1
|
Biernacka P, Felisiak K, Adamska I. The potential of dried Ginkgo Biloba leaves as a novel ingredient in fermented beverages of enhanced flavour and antioxidant properties. Food Chem 2024; 461:141018. [PMID: 39213734 DOI: 10.1016/j.foodchem.2024.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fermentation enhances the nutritional profile of foods and beverages like beer, wine, and fermented teas. Ginkgo biloba, long utilized for its health-enhancing properties, contains bioactive compounds like terpene trilactones and flavonoids, known for their antioxidant and neuroprotective effects. This study explores the feasibility of using dried Ginkgo biloba leaves in SCOBY-mediated fermentation to produce novel health-promoting beverages similar to kombucha. Infusions of dried Ginkgo biloba leaves with varying sugar concentrations are fermented over 21 days. Results showed that these beverages exhibited potent antioxidant properties, notably higher than tea-kombucha, attributed to increased polyphenol content. HPLC analysis identified significant levels of bioactive compounds such as catechin and apigenin. Sensory evaluation highlighted optimal acceptance of the seven-day fermented product. This research underscores the potential of Ginkgo biloba as a functional ingredient in fermented beverages, offering a healthier alternative to conventional soft drinks.
Collapse
Affiliation(s)
- Patrycja Biernacka
- Faculty of Food Science and Fisheries, Department of Food Science and Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland.
| | - Katarzyna Felisiak
- Faculty of Food Science and Fisheries, Department of Food Science and Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland.
| | - Iwona Adamska
- Faculty of Food Science and Fisheries, Department of Food Science and Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland.
| |
Collapse
|
2
|
Xu C, Zhou S, Zhang J, Bu D, Zang C, Fan R, Wang J, Guo T, Han R, Yang Y. Dynamic changes in microbial communities and volatile compounds in kombucha fermentation using Flos sophorae and Elm fruits, compared to black and green tea. Food Res Int 2024; 197:115233. [PMID: 39593316 DOI: 10.1016/j.foodres.2024.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
The dynamic changes in physicochemical properties, microbial communities, and volatile compounds in kombucha made from Flos sophorae (FLSK) and Elm fruit (EFK) were compared to those of black tea (BTK) and green tea (GTK) over a 12-day fermentation period. The results revealed that overall flavonoid and polyphenol content, as well as antioxidant activity, increased initially and then decreased, accompanied by a steady reduction in pH within the fermentation broths investigated. Notably, the GTK exhibited stronger antioxidant activity than the other fermentation broths. Furthermore, 16S rRNA gene sequencing revealed that Komagataeibacter rhaeticus, Komagataeibacter saccharivorans, and Acidovorax wautersii were the dominating microbial species in the fermentation broths under this study. Komagataeibacter rhaeticus initially reduced and then increased throughout the FLSK fermentation, whereas Komagataeibacter saccharivorans increased from day 0 to day 6, and remain stable by day 12 during the EFK fermentation. Comparative analysis revealed that Komagataeibacter rhaeticus was more abundant in the FLSK and GTK than in the EFK and BTK, whereas Komagataeibacter saccharivorans showed a higher abundance in the EFK relative to the other fermentation broths. Gas chromatography-mass spectrometry identified acetic acid, linalool, ethanol, and ethyl acetate as the major volatile chemicals that rose significantly in fermentation mixtures of the examined substrates. The FLSK had a much higher linalool concentration than the other fermentation broths, although the EFK and GTK had higher ethanol content. Correlation study found that Komagataeibacter rhaeticus was negatively related with alcohol compounds, but Komagataeibacter saccharivorans was positively associated with a diverse spectrum of acids, alcohols, and esters. The study found changes in bioactive chemicals as well as interactions between bacterial populations and volatile compounds throughout fermentation in the substrates investigated.
Collapse
Affiliation(s)
- Chunyu Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Shichu Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Junyu Zhang
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China.
| | - Dengpan Bu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| | - Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Tongjun Guo
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China.
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| |
Collapse
|
3
|
Liu Y, Zheng Y, Wang W, Wang Z, Han S, Zhou P. Kombucha enables to inhibit digestive enzymes activity and adipocyte differentiation of OP9 cells. J Food Sci 2024; 89:10053-10063. [PMID: 39581587 DOI: 10.1111/1750-3841.17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Obesity is a global challenging epidemic caused by surplus adipose accumulation or energy intake, and available medications are quite limited. Studies focused on identifying potent anti-adipogenic pharmaceuticals and functional foods have gained great interests. This study evaluated the obesity prevention potential of oolong tea kombucha (OTK) and yellow tea kombucha (YTK) by in vitro experiments. The results showed that the total polyphenol content in OTK and YTK increased by 50.00% and 47.49% after fermentation, and the antioxidative capacity of kombucha was enhanced by 7.57% and 7.83% as well. After fermentation, the inhibitory activity of OTK and YTK on α-amylase and lipase was increased by 53.15% and 64.43%, and 45.24% and 39.74%, respectively. The anti-adipogenic effects evaluated by using mouse OP9 cell model indicated that both OTK and YTK could downregulate the expression levels of FABP4, PPARγ, C/EBPα, and SERBP-1C which are involved with adipocyte differentiation. Taken together, kombucha showed great potential in regulating glucose and lipid metabolism by inhibiting digestive enzymes and adipocyte differentiation, which could be a functional beverage in aiding obesity prevention or treatments. However, further animal or clinical experiments are needed to verify its potential in obesity intervention. PRACTICAL APPLICATION: This study showed that kombucha showed great potential in preventing obesity, which provided an alternative functional beverage for obesity intervening or prevention.
Collapse
Affiliation(s)
- Yaowei Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhe Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Wecare Probiotics Co., Ltd, Suzhou, Jiangsu, China
| | - Shanshan Han
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Sittisart P, Mahidsanan T, Yuvanatemiya V, Srinamngoen P. Technological quality and fungal community of Kombucha fermented with hemp leaves and milky mushroom flour ( Calocybe indica). PeerJ 2024; 12:e18116. [PMID: 39346034 PMCID: PMC11439377 DOI: 10.7717/peerj.18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Kombucha is traditionally a non-alcoholic beverage whose production is dependent on culture and the various ingredients used as substrates for fermentation. The goal of our study was to apply hemp leaf and milky mushroom (Calocybe indica) flour as functional ingredients to enhance phytonutrient quality, along with using a microbial consortium highly symbiotic with these ingredients. The study determined the content of phytonutrients (phenolic and flavonoids content), antioxidant activity through percentage inhibition of DPPH radical scavenging activity (%), and microbial communities changes during fermentation. The microbial changes were evaluated by cell viable count (total bacteria, Lactic Acid Bacteria, and Yeast & Mold) and ITS in prepared kombucha (using red tea leaves, pandan leaves, and sucrose) supplemented with functional ingredients: T1 (hemp leaves (control)) and T2 (hemp leaves with milky mushroom flour). The results indicated that microbial consortium changed during fermentation. In the first 7 days, the levels of yeast and mold increased to 6.17 and 6.18 log CFU/mL, respectively. By day 21, the levels of both T1 and T2 continued to rise, reaching 7.78 and 7.82 log CFU/mL, respectively. The viable count of lactic acid bacteria in T1 and T2 gradually increased to 6.79 and 6.70 log CFU/mL, respectively, by day 14. These changes resulted in a marked decrease in pH value, reaching 3.63 and 3.23 in T1 and T2, respectively, by the end of the process (21 days). The total bacterial viable count decreased with an increase in the fermentation time. During fermentation, unique genera of tea fungus observed in T1 and T2 were 64% and 19%, respectively. At the beginning (0 days), the top five genera found in T1 were: g__Setophoma (25.91%), g__Macrocybe (14.88%), g__Cladosporium (7.81%), g__Phaeosphaeria (7.12%), g__Malassezia (6.63%), while the top five genera in T2 were g__Macrocybe (94.55%), g__Setophoma (1.87%), g__Cladosporium (0.77%), g__Phaeosphaeria (0.40%), g__Cordyceps (0.38%). However, on day 21 (end of the process), it was found that g__Dekkera had the highest relative abundance in both T1 and T2. In addition, the supplementation of the two ingredients affected the total phenolic and total flavonoid content of the treatments. At the end of the process, T2 showed values of 155.91 mg GAE/mL for total phenolics and 1.01 mg CE/mL for total flavonoids, compared to T1, which had 129.52 mg GAE/mL and 0.69 mg CE/mL, respectively. Additionally, the DPPH inhibition was higher in T1 (91.95%) compared to T2 (91.03%). The findings suggest that kombucha fermented with these innovative ingredients exhibited enhanced phytonutrients, and served as substrate for LAB and tea fungus fermentation, while limiting the growth of fungal genera and diversity of microbial consortium.
