• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4763348)   Today's Articles (6604)
For: Low DY, Micheau P, Koistinen VM, Hanhineva K, Abrankó L, Rodriguez-Mateos A, da Silva AB, van Poucke C, Almeida C, Andres-Lacueva C, Rai DK, Capanoglu E, Tomás Barberán FA, Mattivi F, Schmidt G, Gürdeniz G, Valentová K, Bresciani L, Petrásková L, Dragsted LO, Philo M, Ulaszewska M, Mena P, González-Domínguez R, Garcia-Villalba R, Kamiloglu S, de Pascual-Teresa S, Durand S, Wiczkowski W, Bronze MR, Stanstrup J, Manach C. Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds. Food Chem 2021;357:129757. [PMID: 33872868 DOI: 10.1016/j.foodchem.2021.129757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Number Cited by Other Article(s)
1
Zakir M, LeVatte MA, Wishart DS. RT-Pred: A web server for accurate, customized liquid chromatography retention time prediction of chemicals. J Chromatogr A 2025;1747:465816. [PMID: 40023050 DOI: 10.1016/j.chroma.2025.465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
2
Stienstra CMK, Nazdrajić E, Hopkins WS. From Reverse Phase Chromatography to HILIC: Graph Transformers Power Method-Independent Machine Learning of Retention Times. Anal Chem 2025;97:4461-4472. [PMID: 39972614 DOI: 10.1021/acs.analchem.4c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
3
Qu X, Jiang C, Shan M, Ke W, Chen J, Zhao Q, Hu Y, Liu J, Qin LP, Cheng G. Prediction of Proteolysis-Targeting Chimeras Retention Time Using XGBoost Model Incorporated with Chromatographic Conditions. J Chem Inf Model 2025;65:613-625. [PMID: 39786356 DOI: 10.1021/acs.jcim.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
4
Xu H, Wu W, Chen Y, Zhang D, Mo F. Explicit relation between thin film chromatography and column chromatography conditions from statistics and machine learning. Nat Commun 2025;16:832. [PMID: 39828717 PMCID: PMC11743788 DOI: 10.1038/s41467-025-56136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]  Open
5
Hupatz H, Rahu I, Wang WC, Peets P, Palm EH, Kruve A. Critical review on in silico methods for structural annotation of chemicals detected with LC/HRMS non-targeted screening. Anal Bioanal Chem 2025;417:473-493. [PMID: 39138659 DOI: 10.1007/s00216-024-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
6
Liu Y, Yoshizawa AC, Ling Y, Okuda S. Insights into predicting small molecule retention times in liquid chromatography using deep learning. J Cheminform 2024;16:113. [PMID: 39375739 PMCID: PMC11460055 DOI: 10.1186/s13321-024-00905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024]  Open
7
Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Retention time dataset for heterogeneous molecules in reversed-phase liquid chromatography. Sci Data 2024;11:946. [PMID: 39209861 PMCID: PMC11362277 DOI: 10.1038/s41597-024-03780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]  Open
8
Zhang Y, Liu F, Li XQ, Gao Y, Li KC, Zhang QH. Generic and accurate prediction of retention times in liquid chromatography by post-projection calibration. Commun Chem 2024;7:54. [PMID: 38459241 PMCID: PMC10923921 DOI: 10.1038/s42004-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024]  Open
9
Witting M. (Re-)use and (re-)analysis of publicly available metabolomics data. Proteomics 2023;23:e2300032. [PMID: 37670538 DOI: 10.1002/pmic.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
10
Kwon Y, Kwon H, Han J, Kang M, Kim JY, Shin D, Choi YS, Kang S. Retention Time Prediction through Learning from a Small Training Data Set with a Pretrained Graph Neural Network. Anal Chem 2023;95:17273-17283. [PMID: 37955847 DOI: 10.1021/acs.analchem.3c03177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
11
Lin W, Mellinghaus K, Rodriguez-Mateos A, Globisch D. Identification of nutritional biomarkers through highly sensitive and chemoselective metabolomics. Food Chem 2023;425:136481. [PMID: 37276670 DOI: 10.1016/j.foodchem.2023.136481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
12
Xu H, Lin J, Zhang D, Mo F. Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network. Nat Commun 2023;14:3095. [PMID: 37248214 DOI: 10.1038/s41467-023-38853-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]  Open
13
Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
14
Harrieder EM, Kretschmer F, Böcker S, Witting M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1188:123069. [PMID: 34879285 DOI: 10.1016/j.jchromb.2021.123069] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA