxide served as a magnetic core, laying a solid foundation for batch detection. Hyperbranched polyethylenimine, whose abundant amino groups can provide multiple interaction forces to templates with high affinity, is employed as a functional monomer. Relative to single-template MIPs, D-mag-MIPs achieve the detection of dual bio-indicators in a one-time test, reducing the false positive result probability and enhancing the detection accuracy. The proposed methodology has been evaluated to exhibit good anti-interference, satisfactory precision, low detection limits, wide linear ranges and fast batch detection for DA and DOPAC. This work thus offers an alternative and efficient pathway for convenient batch detection of dual bio-indicators from biofluids at once.
Collapse
Affiliation(s)
- Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yayun Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yulian He
- University of Michigan-Shanghai Jiaotong University Joint Institute, Shanghai 200240, China
| | - Qing Yan
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoyi Chen
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | - Silong Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Ying Sheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
20
|
Han S, Leng Q, Teng F, Ding Y, Yao A. Preparation of mesh covalent organic framework Tppa-2-based adsorption enhanced magnetic molecularly imprinted composite for selective extraction of tetracycline residues from animal-derived foods. Food Chem 2022; 384:132601. [DOI: 10.1016/j.foodchem.2022.132601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/10/2023]
|
21
|
Synthesis and application of magnetic surface molecularly imprinted polymers in selective solid-phase extraction of epoxy triglyceride from deep frying oil. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Surface imprinted core–shell nanorod for selective extraction of glycoprotein. J Colloid Interface Sci 2022; 615:597-605. [DOI: 10.1016/j.jcis.2022.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/23/2022]
|
23
|
Han X, Zhang X, Zhong L, Yu X, Zhai H. Preparation of sulfamethoxazole molecularly imprinted polymers based on magnetic metal–organic frameworks/graphene oxide composites for the selective extraction of sulfonamides in food samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Yan X, Zhai Y, Zhou W, Qiao Y, Guan L, Liu H, Jiang J, Peng L. Intestinal Flora Mediates Antiobesity Effect of Rutin in High-Fat-Diet Mice. Mol Nutr Food Res 2022; 66:e2100948. [PMID: 35616308 DOI: 10.1002/mnfr.202100948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/12/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Intestinal flora plays a critical role in the development of . Rutin is a natural flavonoid with potential prebiotic effects on regulating the intestinal flora composition that is beneficial for host health. Therefore, this study hypothesizes that rutin supplementation has beneficial effects on high-fat-diet (HFD)-induced obesity and metabolic disorder through the modulation of intestinal flora in mice. METHODS AND RESULTS The obesity-alleviating property of rutin using 6-week-old C57BL/6J male mice fed on HFD with or without rutin supplementation for 16 weeks is investigated. Rutin supplementation effectively reduces body-weight gain, insulin resistance, and acted favorably on the intestinal barrier, thereby reducing endotoxemia and systemic inflammation. Sequencing of 16S rRNA genes from fecal samples indicate that rutin exerted modulatory effects on HFD-induced intestinal flora disorders (e.g., rutin decreased Firmicutes abundance and increased Bacteroidetes and Verrucomicrobia abundance). Antibiotic treatment and fecal microbiota transplantation further demonstrate that the salutary effects of rutin on obesity control are strongly dependent on the intestinal flora. CONCLUSION Rutin can be considered as a prebiotic agent for improving intestinal flora disorders and obesity-associated metabolic perturbations in obese individuals.