Collapse
Affiliation(s)
- Priyada Sittisart
- Department of Agricultural Technology, Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Thitikorn Mahidsanan
- Department of Food Science and Technology, Faculty of Agricultural Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Vasin Yuvanatemiya
- Faculty of Marine Technology, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Pattama Srinamngoen
- Department of Agricultural Technology, Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| |
Collapse
|
5
|
Wang Y, Jin JQ, Zhang R, He M, Wang L, Mao Z, Gan M, Wu L, Chen L, Wang L, Wei K. Association analysis of BSA-seq, BSR-seq, and RNA-seq reveals key genes involved in purple leaf formation in a tea population ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae191. [PMID: 39257538 PMCID: PMC11384119 DOI: 10.1093/hr/uhae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/01/2024] [Indexed: 09/12/2024]
Abstract
Purple tea, rich in anthocyanins, has a variety of health benefits and is attracting global interest. However, the regulation mechanism of anthocyanin in purple tea populations has not been extensively studied. In this experiment, RNA-seq, BSA-seq, and BSR-seq were performed using 30 individuals with extreme colors (dark-purple and green) in an F 1 population of 'Zijuan' and 'Jinxuan'. The results show that 459 genes were differentially expressed in purple and green leaves, among which genes involved in the anthocyanin synthesis and transport pathway, such as CHS, F3H, ANS, MYB75, GST, MATE, and ABCC, were highly expressed in purple leaves. Moreover, there were multiple SNP/InDel variation sites on chromosomes 2 and 14 of the tea plant, as identified by BSA-seq. The integrated analysis identified two highly expressed genes (CsANS and CsMYB75) with SNP/InDel site variations in the purple tea plants. By silencing leaves, we proved that CsMYB75 could positively regulate anthocyanin accumulation and expression of related structural genes in tea plants. A 181-bp InDel in the CsMYB75 promoter was also found to be co-segregating with leaf color. The results of this study provide a theoretical reference for the molecular mechanism of anthocyanin accumulation in purple tea plants and contribute to the creation of new tea cultivars with high anthocyanin content.
Collapse
|
6
|
Bressani APP, Casimiro LKS, Martinez SJ, Dias DR, Schwan RF. Kombucha with yam: Comprehensive biochemical, microbiological, and sensory characteristics. Food Res Int 2024; 192:114762. [PMID: 39147483 DOI: 10.1016/j.foodres.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Consumer demand for functional foods has increased, helping to popularize and increase the consumption of Kombucha. Other substrates have been used together with tea to improve the functional and sensory properties of the beverage. Thus, this study evaluated the comprehensive biochemical, microbiological, and sensory characteristics of kombuchas fermented with green tea (Camellia sinensis) and different concentrations of yam (0, 10, and 20 % w/v). Based on pre-tests to detect the best concentration of yam in the beverage (10, 20, 30, and 40 %) and fermentation time (5, 7, and 14 days),the concentrations of 10 and 20 % of yam and five days of fermentation were selected through pH, °Brix, and sensory analysis. During the kombucha fermentation, there was a decrease in °Brix and pH. Sucrose, glucose, fructose, citric, and succinic acids were related to the beginning of fermentation, and lactic and acetic acids were more related to the end of fermentation in the treatment containing 20 % yam. The fermentation time did not change the color of the kombucha. Fatty acids, phenols, terpenoids, and alcohols were the volatile groups with the most compounds identified. Only two yeast genera were identified (Brettanomyces bruxellensis and Pichia membranifaciens), and bacteria of the genera Acetobacter, Lactobacillus, Pantoea, Pseudomonas, Azospirillum, and Enterobacter. The beverage control showed less turbidity and more clear. The fruity descriptor was more perceived in treatments with yam. However, the perception of the apple descriptor decreases as the yam concentration increases. The yam's concentration alters the kombucha's microbiota and sensory characteristics, mainly appearance and acidity. Kombucha fermentation using yam extract is viable, and the product is sensorially accepted. However, technological improvements, such as yam flour, could be made mainly for appearance and taste attributes.
Collapse
Affiliation(s)
| | | | | | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil.
| |
Collapse
|
7
|
Treviso RL, Sant’Anna V, Fabricio MF, Ayub MAZ, Brandelli A, Hickert LR. Time and temperature influence on physicochemical, microbiological, and sensory profiles of yerba mate kombucha. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1733-1742. [PMID: 39049923 PMCID: PMC11263309 DOI: 10.1007/s13197-024-05951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 07/27/2024]
Abstract
The present work aimed to evaluate the features of yerba mate kombucha during 7 days of fermentation at either 25 ºC or 30 ºC, monitoring physicochemical changes, sensory profile, and sensorial acceptance. The symbiotic microbial culture of active bacteria and yeasts (SCOBY) at the beginning and the end of the bioprocess was also identified. The yerba mate kombuchas fermented at 25 ºC for 5 days or 30 ºC for 4 days were suitable for consumption according to Brazilian standards. Acetic acid, ethanol, and chlorophyll contents were dependent on fermentation time and temperature, unlike the total phenolic content. The main yeast and bacterium in SCOBY were Brettanomyces bruxellensis and Komagataeibacter rhaeticus, respectively, which remained dominant when fermentation was conducted for up to 7 days at both temperatures. Fermentation of yerba mate infusion led to products characterized by sourness, vinegar bitter, and fermented flavors and aromas, making the acceptance of non-fermented Yerba mate preferable to fermented infusions. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05951-z.
Collapse
Affiliation(s)
- Rochele Luane Treviso
- Life and Environmental Area, State University of Rio Grande do Sul, Alegrete Street, 821, Encantado, RS 95960-000 Brazil
| | - Voltaire Sant’Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Alegrete Street, 821, Encantado, RS 95960-000 Brazil
| | | | - Marco Antônio Zachia Ayub
- Insitute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Insitute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lilian Raquel Hickert
- Life and Environmental Area, State University of Rio Grande do Sul, Alegrete Street, 821, Encantado, RS 95960-000 Brazil
- Engineering and exact Area, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul Brazil
| |
Collapse
|
8
|
Ye Y, Gong Y, Huang P, Luo F, Gan R, Fang C. Dynamic changes in the non-volatile and flavour compounds in withered tea leaves of three different colour cultivars based on multi-omics. Food Chem 2024; 449:139281. [PMID: 38608608 DOI: 10.1016/j.foodchem.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.
