1
|
Ross FC, Mayer DE, Horn J, Cryan JF, Del Rio D, Randolph E, Gill CIR, Gupta A, Ross RP, Stanton C, Mayer EA. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr Neurosci 2024; 27:1058-1076. [PMID: 38287652 DOI: 10.1080/1028415x.2023.2298098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.
Collapse
Affiliation(s)
- F C Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D E Mayer
- Institute of Human Nutrition, Columbia University, New York, USA
| | - J Horn
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - J F Cryan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department Anatomy & Neuroscience, University College Cork, Co. Cork, Ireland
| | - D Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - E Randolph
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health, Northern Ireland, UK
| | - A Gupta
- Division of Digestive Diseases, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - E A Mayer
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Lackner S, Mahnert A, Moissl-Eichinger C, Madl T, Habisch H, Meier-Allard N, Kumpitsch C, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Strobl H, Holasek S. Interindividual differences in aronia juice tolerability linked to gut microbiome and metabolome changes-secondary analysis of a randomized placebo-controlled parallel intervention trial. MICROBIOME 2024; 12:49. [PMID: 38461313 PMCID: PMC10924357 DOI: 10.1186/s40168-024-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Nathalie Meier-Allard
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036, Graz, Austria
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Auenbruggerplatz 3, 8036, Graz, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria
| | - Sandra Holasek
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
3
|
Bolling BW. Anthocyanins and health: Are fruit and vegetable dietary recommendations outdated in the context of ultraprocessed foods? Nutr Res 2023; 115:61-62. [PMID: 37336041 DOI: 10.1016/j.nutres.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
4
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
5
|
Bolling BW, Aune D, Noh H, Petersen KS, Freisling H. Dried Fruits, Nuts, and Cancer Risk and Survival: A Review of the Evidence and Future Research Directions. Nutrients 2023; 15:1443. [PMID: 36986173 PMCID: PMC10051070 DOI: 10.3390/nu15061443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Dried fruits and nuts contain high amounts of nutrients and phytochemicals-all of which may have anticarcinogenic, anti-inflammatory, and antioxidant properties. This narrative review summarizes the evidence for dried fruits and nuts and cancer incidence, mortality, and survival and their potential anticancer properties. The evidence for dried fruits in cancer outcomes is limited, but existing studies have suggested an inverse relationship between total dried fruit consumption and cancer risk. A higher consumption of nuts has been associated with a reduced risk of several site-specific cancers in prospective cohort studies, including cancers of the colon, lung, and pancreas, with relative risks per 5 g/day increment equal to 0.75 (95% CI 0.60, 0.94), 0.97 (95% CI 0.95, 0.98), and 0.94 (95% CI 0.89, 0.99), respectively. A daily intake of total nuts of 28 g/day has also been associated with a 21% reduction in the rate of cancer mortality. There is also some evidence that frequent nut consumption is associated with improved survival outcomes among patients with colorectal, breast, and prostate cancer; however, further studies are needed. Future research directions include the investigation of additional cancer types, including rare types of cancer. For cancer prognosis, additional studies with pre- and postdiagnosis dietary assessment are warranted.
Collapse
Affiliation(s)
- Bradley W. Bolling
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Dr., Madison, WI 53706, USA
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Department of Nutrition, Oslo New University College, Lovisenberggata 13, 0456 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevål, 0424 Oslo, Norway
| | - Hwayoung Noh
- Department of Cancer Prevention and Environment, INSERM U1296, Léon Bérard Cancer Center, 28 Rue Laennec, 69008 Lyon, France
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 25 Avenue Tony Garnier, CS 90627, CEDEX 07, 69366 Lyon, France
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Texas Tech University, 508 Human Sciences Building, Lubbock, TX 79409, USA
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 25 Avenue Tony Garnier, CS 90627, CEDEX 07, 69366 Lyon, France
| |
Collapse
|
6
|
Increasing Bioavailability of Trans-Ferulic Acid by Encapsulation in Functionalized Mesoporous Silica. Pharmaceutics 2023; 15:pharmaceutics15020660. [PMID: 36839982 PMCID: PMC9968071 DOI: 10.3390/pharmaceutics15020660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Two types of mesoporous materials, MCM-41 and MCM-48, were functionalized by the soft-template method using (3-aminopropyl)triethoxysilane (APTES) as a modifying agent. The obtained mesoporous silica materials were loaded with trans-ferulic acid (FA). In order to establish the morphology and structure of mesoporous materials, a series of specific techniques were used such as: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmet-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). We monitored the in vitro release of the loaded FA at two different pH values, by using simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Additionally, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231 were used to evaluate the antimicrobial activity of FA loaded mesoporous silica materials. In conclusion such functionalized mesoporous materials can be employed as controlled release systems for polyphenols extracted from natural sources.
