1
|
Leng L, Yang Z, Zhu B, Qi H. Insight into the digestion mechanism of proteins in silver carp (Hypophthalmichthys molitrix) surimi by different alginates. Food Chem 2025; 463:141415. [PMID: 39388870 DOI: 10.1016/j.foodchem.2024.141415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
This study aimed to evaluate the impact of potassium alginate (PA), propylene glycol alginate (PGA), and calcium alginate (CA) on the gel properties of silver carp (Hypophthalmichthys molitrix) surimi (control group) throughout gastrointestinal digestion. The findings revealed that the protein digestibility of the PA/PGA and CA groups was found to be lower compared to the control group. Among these groups, the CA group had the lowest digestibility rate at 82.49 ± 3.50 %. The study revealed a reduction in the number of peptides found in the surimi group treated with alginate compared to the control group. Alginate was discovered to have inhibitory effects on proteolysis by forming a robust cross-linked network that obstructs pepsin from accessing its substrates. This research provides valuable insights into the potential application of alginate for improving the digestibility of surimi proteins and creating commercial surimi products.
Collapse
Affiliation(s)
- Liping Leng
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zuomiao Yang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Beiwei Zhu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Vorob'ev MM. Towards a Quantitative Description of Proteolysis: Contribution of Demasking and Hydrolysis Steps to Proteolysis Kinetics of Milk Proteins. Foods 2025; 14:93. [PMID: 39796383 PMCID: PMC11719913 DOI: 10.3390/foods14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate. Kinetic studies of the proteolysis of β-casein and β-lactoglobulin by various proteolytic enzymes throughout the whole degree of hydrolysis are reviewed. The two-step proteolysis model is regarded, which includes demasking of peptide bonds as a result of opening of the protein structure at the first stage, then hydrolysis of the demasked peptide bonds. To determine the kinetics of demasking, the shift in Trp fluorescence during opening of the protein substrate is analyzed. Two stages of demasking and secondary masking are also considered, explaining the appearance of unhydrolyzed peptide bonds at the end of proteolysis with decreasing enzyme concentrations. Proteolysis of a nanosized substrate is considered for the example of tryptic hydrolysis of β-CN micelles, leading to the formation and degradation of new nanoparticles and non-monotonic changes in the secondary protein structures during proteolysis.
Collapse
Affiliation(s)
- Mikhail M Vorob'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, Moscow 119991, Russia
| |
Collapse
|
3
|
Suwareh O, Causeur D, Le Feunteun S, Jardin J, Briard-Bion V, Pezennec S, Nau F. Peptide bonds cleaved by pepsin are affected by the morphology of heat-induced ovalbumin aggregates. Food Chem 2024; 458:140260. [PMID: 38944927 DOI: 10.1016/j.foodchem.2024.140260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The study aimed to assess the extent to which protein aggregation, and even the modality of aggregation, can affect gastric digestion, down to the nature of the hydrolyzed peptide bonds. By controlling pH and ionic strength during heating, linear or spherical ovalbumin (OVA) aggregates were prepared, then digested with pepsin. Statistical analysis characterized the peptide bonds specifically hydrolyzed versus those not hydrolyzed for a given condition, based on a detailed description of all these bonds. Aggregation limits pepsin access to buried regions of native OVA, but some cleavage sites specific to aggregates reflect specific hydrolysis pathways due to the denaturation-aggregation process. Cleavage sites specific to linear aggregates indicate greater denaturation compared to spherical aggregates, consistent with theoretical models of heat-induced aggregation of OVA. Thus, the peptides released during the gastric phase may vary depending on the aggregation modality. Precisely tuned aggregation may therefore allow subtle control of the digestion process.