Collapse
Affiliation(s)
- Yulong Ye
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Yiyun Gong
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Ping Huang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Fan Luo
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Chunyan Fang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| |
Collapse
|
9
|
Cheng J, Zhou DD, Xiong RG, Wu SX, Huang SY, Saimaiti A, Xu XY, Tang GY, Li HB, Li S. Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages. Molecules 2024; 29:3809. [PMID: 39202889 PMCID: PMC11357408 DOI: 10.3390/molecules29163809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Kombucha is a well-known fermented beverage traditionally made from black tea infusion. Recent studies have focused on finding alternative materials to create novel kombucha beverages with various health benefits. In this study, we prepared and evaluated two novel kombucha beverages using Rhodiola rosea and Salvia miltiorrhiza as materials. The effects of fermentation with the residue of these plants on the kombucha were also investigated. The antioxidant activities, total phenolic contents, and concentrations of the bioactive compounds of the kombucha beverages were determined by the Trolox equivalent antioxidant capacity test, ferric-reducing antioxidant power test, Folin-Ciocalteu method, and high-performance liquid chromatography, respectively. The results revealed that the kombucha beverages made with Rhodiola rosea and Salvia miltiorrhiza had strong antioxidant capacities and abundant phenolic contents. Additionally, the kombucha fermented with Rhodiola rosea residue had higher FRAP, TEAC and TPC values than that fermented without residue. On the other hand, the Salvia miltiorrhiza kombucha fermented with residue had similar FRAP and TEAC values but lower TPC values compared to that fermented without residue. The correlation analysis showed that gallic acid, salidroside, and tyrosol were responsible for the antioxidant abilities and total phenolic contents of the Rhodiola rosea kombucha, and salvianolic acid A and salvianolic acid B contributed to the antioxidant abilities of the Salvia miltiorrhiza kombucha. Furthermore, the kombucha fermented with Rhodiola rosea residue had the highest sensory scores among the kombucha beverages studied. These findings suggest that Rhodiola rosea and Salvia miltiorrhiza are suitable for making novel kombucha beverages with strong antioxidant abilities and abundant phenolic contents, which can be used in preventing and managing oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Czarnowska-Kujawska M, Starowicz M, Paszczyk B, Klepacka J, Popielarczyk M, Tońska E. The chemical, antioxidant and sensorial properties of milk and plant based kombucha analogues. Lebensm Wiss Technol 2024; 206:116610. [DOI: 10.1016/j.lwt.2024.116610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Gao C, Wang Z, Wu W, Zhou Z, Deng X, Chen Z, Sun W. Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant. TREE PHYSIOLOGY 2024; 44:tpae065. [PMID: 38857368 DOI: 10.1093/treephys/tpae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, East Second Ring Road, Anxi County, Quanzhou, Fujian 362400, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|
12
|
Kilmanoglu H, Yigit Cinar A, Durak MZ. Evaluation of microbiota-induced changes in biochemical, sensory properties and volatile profile of kombucha produced by reformed microbial community. Food Chem X 2024; 22:101469. [PMID: 38808165 PMCID: PMC11130685 DOI: 10.1016/j.fochx.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Kombucha is a traditional beverage produced by a living culture known as SCOBY or "symbiotic culture of bacteria and yeast". Culture-dependent production is essential for stable kombucha fermentation. The aim of this study was to design a microbial community and to determine the effect of that community on the flavor and chemical properties of kombucha. The fermentations were carried out using combinations of selected species including Pichia kudriavzevii, Brettanomyces bruxellensis, Dekkera bruxellensis, Komagataeibacter saccharivorans, Komagataeibacter xylinus, and Acetobacter papayae, which were previously isolated from kombucha. The effects of monocultures and cocultures on fermentation were investigated. The highest acetic acid producer was A. papayae, which has strong antioxidant properties. In the monoculture and coculture fermentations, aldehydes, acids, and esters were generally observed at the end of fermentation. This study confirms that microbiota reconstruction is a viable approach for achieving the production of kombucha with increased bioactive constituents and consumer acceptance.
Collapse
Affiliation(s)
- Hilal Kilmanoglu
- Department of Food Processing, Pazarlar Vocational School, Kutahya Dumlupinar University, Kutahya, Türkiye
| | - Aycan Yigit Cinar
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Muhammed Zeki Durak
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Türkiye
| |
Collapse
|
13
|
Barros VC, Botelho VA, Chisté RC. Alternative Substrates for the Development of Fermented Beverages Analogous to Kombucha: An Integrative Review. Foods 2024; 13:1768. [PMID: 38890996 PMCID: PMC11172354 DOI: 10.3390/foods13111768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Kombucha is a fermented beverage that originated in China and is spread worldwide today. The infusion of Camellia sinensis leaves is mandatory as the substrate to produce kombucha but alternative plant infusions are expected to increase the opportunities to develop new fermented food products analogous to kombucha, with high technological potential and functional properties. This review gathers information regarding promising alternative substrates to produce kombucha-analogous beverages, focusing on plants available in the Amazonia biome. The data from the literature showed a wide range of alternative substrates in increasing expansion, with 37 new substrates being highlighted, of which ~29% are available in the Amazon region. Regarding the technological production of kombucha-analogous beverages, the following were the most frequent conditions: sucrose was the most used carbon/energy source; the infusions were mostly prepared at 90-100 °C, which allowed increased contents of phenolic compounds in the product; and 14 day-fermentation at 25-28 °C was typical. Furthermore, herbs with promising bioactive compound compositions and high antioxidant and antimicrobial properties are usually preferred. This review also brings up gaps in the literature, such as the lack of consistent information about chemical composition, sensory aspects, biological properties, and market strategies for fermented beverages analogous to kombucha produced with alternative substrates. Therefore, investigations aiming to overcome these gaps may stimulate the upscale of these beverages in reaching wide access to contribute to the modern consumers' quality of life.
Collapse
Affiliation(s)
- Vinicius Costa Barros
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| | - Vanessa Albres Botelho
- Faculty of Food Engineering, Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| |
Collapse
|
14
|
Huang G, Huang Y, Sun Y, Lu T, Cao Q, Chen X. Characterization of kombucha prepared from black tea and coffee leaves: A comparative analysis of physiochemical properties, bioactive components, and bioactivities. J Food Sci 2024; 89:3430-3444. [PMID: 38638068 DOI: 10.1111/1750-3841.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 04/20/2024]
Abstract
The utilization of coffee leaves in kombucha production has intrigued researchers; however, the lack of understanding regarding the characteristics of coffee leaf kombucha (CK) and its differentiation from black tea kombucha (BK) has impeded its application in the beverage industry. Therefore, this study aimed to characterize and compare the physiochemical properties, phytochemical compositions, antioxidant activity, and α-glucosidase inhibitory ability of kombucha prepared from the leaves of Coffea arabica (CK) and black tea (Camellia sinensis, BK) and their extracts (CT and BT). After fermentation, pH and the contents of total sugars, reducing sugars, and free amino acids of BK and CK were decreased, whereas the levels of total acids and organic acids, such as gluconic, lactic, and acetic acid were increased. Notably, the concentration of vitamin C in CK was 48.9% higher than that in BK. HPLC analysis exhibited that 5-caffeoylquinic acid in CT was significantly decreased by 48.0% in CK, whereas the levels of 3-caffeoylquinic acid and 4-caffeoylquinic acid were significantly increased after fermentation. The content of caffeine was significantly (p < 0.05) reduced by 9.5% and 22.0% in BK and CK, respectively, whereas the theobromine level was significantly increased in CK. Notably, CK has superior total phenolic and flavonoid contents and antioxidant activity than BK, whereas BK possesses higher α-glucosidase inhibitory capacity. Electronic nose analysis demonstrated that sulfur-containing organics were the main volatiles in both kombuchas, and fermentation significantly increased their levels. Our study indicates that coffee leaves are a promising resource for preparing kombucha. PRACTICAL APPLICATION: This article investigates the differences in physicochemical properties, bioactive constituents, antioxidant activity, and α-glucosidase inhibitory activity of kombucha preparation from black tea and coffee leaves. We have found that after fermentation BK had brighter soup color and higher α-glucosidase inhibitory capacity, whereas CK had higher levels of total phenols, flavonoids, vitamin C, and antioxidants and lower contents of sugars. This study provides valuable information for the preparation of CK with high-quality attributes and antioxidant activity.
Collapse
Affiliation(s)
- Gongping Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| |
Collapse
|
15
|
Rodríguez-Castro R, Guerrero R, Valero A, Franco-Rodriguez J, Posada-Izquierdo G. Cocoa Mucilage as a Novel Ingredient in Innovative Kombucha Fermentation. Foods 2024; 13:1636. [PMID: 38890865 PMCID: PMC11171615 DOI: 10.3390/foods13111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Cocoa tree plantations aim to harvest grains found in the cob to produce cocoa and chocolate. There has been a growing interest in valorizing the secondary components of the cocoa fruit, such as the peel, placenta, and mucilage/pulp, as valuable sources of nutrients for healthy food preparation. In other words, by-products derived from these raw materials are an exploitable source of nutrients in the preparation of healthy food. In the present study, two varieties of cocoa, National Cocoa Fino de Aroma (NCFA) and Colección Castro Naranjal 51 (CCN-51), were evaluated and harvested during both dry and rainy seasons. This evaluation was based on the profiling of the cob, peel, grain, placenta, and mucilage in different stages of ripeness (underripe, ripe, and overripe). Also, from the ripe raw material, a fermented beverage prototype was developed, such as kombucha, with different concentrations of mucilage (40, 60, 80, and 100 g/L). Physicochemical analyses, such as acidity, °Brix, pH, moisture, ash, protein, fat, fiber, vitamins, sugars, and polyphenols of the raw mucilage material and acidity, °Brix, and pH values of the fermented kombucha, were carried out. The best performances were obtained with the CCN-51 variety in the rainy season. Among the fermented drink panelists, the CN40 treatment (Nacional Mucilage + 40 g/L of sugar) received the highest acceptability and was considered the best. Given its efficiency, nutritional content, and potential applications, this product presents a promising strategy to address Sustainable Development Goals related to zero hunger, health and well-being, and climate action.