Collapse
Affiliation(s)
- Xu Yan
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yuanyuan Zhai
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Wenling Zhou
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Jizhi Jiang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
25
|
Hayat M, Raza N, Jamal U, Manzoor S, Abbas N, Khan MI, Lee J, Brown RJ, Kim KH. Targeted extraction of pesticides from agricultural run-off using novel molecularly imprinted polymeric pendants. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Wang F, Ni X, Zhang J, Zhang Q, Jia H, He H, Dramou P. Novel composite nanomaterials based on magnetic molecularly imprinted polymers for selective extraction and determination of rutin in fruit juice. Food Chem 2022; 381:132275. [PMID: 35123225 DOI: 10.1016/j.foodchem.2022.132275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
In this work, with the attempt to further improve the selectivity, magnetism and loading proportion of existing adsorbents, a novel composite (MGO/MHNTs@MIPs) was synthesized by electrostatically combining molecularly imprinted polymer based on the surface of magnetic halloysite nanotubes (MHNTs@MIPs) with magnetic graphene oxide (MGO). Then some characterizations were done to prove its successful synthesis. Besides, the bonding experiment showed that it possessed a loading capacity of up to 132 mg·g-1, and the adsorption behavior of MGO/MHNTs@MIPs was elucidated by Langmuir isotherm model and Pseudo-second order model. By comparing its adsorption capacity to analogues, we concluded that the MGO/MHNTs@MIPs with the MHNTs@MIPs as basic elements exhibited higher selectivity (imprinting factor = 2.25) than that of MGO/MHNTs@NIPs based on MHNTs@NIPs for template rutin. Furthermore, a series of solid phase extraction conditions were optimized, and then the materials were used for the extraction and detection of rutin in fruit juice under the optimal conditions.
Collapse
Affiliation(s)
- Fangqi Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qikun Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huning Jia
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
27
|
Li J, Zhou X, Yan Y, Shen D, Lu D, Guo Y, Xie L, Deng B. Selective Recognition of Gallic Acid Using Hollow Magnetic Molecularly Imprinted Polymers with Double Imprinting Surfaces. Polymers (Basel) 2022; 14:175. [PMID: 35012196 PMCID: PMC8747617 DOI: 10.3390/polym14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Gallic acid is widely used in the field of food and medicine due to its diversified bioactivities. The extraction method with higher specificity and efficiency is the key to separate and purify gallic acid from complex biological matrix. Herein, using self-made core-shell magnetic molecularly imprinted polymers (MMIP) with gallic acid as template, a hollow magnetic molecularly imprinted polymer (HMMIP) with double imprinting/adsorption surfaces was prepared by etching the mesoporous silica intermediate layer of MMIP. The characterization and adsorption research showed that the HMMIP had larger specific surface area, higher magnetic response strength and a more stable structure, and the selectivity and saturated adsorption capacity (2.815 mmol/g at 318 K) of gallic acid on HMMIP were better than those of MMIP. Thus, in addition to MMIP, the improved HMMIP had excellent separation and purification ability to selectively extract gallic acid from complex matrix with higher specificity and efficiency.
Collapse
Affiliation(s)
- Jiawei Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Xinji Zhou
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Yu Yan
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Dianling Shen
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Danqing Lu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Bin Deng
- College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, China
| |
Collapse
|
28
|
Li D, Tang N, Wang Y, Zhang Z, Ding Y, Tian X. Efficient synthesis of boronate affinity-based catecholamine-imprinted magnetic nanomaterials for trace analysis of catecholamine in human urine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02552c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catecholamines, a class of cis-diol-containing compounds, play a major role in the central nervous system.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| |
Collapse
|
29
|
Effting L, Prete MC, Urbano A, Effting L, González MEC, Bail A, Tarley CRT. Preparation of magnetic nanoparticle-cholesterol imprinted polymer using semi-covalent imprinting approach for ultra-effective and highly selective cholesterol adsorption. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Synthesis and characterization of genistein magnetic molecularly imprinted polymers and their application in soy sauce products. Sci Rep 2021; 11:23183. [PMID: 34848802 PMCID: PMC8633317 DOI: 10.1038/s41598-021-02625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
In this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed utilizing a surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that the diameter of the Gen-MMIPs was approximately 500 nm. Via analysis with a vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs was determined to be 24.79 emu g−1. Fourier transform infrared (FT-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiments suggested that the genistein adsorption capability of Gen-MMIPs was 5.81 mg g−1, and adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction (dSPE) adsorbents combined with HPLC were used to selectively separate genistein in soy sauce samples, and the recoveries ranged from 85.7 to 88.5% with relative standard deviations (RSDs) less than 5%, which proved that this method can be used for the detection of genistein residues in real samples.
Collapse
|