Collapse
Affiliation(s)
- Ousmane Suwareh
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - David Causeur
- IRMAR UMR6625, CNRS, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Julien Jardin
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | | | - Stéphane Pezennec
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Françoise Nau
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
4
|
Almasri RS, Bedir AS, Ranneh YK, El-Tarabily KA, Al Raish SM. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients 2024; 16:3848. [PMID: 39599634 PMCID: PMC11597306 DOI: 10.3390/nu16223848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The nutritional composition, antimicrobial properties, and health benefits of camel milk (CAM), cow milk (COM), and goat milk (GOM) have been extensively studied for their roles in managing diabetes and cardiovascular diseases (CVD). This review compares these milk types' nutritional and therapeutic properties, emphasizing their applications in chronic disease management. CAM is rich in insulin-like proteins, vitamins, minerals, and bioactive compounds that benefit glycemic control and cardiovascular health. It also exhibits potent antioxidants, anti-inflammatory, and lipid-lowering effects, which are crucial for managing diabetes and reducing CVD risk factors. While COM and GOM provide essential nutrients, their impact on metabolic health differs. GOM is known for its digestibility and antihypertensive properties, whereas COM's higher lactose content may be less suitable for diabetic patients. CAM's unique nutritional profile offers distinct therapeutic benefits, particularly for diabetes and CVD management. Further research is needed to clarify its mechanisms of action and optimize its clinical application for chronic disease prevention and management.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Yazan K. Ranneh
- Department of Pharmacy, College of Pharmacy, Al Ain University of Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| |
Collapse
|
5
|
de Matos FM, Rasera GB, de Castro RJS. Multifunctional properties of peptides derived from black cricket (Gryllus assimilis) and effects of in vitro digestion simulation on their bioactivities. Food Res Int 2024; 196:115134. [PMID: 39614589 DOI: 10.1016/j.foodres.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Insects are a rich source of proteins and are produced in systems that have lower environmental impact. As an alternative protein source, they can be consumed directly or used as an ingredient in other formulations. Recently, there has been growing interest in utilizing insect proteins as a substrate to obtain bioactive peptides as well as in investigating the maintenance of their biological properties under physiological conditions. This study aimed to evaluate the impact of simulated digestion on the bioactive properties of protein hydrolysates from black crickets (Gryllus assimilis). Following simulated digestion of the hydrolysate obtained through the application of Flavourzyme, the scavenging activities of ABTS and DPPH radicals, and ferric reducing antioxidant power (FRAP) increased by approximately 17 %, 246 %, and 173 %, respectively. For the hydrolysate obtained using the binary combination of Flavourzyme/Neutrase, the inhibitory activities of α-amylase and α-glucosidase after digestion were 47.87 % and 12.73 %, respectively, not significantly (p > 0.05) different from non-digested hydrolysates. The angiotensin-converting enzyme (ACE) inhibitory activity of the sample hydrolyzed with Flavourzyme/Alcalase proteases was 42.22 %, but this property was completely lost after in vitro digestion. Untargeted proteomic analysis allowed the identification of 22 peptides in the <3 kDa fraction of the digested black cricket protein. The LPPLP sequence was considered potentially bioactive for all activities tested in silico.
Collapse
Affiliation(s)
- Francielle Miranda de Matos
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| | - Gabriela Boscariol Rasera
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Ali AH, Li S, Liu SQ, Gan RY, Li HB, Kamal-Eldin A, Ayyash M. Invited review: Camel milk and gut health-Understanding digestibility and the effect on gut microbiota. J Dairy Sci 2024; 107:2573-2585. [PMID: 37977446 DOI: 10.3168/jds.2023-23995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Camel milk (CM), known for its immune-regulatory, anti-inflammatory, antiapoptotic, and antidiabetic properties, is a natural healthy food. It is easily digestible due to the high levels of β-casein and diverse secreted antibodies, exhibiting superior antibacterial and antiviral activities compared with bovine milk. β-casein is less allergic and more digestible because it is more susceptible to digestive hydrolysis in the gut; therefore, higher levels of β-casein make CM advantageous for human health. Furthermore, antibodies help the digestive system by destroying the antigens, which are then overwhelmed and digested by macrophages. The connection between the gut microbiota and human health has gained substantial research attention, as it offers potential benefits and supports disease treatment. The gut microbiota has a vital role in regulating the host's health because it helps in several biological functions, such as protection against pathogens, immune function regulation, energy harvesting from digested foods, and reinforcement of digestive tract biochemical barriers. These functions could be affected by the changes in the gut microbiota profile, and gut microbiota differences are associated with several diseases, such as inflammatory bowel disease, colon cancer, irritable bowel disorder, mental illness, allergy, and obesity. This review focuses on the digestibility of CM components, particularly protein and fat, and their influence on gut microbiota modulation. Notably, the hypoallergenic properties and small fat globules of CM contribute to its enhanced digestibility. Considering the rapid digestion of its proteins under conditions simulating infant gastrointestinal digestion, CM exhibits promise as a potential alternative for infant formula preparation due to the high β-/αs-casein ratio and protective proteins, in addition to the absence of β-lactoglobulin.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Siqi Li
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates.
| |
Collapse
|
7
|
Vorob'ev MM. Modeling of the Peptide Release during Proteolysis of β-Lactoglobulin by Trypsin with Consideration of Peptide Bond Demasking. Int J Mol Sci 2023; 24:11929. [PMID: 37569305 PMCID: PMC10419145 DOI: 10.3390/ijms241511929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Prospects for predicting the fragmentation of polypeptide chains during their enzymatic hydrolysis using proteolysis models are considered. The opening of the protein substrate during proteolysis and the exposure of its internal peptide bonds for a successful enzymatic attack, the so-called demasking process, were taken into account. The two-step proteolysis model was used, including the parameters of demasking and the rate constants of hydrolysis of enzyme-specific peptide bonds. Herein, we have presented an algorithm for calculating the concentrations of intermediate and final peptide fragments depending on the time of hydrolysis or the degree of hydrolysis. The intermediate peptide fragments with two or one internal specific peptide bond were considered. The fragmentation of β-lactoglobulin (β-LG) by trypsin was predicted, and the calculated concentration curves for peptide fragments were compared with the experimental dependences of the concentrations on the degree of hydrolysis. Numerical parameters were proposed that characterize the concentration curves for intermediate and final peptide fragments, and they were used to compare the calculated and experimental dependences. The predicted distribution of the peptide fragments corresponded to the experimental data on the peptide release during the proteolysis of β-LG by trypsin.
Collapse
Affiliation(s)
- Mikhail M Vorob'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russia
| |
Collapse
|
8
|
Akram M, Osama M, Hashmi MA, Kabir-Ud-Din. Molecular interaction of di-ester bonded cationic Gemini surfactants with pepsin: in vitro and in silico perspectives. J Biomol Struct Dyn 2023; 41:12276-12291. [PMID: 36695086 DOI: 10.1080/07391102.2023.2168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
The implications of surfactant-enzyme/protein interactions in a variety of fields, including biotechnology, cosmetics, paints and pharmaceuticals, have attracted a lot of attention in contemporary studies. Herein, we have employed several in vitro and in silico techniques such as excitation and absorption spectroscopies, circular dichroism and FT-IR spectroscopies, density functional and molecular dynamics simulations to understand the interaction behavior of oxy-diester-based green cationic Gemini surfactants, N1,N1,N14,N14-tetramethyl-2,13-dioxo-N1,N14-dialkyl-3,6,12-tetraoxateradecane-1,14-diaminiumdichloride (abbreviated as Cm-E2O2-Cm, where 'm' stands for alkyl chain length, m = 12 and 14) with one of the main digestive proteins, pepsin. The spectroscopic techniques confirm the static quenching effect of surfactants on pepsin. The calculated physical parameters (Ksv, Kb and ΔG) and their order reveal the distinguished implications for the surfactants' chain lengths. The spontaneity of interaction was also confirmed by negative Gibbs free energy change values. The extrinsic spectroscopic study with pyrene as fluorescence probe, FT-IR and CD techniques indicated a potential conformational change in pepsin induced by the Gemini surfactants. DFT, docking and MD simulations provided the theoretical understanding regarding the quantum mechanical environment, location of binding and stability of the protein-surfactant complexation in energy terms. We believe this study will be a humble addition to our existing knowledge in the field of protein-surfactant interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Mohammad Osama
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Kabir-Ud-Din
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