Collapse
Affiliation(s)
- Rossy Rodríguez-Castro
- Facultad de Ciencias de Industria y Producción, Universidad Técnica Estatal de Quevedo, Quevedo 120301, Ecuador; (R.R.-C.); (R.G.)
| | - Raquel Guerrero
- Facultad de Ciencias de Industria y Producción, Universidad Técnica Estatal de Quevedo, Quevedo 120301, Ecuador; (R.R.-C.); (R.G.)
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain;
| | - John Franco-Rodriguez
- Carrera de Agropecuaria, Facultad de Educación Técnica Para el Desarrollo, Universidad Católica de Santiago de Guayaquil, Guayaquil 09014671, Ecuador;
| | - Guiomar Posada-Izquierdo
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
16
|
Li B, Wang X, Wang P. Microorganisms and bacterial cellulose stability of Kombucha under different manufacture and storage conditions. J Food Sci 2024; 89:2921-2932. [PMID: 38591324 DOI: 10.1111/1750-3841.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 04/10/2024]
Abstract
It is crucial to clarify the stability of Kombucha in the manufacture and storage stages due to the extensive study on the fermented products of Kombucha and the increase in the use of bacterial cellulose (BC). This study aimed to evaluate the stability of Kombucha in different manufacturing and storage temperatures within a certain time period. The stability of microorganisms and BC in Kombucha was investigated through regular replacement with the tea media at 28 and 25°C for manufacture, and the storage temperature of Kombucha was at 25, 4, and -20°C. Morphological observations of the BC in Kombucha ended at 28 and 25°C for manufacture and storage were performed using atomic force microscopy (AFM) before inoculation. The viable cell counts and AFM results showed that the stability of Kombucha during manufacture was better at 28°C than at 25°C, with higher microbial viability and BC productivity in the former at the time of manufacture, whereas 25°C was more favorable for the stability of Kombucha during storage. At the same temperature of 25°C, the manufacturing practice improved the microbial viability and BC stability compared with storage; the pH value of Kombucha was lower, and the dry weight of BC was higher during storage compared with manufacture. The maximum BC water holding capacity (97.16%) was maintained by storage at 4°C on day 63, and the maximum BC swelling rate (56.92%) was observed after storage at -20°C on day 7. The research was conducted to provide reference information for applying Kombucha and its BC in food and development in other industries.
Collapse
Affiliation(s)
- Binbin Li
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xufeng Wang
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Ping Wang
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Wen X, Han S, Wang J, Zhang Y, Tan L, Chen C, Han B, Wang M. The Flavor Characteristics, Antioxidant Capability, and Storage Year Discrimination Based on Backpropagation Neural Network of Organic Green Tea ( Camellia sinensis) during Long-Term Storage. Foods 2024; 13:753. [PMID: 38472869 DOI: 10.3390/foods13050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The storage period of tea is a major factor affecting tea quality. However, the effect of storage years on the non-volatile major functional components and quality of green tea remains largely unknown. In this study, a comparative analysis of organic green teas with varying storage years (1-16 years) was conducted by quantifying 47 functional components, using electronic tongue and chromatic aberration technology, alongside an evaluation of antioxidative capacity. The results indicated a significant negative correlation between the storage years and levels of tea polyphenols, total amino acids, soluble sugars, two phenolic acids, four flavonols, three tea pigments, umami amino acids, and sweet amino acids. The multivariate statistical analysis revealed that 10 functional components were identified as effective in distinguishing organic green teas with different storage years. Electronic tongue technology categorized organic green teas with different storage years into three classes. The backpropagation neural network (BPNN) analysis demonstrated that the classification predictive ability of the model based on the electronic tongue was superior to the one based on color difference values and 10 functional components. The combined analysis of antioxidative activity and functional components suggested that organic green teas with shorter storage periods exhibited stronger abilities to suppress superoxide anion radicals and hydroxyl radicals and reduce iron ions due to the higher content of eight components. Long-term-stored organic green teas, with a higher content of substances like L-serine and theabrownins, demonstrated stronger antioxidative capabilities in clearing both lipid-soluble and water-soluble free radicals. Therefore, this study provided a theoretical basis for the quality assessment of green tea and prediction of green tea storage periods.
Collapse
Affiliation(s)
- Xiaomei Wen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shanjie Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Hangzhou Tea & Chrysanthemum Technology, Co., Ltd., Hangzhou 310018, China
| | - Jiahui Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanxia Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lining Tan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chen Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baoyu Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Mengxin Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
18
|
Huang Y, Liu H, Zhang X, Wu Y, Liu Z, Pang Y, Liu R, Yang C, Nie J. Impact of storage time on non-volatile metabolites and fungal communities in Liupao tea using LC-MS based non-targeted metabolomics and high-throughput sequencing. Food Res Int 2023; 174:113615. [PMID: 37986470 DOI: 10.1016/j.foodres.2023.113615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Long-term storage of Liupao tea (LPT) is usually believed to enhance its quality and commercial value. The non-volatile metabolites variations and the fungal succession play a key role for organoleptic qualities during the storage procedure. To gain in-depth understanding the impact of storage time on the quality of LPT, two different brands of LPT with different storage time, including Maosheng LPTs (MS) with 0, 5, 10 and 15 years and Tianyu LPTs (TY) with 0, 3, 5, 8 and 10 years, were resorted to investigate the changes of non-volatile metabolites and fungi as well as their correlation by multi-omics. A total of 154 and 119 differential metabolites were identified in these two different brands of MS and TY, respectively, with the aid of high-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. In both categories of LPTs, the transformation of differential metabolites in the various stages referred to the formation of alkaloids, increase of organic acids, biosynthesis of terpenoids as well as glycosylation and methylation of flavonoids. Thereinto, glycosylation and methylation of flavonoids were the critical stages for distinguishing MS and TY, which were discovered in MS and TY stored for about 10 and 8 years, respectively. Moreover, the results of high-throughput sequencing showed that the key fungal genera in the storage of LPTs consisted of Eurotium, Aspergillus, Blastobotrys, Talaromyces, Thermomyces and Trichomonascus. It was confirmed on the basis of multivariate analysis that the specific fungal genera promoted the transformation of metabolites, affecting the tea quality to some extent. Therefore, this study provided a theoretical basis for the process optimization of LPT storage.