Collapse
|
7
|
Mostafa H, Behrendt I, Meroño T, González-Domínguez R, Fasshauer M, Rudloff S, Andres-Lacueva C, Kuntz S. Plasma anthocyanins and their metabolites reduce in vitro migration of pancreatic cancer cells, PANC-1, in a FAK- and NF-kB dependent manner: Results from the ATTACH-study a randomized, controlled, crossover trial in healthy subjects. Biomed Pharmacother 2023; 158:114076. [PMID: 36516693 DOI: 10.1016/j.biopha.2022.114076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is primarily considered to be a metastatic disease with a low 5-year survival rate. We aimed to detect if plasma-isolated anthocyanins and their metabolites (PAMs) modulate pancreatic cancer cells migration and to describe molecular targets of PAMs in this process. Plasma metabolites were isolated by solid-phase extraction before and after a 28-days intervention trial involving 35 healthy subjects comparing effects of a daily anthocyanin-rich juice intake vs. placebo. Plasma extracts were used for migration and mechanistic in vitro studies as well as for metabolomic analysis. Pancreatic PANC-1 and AsPC-1 were used for migration studies in a Boyden chamber co-cultured with endothelial cells. Expression of adhesion molecules on cancer and endothelial cells were determined by flow cytometry and NF-kB (nuclear factor-kappa B) p65 and focal adhesion kinase activation were measured by immunoassays. UHPLC-MS/MS metabolomics was done in plasma and urine samples. Plasma extracts isolated after the intake of the anthocyanin-rich juice significantly reduced PANC-1 migration, but not AsPC-1 migration. In PANC-1, and to a lower extent in endothelial cells, plasma extracts after juice intake decreased the expression of ß1- and ß4-integrins and intercellular adhesion molecule-1. Pooled plasma from volunteers with the highest inhibition of PANC-1 migration (n = 10) induced a reduction of NF-kB-p65 and FAK-phosphorylation in cancer and in endothelial cells. Concerning metabolites, 14 were significantly altered by juice intervention and PANC-1 migration was inversely associated with the increase of o-coumaric acid and peonidin-3-galactoside. PAMs were associated with lower PANC-1 cell migration opening new strategies for metastatic pancreatic cancer treatment.
Collapse
Affiliation(s)
- Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Inken Behrendt
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Raúl González-Domínguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mathias Fasshauer
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany
| | - Silvia Rudloff
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany; Department of Nutritional Science and Department of Pediatrics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sabine Kuntz
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany
| |
Collapse
|
8
|
Yue W, Han F. Effects of monoglucoside and diglucoside anthocyanins from Yan 73 (Vitis Vinifera L.) and spine grape (Vitis davidii Foex) skin on intestinal microbiota in vitro. Food Chem X 2022; 16:100501. [DOI: 10.1016/j.fochx.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
|
9
|
Nan G, Liu L, Wu H, Yin S, Li C, Zhao H, Chen H, Wu Q. Transcriptomic and Metabonomic Profiling Reveals the Antihyperlipidemic Effects of Tartary Buckwheat Sprouts in High-Fat-Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13302-13312. [PMID: 36215169 DOI: 10.1021/acs.jafc.2c05382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flavonoids are known for potent antioxidant activity and antihyperlipidemia. As a result of the few antinutritional factors and high bioactive substances, such as flavonoids, sprouts of tartary buckwheat (Fagopyrum tataricum, STB) have become healthy food. This study aims to unravel the antihyperlipidemic effects of STB in vivo and its potential mechanism through transcriptomic and metabonomic analysis. The physiological parameters of mice administered the high-fat diet with or without 2.5 and 5% of STB for 10 weeks were recorded. Liquid chromatography-tandem mass spectrometry and RNA sequencing were applied to obtain the serum lipid metabolomic and hepatic transcriptomic profiling, respectively. Results revealed that STB could significantly alleviate the increase of body weight, liver, and abdominal adipose while ameliorating the lipid content in serum and insulin resistance of mice fed with a high-fat diet. Notably, the metabonomic analysis identified the core differential metabolites mainly enriched in the pathways, such as fat digestion and absorption, insulin resistance, and other processes. Transcriptomic results revealed that STB significantly altered the expression levels of PIK3R1, LRP5, SLC10A2, and FBXO21. These genes are involved in the PI3K-AKT signaling pathway, digestion and absorption of carbohydrates, and type II diabetes mellitus pathways. In this study, STB exhibited remarkable influence on the metabolism of lipids and glucose, exerting antihyperlipidemic effects. STB have the potential for the development and application of a lipid-lowering health food.
Collapse
Affiliation(s)
- Guohui Nan
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
- Faculty of Quality Management and Inspection & Quarantine, Yibin University, Yibin, Sichuan 644000, People's Republic of China
| | - Lisong Liu
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Shiyuan Yin
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Xinkang Road 46, Ya'an, Sichuan 625014, People's Republic of China
| |
Collapse
|
10
|
Song X, Zhang X, Ma C, Hu X, Chen F. Rediscovering the nutrition of whole foods: The emerging role of gut microbiota. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Lackner S, Sconocchia T, Ziegler T, Passegger C, Meier-Allard N, Schwarzenberger E, Wonisch W, Lahousen T, Kohlhammer-Dohr A, Mörkl S, Derler M, Strobl H, Holasek SJ. Immunomodulatory Effects of Aronia Juice Polyphenols-Results of a Randomized Placebo-Controlled Human Intervention Study and Cell Culture Experiments. Antioxidants (Basel) 2022; 11:1283. [PMID: 35883769 PMCID: PMC9312026 DOI: 10.3390/antiox11071283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary polyphenols, which are present in Aronia melanocarpa, have been associated with various beneficial effects on human health including antioxidant, antiviral, and anti-inflammatory activities. We aimed to investigate the immunomodulatory effects of aronia juice polyphenols in a randomized placebo-controlled human intervention study and cell culture experiments. A total of 40 females were asked to consume either 200 mL of aronia juice or a placebo drink for six weeks and were investigated again after a washout period of another six weeks. We observed that only half of the participants tolerated the aronia juice well (Vt) and the other half reported complaints (Vc). The placebo (P) was generally tolerated with one exception (p = 0.003). Plasma polyphenol levels increased significantly in Vt after the intervention (p = 0.024) but did neither in P nor in Vc. Regulatory T cell (Treg) frequencies remained constant in Vt and P during the intervention, whereas Tregs decreased in Vc (p = 0.018). In cell culture, inhibiting effects of ferulic acid (p = 0.0005) and catechin (p = 0.0393) on the differentiation of Tregs were observed as well as reduced activation of CD4-T cells in ferulic acid (p = 0.0072) and aronia juice (p = 0.0163) treated cells. Interestingly, a CD4+CD25-FoxP3+ cell population emerged in vitro in response to aronia juice, but not when testing individual polyphenols. In conclusion, our data strengthen possible individual hormetic effects, the importance of the food matrix for bioactivity, and the need for further investigations on possible impacts of specific physiological features such as the gut microbiota in the context of personalized nutrition.