Koo A, Chew DX, Ghate V, Zhou W. Residual polyphenol oxidase and peroxidase activity in high pressure processed bok choy (Brassica rapa subsp. chinensis) juice did not accelerate nutrient degradation during storage. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Liu W, Ma R, Lu S, Wen Y, Li H, Wang J, Sun B. Acid-Resistant Mesoporous Metal-Organic Frameworks as Carriers for Targeted Hypoglycemic Peptide Delivery: Peptide Encapsulation, Release, and Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55447-55457. [PMID: 36478454 DOI: 10.1021/acsami.2c18452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oral administration of bioactive peptides with α-glucosidase inhibitory activities is a promising strategy for diabetes mellitus. The wheat germ peptide Leu-Asp-Leu-Gln-Arg (LDLQR) has been previously proven to inhibit the activity of α-glucosidase efficiently. However, it is still difficult to transport the peptide to the intestine completely due to the harsh condition of the stomach. Herein, an acid-resistant zirconium-based metal-organic framework, NU-1000, was used to immobilize LDLQR with a high encapsulation capacity (92.72%) and encapsulation efficiency (44.08%) in only 10 min. The in vitro release results showed that the acid-stable NU-1000 not only effectively protected LDLQR from degradation in the presence of stomach acid and pepsin effectively but also ensured the release of encapsulated LDLQR under simulated intestinal conditions. Furthermore, LDLQR@NU-1000 could slow down the elevated blood sugar caused by maltose in mice and the area under blood sugar curve decreased by almost 20% when compared with the control group. The inflammatory factor (IL-1β, IL-6) in vivo and cell growth in vitro were almost the same between NU-1000 treatment and normal control groups. This study indicates NU-1000 is a promising vehicle for targeted peptide-based bioactive delivery to the small intestine.
Collapse
Affiliation(s)
- Weiwei Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Ruolan Ma
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Shiyi Lu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), Beijing100048, China
| | - Hongyan Li
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| | - Baoguo Sun
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing100048, China
| |
Collapse
|
11
|
High-level expression and improved pepsin activity by enhancing the conserved domain stability based on a scissor-like model. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Pälchen K, Michels D, Duijsens D, Gwala S, Pallares Pallares A, Hendrickx M, Van Loey A, Grauwet T. In vitro protein and starch digestion kinetics of individual chickpea cells: from static to more complex in vitro digestion approaches. Food Funct 2021; 12:7787-7804. [PMID: 34231615 DOI: 10.1039/d1fo01123e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attention has been given to more (semi-)dynamic in vitro digestion approaches ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time and economical constraints, evaluating the consequence of stepwise increasing the complexity of static in vitro approaches using easy-to-handle digestion set-ups has been the center of our interest. Starting from the INFOGEST static in vitro protocol, we studied the influence of static gastric pH versus gradual gastric pH change (pH 6.3 to pH 2.5 in 2 h) on macronutrient digestion in individual cotyledon cells derived from chickpeas. Little effect on small intestinal proteolysis was observed comparing the applied digestion conditions. Contrary, the implementation of a gradual gastric pH change, with and without the addition of salivary α-amylase, altered starch digestion kinetics rates, and extents by 25%. The evaluation of starch and protein digestion, being co-embedded in cotyledon cells, did not only confirm but account for the interdependent digestion behavior. The insights generated in this study demonstrate the possibility of using a hypothesis-based approach to introduce dynamic factors to in vitro models while sticking to simple and cost-efficient set-ups.
Collapse
Affiliation(s)
- Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|