Collapse
Affiliation(s)
- Yingyi Huang
- College of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Huahong Liu
- College of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaohua Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China; Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China.
| | - Yuxin Wu
- College of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhusheng Liu
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Yuelan Pang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Renjun Liu
- College of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Chun Yang
- Guangxi Research Institute of Tea Science, Guilin 541004, China
| | - Jinfang Nie
- College of Chemical and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
19
|
Wei Y, Yin X, Zhao M, Zhang J, Li T, Zhang Y, Wang Y, Ning J. Metabolomics analysis reveals the mechanism underlying the improvement in the color and taste of yellow tea after optimized yellowing. Food Chem 2023; 428:136785. [PMID: 37467693 DOI: 10.1016/j.foodchem.2023.136785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/10/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
In this study, an optimized yellowing process for yellow tea (YT) was developed by response surface methodology. The results showed that increasing the yellowing temperature from 20 °C to 34 °C, increasing the relative humidity from 55% to 67%, and reducing the yellowing time from 48 h to 16 h, caused a 40.5% and 43.2% increase in the yellowness and sweetness of YT, respectively, and improved the consumer acceptability by 36.8%. Moreover, metabolomics was used to explore the involved mechanisms that resulted in the improved YT quality. The optimized yellowing promoted the hydrolysis of 5 gallated catechins, 6 flavonoid glycosides, theogallin and digalloylglucose, resulting in the accumulation of 5 soluble sugars and gallic acid. Meanwhile, it promoted the oxidative polymerization of catechins (e.g., theaflagallin, δ-type dehydrodicatechin and theasinensin A), but decelerated the degradation of chlorophylls. Overall, this optimized yellowing process could serve as a guide to a shorter yellowing cycle.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yiyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei, Anhui 230036, People's Republic of China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
20
|
Wu X, Zhang Y, Zhang B, Tian H, Liang Y, Dang H, Zhao Y. Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Foods 2023; 12:4242. [PMID: 38231678 DOI: 10.3390/foods12234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, Fu-brick tea (FBT) was used for kombucha preparation. The succession of microbial community structures, changes in physicochemical properties, and the volatiles were investigated during the kombucha fermentation. The sequencing analysis showed that Komagataeibacter was the most predominant bacterium. Aspergillus and Zygosaccharomyces were the dominant fungi before fermentation whereas Zygosaccharomyces and Derkella were the dominant fungi after 3 days of fermentation. The physicochemical analysis revealed that acetic acid, glucuronic acid, and polyphenols increased by 10.22 g/L, 0.08 g/L, and 177.40 mg/L, respectively, by the end of fermentation. The GC-MS analysis showed that a total of 49 volatile compounds were detected during the fermentation. Moreover, there were great differences in volatile components among the kombucha samples with different fermentation times. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation network analysis. The results suggested that Komagataeibacter, Aspergillus, Zygosaccharomyces, and Dekkera were closely related to the main volatile compounds of FBT kombucha. The results in this study may provide deep understanding for constructing the microbiota and improving the quality of FBT kombucha.
Collapse
Affiliation(s)
- Xiaoya Wu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Zhang
- Research Center of Fruit and Vegetable Deep-Processing Technology, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Liang
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
21
|
Geraris Kartelias I, Karantonis HC, Giaouris E, Panagiotakopoulos I, Nasopoulou C. Kombucha Fermentation of Olympus Mountain Tea ( Sideritis scardica) Sweetened with Thyme Honey: Physicochemical Analysis and Evaluation of Functional Properties. Foods 2023; 12:3496. [PMID: 37761205 PMCID: PMC10528074 DOI: 10.3390/foods12183496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study implemented kombucha fermentation of Olympus Mountain tea (Sideritis scardica) sweetened with honey (OMTWH) in order to investigate the potential for producing a novel beverage with functional properties. The increase in the total count of bacteria and yeast suggests that the OMTWH acts as a viable substrate for supporting the proliferation of the microorganisms of the Kombucha symbiotic culture. The fermentation resulted in a reduction in pH and increased total titratable acidity. After fermentation, a statistically significant increase in the vitamins C, B1, B2, B6, B7, and B12 content was observed (p < 0.05). Total phenolics and antioxidant activity of the fermented beverage was significantly enhanced, as assessed by the method of Folin-Ciocalteu and ABTS assay, respectively. Results revealed that OMTWH had a potent inhibitory activity of α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase; OMTWH fermented with a kombucha consortium exhibited even higher inhibition. Hence, the process of kombucha fermentation can convert OMTWH into a novel beverage with enhanced functional properties.
Collapse
Affiliation(s)
- Ioannis Geraris Kartelias
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Haralabos Christos Karantonis
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Ioannis Panagiotakopoulos
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| |
Collapse
|
22
|
Wu SX, Xiong RG, Cheng J, Xu XY, Tang GY, Huang SY, Zhou DD, Saimaiti A, Gan RY, Li HB. Preparation, Antioxidant Activities and Bioactive Components of Kombucha Beverages from Golden-Flower Tea ( Camellia petelotii) and Honeysuckle-Flower Tea ( Lonicera japonica). Foods 2023; 12:3010. [PMID: 37628009 PMCID: PMC10453153 DOI: 10.3390/foods12163010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Kombucha is a fermented tea known for its health benefits. In this study, golden-flower tea (Camellia petelotii) and honeysuckle-flower tea (Lonicera japonica) were first used as raw materials to prepare kombucha beverages. The antioxidant activities, total phenolic contents, concentrations of bioactive components, and sensory scores of two kombucha beverages were assessed. Additionally, effects of fermentation with or without tea residues on kombucha beverages were compared. The results found that two kombucha beverages possessed strong antioxidant activities and high scores of sensory analysis. In addition, fermentation with golden-flower tea residues could remarkably enhance the antioxidant activity (maximum 2.83 times) and total phenolic contents (3.48 times), while fermentation with honeysuckle tea residues had a minor effect. Furthermore, concentrations of several bioactive compounds could be increased by fermentation with golden-flower tea residues, but fermentation with honeysuckle-flower tea residues had limited effects. Moreover, the fermentation with or without tea residues showed no significant difference on sensory scores of golden-flower tea kombucha and honeysuckle-flower tea kombucha, and golden-flower tea kombucha had higher sensory scores than honeysuckle-flower tea kombucha. Therefore, it might be a better strategy to produce golden-flower tea kombucha by fermentation with tea residues, while honeysuckle-flower tea kombucha could be prepared without tea residues.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (X.-Y.X.); (G.-Y.T.)
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (X.-Y.X.); (G.-Y.T.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (S.-X.W.); (R.-G.X.); (J.C.); (S.-Y.H.); (D.-D.Z.); (A.S.)
| |
Collapse
|
23
|
Xiong RG, Wu SX, Cheng J, Saimaiti A, Liu Q, Shang A, Zhou DD, Huang SY, Gan RY, Li HB. Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants (Basel) 2023; 12:1573. [PMID: 37627568 PMCID: PMC10451197 DOI: 10.3390/antiox12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Kombucha is traditional drink made from the fermentation of a black tea infusion, and is believed to offer a variety of health benefits. Recently, exploring kombucha made from alternative substrates has become a research hotspot. In this paper, two novel kombucha beverages were produced with bamboo leaf or mulberry leaf for the first time. Moreover, the effects of fermentation with leaf residues (infusion plus residues) or without leaf residues (only infusion) on the antioxidant properties of kombucha were compared. The ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, Folin-Ciocalteu method, and high-performance liquid chromatography were utilized to measure the antioxidant capacities, total phenolic contents, as well as some compound concentrations of the kombucha. The results showed that two types of kombucha had high antioxidant capacities. Moreover, kombucha fermented with bamboo leaf residues (infusion plus residues) significantly enhanced its antioxidant capabilities (maximum increase 83.6%), total phenolic content (maximum increase 99.2%), concentrations of some compounds (luteolin-6-C-glucoside and isovitexin), and sensory acceptability, compared to that without residues (only infusion). In addition, fermentation with leaf residues had no significant effect on mulberry leaf kombucha. Overall, the bamboo leaf was more suitable for making kombucha with residues, while the mulberry leaf kombucha was suitable for fermentation with or without residues.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Qing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (Q.L.); (A.S.)
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (Q.L.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-X.W.); (J.C.); (A.S.); (D.-D.Z.); (S.-Y.H.)
| |
Collapse
|
24
|
Yao L, Zhang J, Lu J, Chen D, Song S, Wang H, Sun M, Feng T. Revealing the influence of microbiota on the flavor of kombucha during natural fermentation process by metagenomic and GC-MS analysis. Food Res Int 2023; 169:112909. [PMID: 37254344 DOI: 10.1016/j.foodres.2023.112909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
In this work, raw Pu-erh tea (RAPT) was employed for kombucha preparation, and the microbial composition and volatile flavor compounds of the fermented tea had been investigated during natural fermentation process. The head space-solid phase microextraction-gas chromatograph mass spectrometry (HS-SPME-GC-MS) was performed for volatiles analysis of unfermented tea and kombucha fermented for 3 days (KF-3) and 6 days (KF-6). Meanwhile, the microbial community of KF-3 and KF-6 were evaluated by metagenomic analysis. A total of 72 volatile compounds were identified and obvious changes in volatiles were observed during the fermentation process based on the results of GC-MS and principal component analysis (PCA). Metagenomic sequencing analysis demonstrated that bacterium Komagataeibacter saccharivorans and unclassified-g-komagataeibacter and yeast Saccharomyces cerevisiae and Brettanomyces bruxellensis were the most common microbes contained in the sampled kombucha communities. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation heatmap analysis. The results suggested that the main flavor volatiles of kombucha (i.e., acids, esters and terpenes) were closely related to species of genus Komagataeibacter, Gluconacetobacter, Saccharomyces, Brettanomyces, Acetobacter, Novacetimonas and Pichia microorganisms. The obtained results would help to better understand microbial communities and volatile compounds of kombucha, which could provide useful information for enhancing the flavor quality of kombucha products.