Collapse
Affiliation(s)
- Sonja Lackner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Tommaso Sconocchia
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Ziegler
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Juice Plus+ Science Institute, Collierville, TN 38017, USA
| | - Christina Passegger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Nathalie Meier-Allard
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Elke Schwarzenberger
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Willibald Wonisch
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Theresa Lahousen
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Alexandra Kohlhammer-Dohr
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria; (T.L.); (A.K.-D.); (S.M.)
| | - Martina Derler
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
- Department of Pharmacology and Toxicology, University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| | - Sandra Johanna Holasek
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.L.); (T.S.); (T.Z.); (C.P.); (N.M.-A.); (E.S.); (M.D.); (H.S.)
| |
Collapse
|
12
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
13
|
Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Shirazi-Tehrani E, Chamasemani A, Firouzabadi N, Mousaei M. ncRNAs and polyphenols: new therapeutic strategies for hypertension. RNA Biol 2022; 19:575-587. [PMID: 35438046 PMCID: PMC9037439 DOI: 10.1080/15476286.2022.2066335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polyphenols have gained significant attention in protecting several chronic diseases, such as cardiovascular diseases (CVDs). Accumulating evidence indicates that polyphenols have potential protective roles for various CVDs. Hypertension (HTN) is among the hazardous CVDs accounting for nearly 8.5 million deaths worldwide. HTN is a complex and multifactorial disease and a combination of genetic susceptibility and environmental factors play major roles in its development. However, the underlying regulatory mechanisms are still elusive. Polyphenols have shown to cause favourable and beneficial effects in the management of HTN. Noncoding RNAs (ncRNAs) as influential mediators in modulating the biological properties of polyphenols, have shown significant footprints in CVDs. ncRNAs control basic functions in virtually all cell types relevant to the cardiovascular system and, thus, a direct link with blood pressure (BP) regulation is highly probable. Recent evidence suggests that a number of ncRNAs, including main small ncRNAs, microRNAs (miRNAs) and long ncRNAs (lncRNAs), play crucial roles with respect to the antihypertensive effects of polyphenols. Indeed, targeting lncRNAs by polyphenols will be a novel and promising strategy in the management of HTN. Herein, we reviewed the effects of polyphenols in HTN. Additionally, we emphasized on the potential effects of polyphenols on regulations of main ncRNAs, which imply the role of polyphenols in regulating ncRNAs in order to exert protective effects and thus proposing them as new targets for HTN treatment.Abbreviations : CVD: cardiovascular disease; BP: blood pressure; HTN: hypertension, lncRNAs: long noncoding RNAs; p38-MAPK: p38-mitogenactivated protein kinase; OPCs: oligomeric procyanidins; GTP: guanosine triphosphate; ROS: reactive oxygen species; cGMP: cyclic guanosine monophosphate; SGC: soluble guanylate cyclase; PI3K: phosphatidylinositol 3-kinase; cGMP: Cyclic GMP; eNOS: endothelial NO synthase; ERK ½: extracellular signal-regulated kinase ½; L-Arg: L-Arginine; MAPK: mitogen-activated protein kinases; NO: Nitric oxide; P: Phosphorus; PDK1: Phosphoinositide-dependent kinase 1; PI3-K: Phosphatidylinositol 3-kinase; PIP2: Phosphatidylinositol diphosphate; ncRNAs: non-protein-coding RNA; miRNAs: microRNAs; OPCs: oligomeric procyanidins; RES: resveratrol; GE: grape extract; T2DM: type 2 diabetes mellitus; IL: interleukin; TNF-α: tumour necrosis factor-alpha; NF-κB: nuclear factor NF-kappa-B; ALP: alkaline phosphatase; PARP1: poly [ADP-ribose] polymerase 1; HIF1a: Hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; PAD: peripheral artery disease; SHR: spontaneously hypertensive rat; RAAS: renin-angiotensin-aldosterone system; AT1R: angiotensin type-1 receptor; Nox: NADPH oxidase; HO-1: haem