Collapse
Affiliation(s)
- Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Da Chen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
25
|
Ferreira de Miranda J, Martins Pereira Belo G, Silva de Lima L, Alencar Silva K, Matsue Uekane T, Gonçalves Martins Gonzalez A, Naciuk Castelo Branco V, Souza Pitangui N, Freitas Fernandes F, Ribeiro Lima A. Arabic coffee infusion based kombucha: Characterization and biological activity during fermentation, and in vivo toxicity. Food Chem 2023; 412:135556. [PMID: 36708672 DOI: 10.1016/j.foodchem.2023.135556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
In this study, arabic coffee infusion was used to produce a fermented beverage known as kombucha. The physicochemical, antioxidant and antimicrobial activities, as well as in vivo toxicity were evaluate throughout 21 days of fermentation. Reduction in pH and sugar levels were observed throughout the fermentation period. There was no significant difference in the content of total phenolic compounds between the unfermented and fermented beverage, nor between the fermentation times, as well as in the antioxidant activity. The 5-caffeoylquinic acid was identified at all fermentation times evaluated, and no significant difference was observed regarding its concentration. It showed antibacterial and antifungal activity against all strains tested. No toxic effect of the beverages was observed in the in vivo model (Galleria mellonella) studied. These results demonstrated that coffee infusion is a possible alternative for kombucha production since the physicochemical changes prove the metabolic activity of Symbiotic Culture of Bacteria and Yeast.
Collapse
Affiliation(s)
| | | | - Laís Silva de Lima
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil
| | - Kelly Alencar Silva
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil
| | - Thais Matsue Uekane
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Nayla Souza Pitangui
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Fabrício Freitas Fernandes
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Juína Campus, Linha J, s/n, Setor de Chácaras, CEP: 78320-000, Juína, MT, Brazil
| | - Adriene Ribeiro Lima
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
26
|
Frolova Y, Vorobyeva V, Vorobyeva I, Sarkisyan V, Malinkin A, Isakov V, Kochetkova A. Development of Fermented Kombucha Tea Beverage Enriched with Inulin and B Vitamins. FERMENTATION-BASEL 2023; 9:552. [DOI: 10.3390/fermentation9060552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Kombucha is a sweet and sour beverage made by fermenting a liquid base with a symbiotic culture of bacteria and yeast. Different tea substrates, carbohydrate sources, and additional ingredients are used to create beverages with different physical and chemical characteristics. The purpose of this work was to create a recipe and technology to study the properties of the beverage based on kombucha with a given chemical composition. The content of added functional ingredients (vitamins and inulin) in quantities comparable with reference daily intake was the specified parameter characterizing the distinctive features of the enriched beverages. For fermentation using symbiotic cultures of bacteria and yeast, a black tea infusion sweetened with sucrose was used as a substrate. The changes in the physicochemical characteristics of the fermented tea beverage base were evaluated. The dynamics of changes in pH, acidity, the content of mono- and disaccharides, ethanol, organic acids, polyphenolic compounds, and volatile organic substances were shown. The fermentation conditions were selected (pH up to 3.3 ± 0.3, at T = 25 ± 1 °C, process duration of 14 days) to obtain the beverage base. Strawberry and lime leaves were used as flavor and aroma ingredients, and vitamins with inulin were used as functional ingredients. Since the use of additional ingredients changed the finished beverage’s organoleptic profile and increased its content of organic acids, the final product’s physical–chemical properties, antioxidant activity, and organoleptic indicators were assessed. The content of B vitamins in the beverages ranges from 29 to 44% of RDI, and 100% of RDI for inulin, which allows it to be attributed to the category of enriched products. The DPPH inhibitory activity of the beverages was 82.0 ± 7%, and the ethanol content did not exceed 0.43%. The beverages contained a variety of organic acids: lactic (43.80 ± 4.82 mg/100 mL), acetic (205.00 ± 16.40 mg/100 mL), tartaric (2.00 ± 0.14 mg/100 mL), citric (65.10 ± 5.86 mg/100 mL), and malic (45.50 ± 6.37 mg/100 mL). The technology was developed using pilot equipment to produce fermented kombucha tea enriched with inulin and B vitamins.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Valentina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Irina Vorobyeva
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Varuzhan Sarkisyan
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alexey Malinkin
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Vasily Isakov
- Department of Gastroenterology & Hepatology, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia
| |
Collapse
|
27
|
Zhao S, Adade SYSS, Wang Z, Wu J, Jiao T, Li H, Chen Q. On-line monitoring of total sugar during kombucha fermentation process by near-infrared spectroscopy: Comparison of linear and non-linear multiple calibration methods. Food Chem 2023; 423:136208. [PMID: 37163914 DOI: 10.1016/j.foodchem.2023.136208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Kombucha is widely recognized for its health benefits, and it facilitates high-quality transformation and utilization of tea during the fermentation process. Implementing on-line monitoring for the kombucha production process is crucial to promote the valuable utilization of low-quality tea residue. Near-infrared (NIR) spectroscopy, together with partial least squares (PLS), backpropagation neural network (BPANN), and their combination (PLS-BPANN), were utilized in this study to monitor the total sugar of kombucha. In all, 16 mathematical models were constructed and assessed. The results demonstrate that the PLS-BPANN model is superior to all others, with a determination coefficient (R2p) of 0.9437 and a root mean square error of prediction (RMSEP) of 0.8600 g/L and a good verification effect. The results suggest that NIR coupled with PLS-BPANN can be used as a non-destructive and on-line technique to monitor total sugar changes.
Collapse
Affiliation(s)
- Songguang Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
28
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
29
|
Zou C, Chen DQ, He HF, Huang YB, Feng ZH, Chen JX, Wang F, Xu YQ, Yin JF. Impact of tea leaves categories on physicochemical, antioxidant, and sensorial profiles of tea wine. Front Nutr 2023; 10:1110803. [PMID: 36824171 PMCID: PMC9941558 DOI: 10.3389/fnut.2023.1110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Tea is the main raw material for preparing tea wine. Methods In this research, four types of tea wine were prepared using different categories of tea leaves, including green tea, oolong tea, black tea, and dark tea, and the comparative study looking their physicochemical, sensorial, and antioxidant profiles were carried out. Results The dynamic changes of total soluble solids, amino acids and ethanol concentrations, and pH were similar in four tea wines. The green tea wine (GTW) showed the highest consumption of total soluble solids and amino acids, and produced the highest concentrations of alcohol, malic, succinic, and lactic acid among all tea wines. The analysis of volatile components indicated the number and concentration of esters and alcohols increased significantly after fermentation of tea wines. GTW presented the highest volatile concentration, while oolong tea wine (OTW) showed the highest number of volatile compounds. GTW had the highest total catechins concentration of 404 mg/L and the highest ABTS value (1.63 mmol TEAC/mL), while OTW showed the highest DPPH value (1.00 mmol TEAC/mL). Moreover, OTW showed the highest score of sensory properties. Discussion Therefore, the types of tea leaves used in the tea wine production interfere in its bioactive composition, sensorial, and antioxidant properties.
Collapse
Affiliation(s)
- Chun Zou
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - De-Quan Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Feng He
- School of Pharmacy, Jining Medical University, Jining, China
| | - Yi-Bin Huang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi-Hui Feng
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jian-Xin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,*Correspondence: Yong-Quan Xu,
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China,Jun-Feng Yin,
| |
Collapse
|
30
|
Gao C, Sun Y, Li J, Zhou Z, Deng X, Wang Z, Wu S, Lin L, Huang Y, Zeng W, Lyu S, Chen J, Cao S, Yu S, Chen Z, Sun W, Xue Z. High Light Intensity Triggered Abscisic Acid Biosynthesis Mediates Anthocyanin Accumulation in Young Leaves of Tea Plant ( Camellia sinensis). Antioxidants (Basel) 2023; 12:antiox12020392. [PMID: 36829950 PMCID: PMC9952078 DOI: 10.3390/antiox12020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
There is increasing interest in the production and consumption of tea (Camellia sinensis L.) processed from purple-leaved cultivar due to their high anthocyanin content and health benefits. However, how and why seasonal changes affect anthocyanin accumulation in young tea leaves still remains obscured. In this study, anthocyanin and abscisic acid (ABA) contents in young leaves of Zifuxing 1 (ZFX1), a cultivar with new shoots turning to purple in Wuyi Mountain, a key tea production region in China, were monitored over four seasons. Young leaves produced in September were highly purplish, which was accompanied with higher anthocyanin and ABA contents. Among the environmental factors, the light intensity in particular was closely correlated with anthocyanin and ABA contents. A shade experiment also indicated that anthocyanin content significantly decreased after 168 h growth under 75% shade, but ABA treatment under the shade conditions sustained anthocyanin content. To confirm the involvement of ABA in the modulation of anthocyanin accumulation, anthocyanin, carotenoids, chlorophyll, ABA, jasmonic acid (JA), and salicylic acid (SA) in the young leaves of four cultivars, including ZFX1, Zijuan (ZJ), wherein leaves are completely purple, Rougui (RG) and Fudingdabaicha (FDDB) wherein leaves are green, were analyzed, and antioxidant activities of the leaf extracts were tested. Results showed that ABA, not other tested hormones, was significantly correlated with anthocyanin accumulation in the purple-leaved cultivars. Cultivars with higher anthocyanin contents exhibited higher antioxidant activities. Subsequently, ZFX1 plants were grown under full sun and treated with ABA and fluridone (Flu), an ABA inhibitor. ABA treatment elevated anthocyanin level but decreased chlorophyll contents. The reverse was true to those treated with Flu. To pursue a better understanding of ABA involvement in anthocyanin accumulation, RNA-Seq was used to analyze transcript differences among ABA- or Flu-treated and untreated ZFX1 plants. Results indicated that the differentially expressed genes in ABA or Flu treatment were mainly ABA signal sensing and metabolism-related genes, anthocyanin accumulation-related genes, light-responsive genes, and key regulatory MYB transcription factors. Taking all the results into account, a model for anthocyanin accumulation in ZFX1 cultivar was proposed: high light intensity caused reactive oxygen stress, which triggered the biosynthesis of ABA; ABA interactions with transcription factors, such as MYB-enhanced anthocyanin biosynthesis limited chlorophyll and carotenoid accumulation; and transport of anthocyanin to vacuoles resulting in the young leaves of ZFX1 with purplish coloration. Further research is warranted to test this model.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Shixian Cao
- Wuyixing Tea Industry Co., Ltd., Nanping 353000, China
| | - Shuntian Yu
- Wuyixing Tea Industry Co., Ltd., Nanping 353000, China
| | - Zhidan Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| | - Zhihui Xue
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362400, China
- Correspondence: (Z.C.); (W.S.); (Z.X.); Tel.: +86-158-0599-8677 (Z.C.); +86-137-0506-7139 (W.S.); +86-134-0591-6632 (Z.X.)
| |
Collapse
|
31
|
Chen Y, Li Y, Shen C, Xiao L. Topics and trends in fresh tea ( Camellia sinensis) leaf research: A comprehensive bibliometric study. FRONTIERS IN PLANT SCIENCE 2023; 14:1092511. [PMID: 37089662 PMCID: PMC10118041 DOI: 10.3389/fpls.2023.1092511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tea plant (Camellia sinensis) is a widely cultivated cash crop and tea is a favorite functional food in the world. Fresh tea leaves (FTLs) play a critical role in bridging the two fields closely related to tea cultivation and tea processing, those are, tea plant biology and tea biochemistry. To provide a comprehensive overview of the development stages, authorship collaboration, research topics, and hotspots and their temporal evolution trends in the field of FTLs research, we conducted a bibliometric analysis, based on 971 publications on FTLs-related research published during 2001-2021 from Web of Science Core Collection. CiteSpace, R package Bibliometrix, and VOSviewer were employed in this research. The results revealed that the development history can be roughly divided into three stages, namely initial stage, slow development stage and rapid development stage. Journal of Agricultural & Food Chemistry published most articles in this field, while Frontiers in Plant Science held the highest total citations and h-index. The most influential country, institution, and author in this field was identified as China, the Chinese Academy of Agricultural Sciences, and Xiaochun Wan, respectively. FTLs-related research can be categorized into three main topics: the regulation mechanism of key genes, the metabolism and features of essential compounds, and tea plants' growth and stress responses. The most concerning hotspots are the application of advanced technologies, essential metabolites, leaf color variants, and effective cultivation treatments. There has been a shift from basic biochemical and enzymatic studies to studies of molecular mechanisms that depend on multi-omics technologies. We also discussed the future development in this field. This study provides a comprehensive summary of the research field, making it easier for researchers to be informed about its development history, status, and trends.
Collapse
Affiliation(s)
- YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| | - LiZheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| |
Collapse
|
32
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
33
|
Qiu L, Zhang M, Chang L. Effects of lactic acid bacteria fermentation on the phytochemicals content, taste and aroma of blended edible rose and shiitake beverage. Food Chem 2022; 405:134722. [DOI: 10.1016/j.foodchem.2022.134722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022]
|
34
|
Antioxidant Capacities and Polyphenol Contents of Kombucha Beverages Based on Vine Tea and Sweet Tea. Antioxidants (Basel) 2022; 11:antiox11091655. [PMID: 36139729 PMCID: PMC9495320 DOI: 10.3390/antiox11091655] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Kombucha beverage is commonly prepared by black tea infusion fermentation without tea residues, and possesses various health benefits. In this paper, kombucha beverages of two non-Camellia sinensis teas, including vine tea (Ampelopsisgrossedentata) and sweet tea (Rubus suavissimus), were studied for the first time. The antioxidant activities and polyphenol contents of kombucha beverages were evaluated by ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, and Folin-Ciocalteu method, respectively. In addition, effects of tea residues on antioxidant capacities of kombucha beverages were evaluated. The results showed that kombucha beverages from vine tea and sweet tea possessed strong antioxidant activities (especially vine tea kombucha), and fermentation with tea residues could significantly increase antioxidant capacities (maximum increase of 38%) and total phenolic content (maximum increase of 55%) of two kombucha beverages compared with those without tea residues. Moreover, the sensory evaluations showed that the sensory evaluation scores of kombucha with tea residues could be improved compared with those without tea residues. Furthermore, the concentrations of several bioactive components in the kombucha beverages were detected by high-performance liquid chromatography. These kombucha beverages could be used for prevention of several diseases with related of oxidative stress.
Collapse
|
35
|
Bortolomedi BM, Paglarini CS, Brod FCA. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem 2022; 385:132719. [DOI: 10.1016/j.foodchem.2022.132719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
|
36
|
Evaluation of the Brewing Characteristics, Digestion Profiles, and Neuroprotective Effects of Two Typical Se-Enriched Green Teas. Foods 2022; 11:foods11142159. [PMID: 35885402 PMCID: PMC9318317 DOI: 10.3390/foods11142159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
As a functional beverage, selenium (Se)-enriched green tea (Se-GT) has gained increasing popularity for its superior properties in promoting health. In this study, we compared the brewing characteristics, in vitro digestion profiles, and protective effects on neurotoxicity induced through the amyloid-beta (Aβ) peptide of two typical Se-GTs (Enshi Yulu (ESYL) and Ziyang Maojian (ZYMJ), representing the typical low-Se green tea and high-Se green tea, respectively). ESYL and ZYMJ showed similar chemical component leaching properties with the different brewing methods, and the optimized brewing conditions were 5 min, 90 °C, 50 mL/g, and first brewing. The antioxidant activities of the tea infusions had the strongest positive correlation with the tea polyphenols among all of the leaching substances. The tea infusions of ESYL and ZYMJ showed similar digestive behaviors, and the tea polyphenols in the tea infusions were almost totally degraded or transferred after 150 min of dynamic digestion. Studies conducted in a cell model of Alzheimer’s disease (AD) showed that the extract from the high-Se green tea was more effective for neuroprotection compared with the low-Se green tea. Overall, our results revealed the best brewing conditions and digestion behaviors of Se-GT and the great potential of Se-GT or Se-enriched green extract (Se-GTE) to be used as promising AD-preventive beverages or food ingredients.