oxygenase-1; JAK/STAT: Janus kinase/signal transducers/activators of the transcription; PNS: panax notoginseng saponin; snoRNA: small nucleolar RNA; hnRNA: heterogeneous nuclear RNA; VSMCs: vascular smooth muscle cells; irf7: interferon regulatory factor 7; limo2: LIM only domain 2; GWAS: genome-wide association study; GAS5: Growth arrest-specific 5; Asb3, Ankyrin repeat and SPCS box containing 3; Chac2: cation transport regulator homolog 2; Pex11b: peroxisomal membrane 11B; Sp5: Sp5 transcription factor; EGCG: epigallocatechin gallate; ApoE: Apo lipoprotein E; ERK-MAP kinase: extracellular signal-regulated kinases-mitogen-activated protein kinase; PAH: pulmonary artery hypertension; PAP: pulmonary arterial pressure; HIF1a: hypoxia-inducible-factor 1A; NFATc2: nuclear factor of activated T cells 2; HMEC-1: Human microvascular endothelial cells; stat2: signal transducers and activators of transcription 2; JNK: c-Jun N-terminal kinase; iNOS: inducible NO synthase. SNP: single nucleotide polymorphism; CAD: coronary artery disease.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Chamasemani
- Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
15
|
The Effect of Dietary Polyphenols on Vascular Health and Hypertension: Current Evidence and Mechanisms of Action. Nutrients 2022; 14:nu14030545. [PMID: 35276904 PMCID: PMC8840535 DOI: 10.3390/nu14030545] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of this review was to explore existing evidence from studies conducted on humans and summarize the mechanisms of action of dietary polyphenols on vascular health, blood pressure and hypertension. There is evidence that some polyphenol-rich foods, including berry fruits rich in anthocyanins, cocoa and green tea rich in flavan-3-ols, almonds and pistachios rich in hydroxycinnamic acids, and soy products rich in isoflavones, are able to improve blood pressure levels. A variety of mechanisms can elucidate the observed effects. Some limitations of the evidence, including variability of polyphenol content in plant-derived foods and human absorption, difficulty disentangling the effects of polyphenols from other dietary compounds, and discrepancy of doses between animal and human studies should be taken into account. While no single food counteracts hypertension, adopting a plant-based dietary pattern including a variety of polyphenol-rich foods is an advisable practice to improve blood pressure.
Collapse
|
16
|
Qian Y, Gao Z, Wang C, Ma J, Li G, Fu F, Guo J, Shan Y. Effects of Different Treatment Methods of Dried Citrus Peel ( Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Front Nutr 2021; 8:702559. [PMID: 34434953 PMCID: PMC8381872 DOI: 10.3389/fnut.2021.702559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Chenpi is a kind of dried citrus peel from Citrus reticulata, and it is often used as traditional Chinese medicine to treat dyspepsia and respiratory tract inflammation. In this study, to determine which way of chenpi treatment plays a better effect on the prevention of obesity in healthy mice, we conducted 16S ribosomal RNA (rRNA) gene sequencing for intestinal microbiota and gas chromatography-mass spectrometry detector (GC/MSD) analysis for short-chain fatty acids (SCFAs) of female rats fed with either chenpi decoction or chenpi powder-based diet (n = 10 per group) for 3 weeks. Chenpi powder (CP) group significantly reduced abdominal adipose tissues, subcutaneous adipose tissue, and the serum level of total triacylglycerol (TG). At a deeper level, chenpi powder has a better tendency to increase the ratio of Bacteroidetes to Firmicutes. It alters the Muribaculaceae and Muribaculum in intestinal microbiota, though it is not significant. The concentrations of acetic acid, valeric acid, and butyric acid increased slightly but not significantly in the CP group. Chenpi decoction just reduced perirenal adipose tissues, but it shows better antioxidant activity. It has little effect on intestinal microbiota. No differences were found for SCFAs in the chenpi decoction (CD) group. The results indicated that chenpi powder has a better effect in preventing obesity in mice. It can provide a basis for the development of functional products related to chenpi powder.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|