Collapse
|
37
|
Abaci N, Senol Deniz FS, Orhan IE. Kombucha - An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chem X 2022; 14:100302. [PMID: 35434600 PMCID: PMC9011011 DOI: 10.1016/j.fochx.2022.100302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Kombucha, originated in China 2000 years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.
Collapse
Key Words
- ABTS, 2,2-azinobis-(3-ethylbenzotiazoline-6-sulfonic acid)
- ACE, Angiotensin-converting enzyme
- AHA, Alpha hydroxy acid
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AMPK, Adenosine monophosphate-activated protein kinase
- AST, Aspartate aminotransferase
- ATCC, American type culture collection
- BBB, Blood-brain barrier
- Bioactivity
- Biofilm
- CAT, Catalase
- COVID-19, Coronavirus disease of 2019
- DNA, Deoxyribonucleic Acid
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DSL, d-Saccharic acid-1,4-lactone
- EGCG, Epigallocatechin gallate
- FRAP, Ferric reducing antioxidant power
- Fermented drink
- GC–MS, Gas chromatography- mass spectrometry
- GGT, Gamma glutamyl transferase
- GPx, Glutathione peroxidase
- GRx, Glutathione reductase
- GST, Glutathione S-transferase
- HDL, High density lipoprotein
- HPLC, High-performance liquid chromatography
- HPLC-MS/MS, High-performance liquid chromatography- mass spectrometry/ mass spectrometry
- HPLC-UV-ESI-MS, High-performance liquid chromatography-ultraviolet- electrospray ionization-mass spectrometry
- HPLC/ESI–MS, High-performance liquid chromatography/electrospray ionization-mass spectrometry
- HbA1c, Glycosylated Hemoglobin, Type A1C
- IC50, Half maximal ınhibitory concentration
- IL, Interleukin
- Kombucha
- LC-MS, Liquid chromatography–mass spectrometry
- LDH, Lactate dehydrogenase
- LDL, Low-density lipoprotein
- LOX, Lipoxygenase
- LPS, Lipopolysaccharide
- MCD, Methionine/choline-deficient diet
- MCDM, Multi-criteria decision-making MDA, Malondialdehyde
- MIC, Minimum inhibitory concentration
- Microorganism
- NAD, Nicotinamide adenine dinucleotide
- NAFLD, Non-alcoholic fatty liver disease
- NO, Nitric oxide
- ORAC, Oxygen radical absorbance capacity
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- SASP, Senescence-associated secretory phenotype
- SCOBY, Symbiotic culture of bacteria and yeast
- SMC, Synthetic microbial community
- SOD, Superoxide dismutase
- SPF, Sun Protection Factor
- TAA, Thioacetamide
- TE, Trolox equivalent
- TEAC, Trolox-equivalent antioxidant capacity
- TG, Triglyceride
- TLC, Thin-layer chromatography
- TNF-α, Tumour necrosis factor alpha
- UVB, Ultraviolet radiation-B
- VLDL, Very low-density lipoprotein
- WGJ, Wheatgrass juice
- WoS, Web of Science
Collapse
Affiliation(s)
- Nurten Abaci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Cad., No. 112, 06670 Ankara, Turkey
| |
Collapse
|
38
|
Liang S, Gao Y, Fu YQ, Chen JX, Yin JF, Xu YQ. Innovative technologies in tea beverage processing for quality improvement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Wei Y, Yin X, Wu H, Zhao M, Huang J, Zhang J, Li T, Ning J. Improving the flavor of summer green tea (Camellia sinensis L.) using the yellowing process. Food Chem 2022; 388:132982. [PMID: 35447593 DOI: 10.1016/j.foodchem.2022.132982] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Summer green tea (SGT) has poor flavor due to its high levels of bitterness and astringency. The present study aimed to improve the flavor of SGT using the yellowing process. The results showed that after the yellowing process, the sweetness and overall acceptability increased, and the content of gallated catechins and flavonol glycosides decreased by 30.2% and 27.4%, respectively, as did the bitterness and astringency of SGT. Yellowing caused a decrease in the concentration of some aroma compounds, such as (z)-3-hexen-1-ol, 1-hexanol, pentanal, heptanal and 1-octanol, which caused grassy, floral and fruity aromas. In contrast, the concentrations of 1-octen-3-ol, benzene acetaldehyde and β-ionone increased, which have mushroom and sweet aromas. Meanwhile, the sweetness and umami of SGT were enhanced by the addition of selected aroma compounds (1-octen-3-ol, benzene acetaldehyde and β-ionone), demonstrating that the yellowing process improves the flavor of SGT through odor-taste interactions.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huiting Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
40
|
Li R, Xu Y, Chen J, Wang F, Zou C, Yin J. Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Abstract
Kombucha is a carbonated, slightly acidic beverage traditionally produced by the fermentation of sweetened tea by a symbiotic culture of bacteria and yeast (SCOBY). The microbial community of kombucha is a complex one, whose dynamics are still not fully understood; however, the emergence of culture-independent techniques has allowed a more comprehensive insight into kombucha microbiota. In recent times, advancements have been made towards the optimisation of the fermentation process, including the use of alternative substrates, defined starter cultures and the modification of fermentation parameters, with the aim of producing an innovative beverage that is improved in terms of its physiochemical, sensory and bioactive properties. The global kombucha market is rapidly increasing, with the rising popularity of the tea attributed in part to its purported health benefits, despite the lack of research in human subjects to substantiate such claims. Accordingly, the incidence of kombucha home-brewing has increased, meaning there is a requirement for individuals to recognise the potential hazards associated with fermentation and the relevant preventative measures to be undertaken to ensure the safe preparation of kombucha. The aim of this review is to provide an update regarding the current knowledge of kombucha production, microbiology, safety and marketing.
Collapse
|
42
|
Zhou DD, Saimaiti A, Luo M, Huang SY, Xiong RG, Shang A, Gan RY, Li HB. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants (Basel) 2022; 11:155. [PMID: 35052659 PMCID: PMC8772747 DOI: 10.3390/antiox11010155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a popular beverage with various bioactivities (such as antioxidant activity), which can be attributed to its abundant bioactive compounds, especially polyphenols. Kombucha is conventionally prepared by fermentation of a sugared black tea infusion without tea residue. In this study, the effects of black tea residue and green tea residue on kombucha were studied, and its antioxidant activities, total phenolic contents, as well as concentrations of polyphenols at different fermentation stages were evaluated using ferric-reducing antioxidant power, Trolox equivalent antioxidant capacity, Folin-Ciocalteu method and high-performance liquid chromatography with a photodiode array detector. The results showed that fermentation with tea residue could markedly increase antioxidant activities (maximum 3.25 times) as well as polyphenolic concentrations (5.68 times) of kombucha. In addition, green tea residue showed a stronger effect than black tea residue. Overall, it is interesting to find that fermentation with tea residues could be a better strategy to produce polyphenol-rich kombucha beverages.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (D.-D.Z.); (A.S.); (M.L.); (S.-Y.H.); (R.-G.X.); (A.S.)
| |
Collapse
|
43
|
Traditional and flavored kombuchas with pitanga and umbu-cajá pulps: Chemical properties, antioxidants, and bioactive compounds. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Antolak H, Piechota D, Kucharska A. Kombucha Tea-A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants (Basel) 2021; 10:antiox10101541. [PMID: 34679676 PMCID: PMC8532973 DOI: 10.3390/antiox10101541] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Kombucha is a low alcoholic beverage with high content of bioactive compounds derived from plant material (tea, juices, herb extracts) and metabolic activity of microorganisms (acetic acid bacteria, lactic acid bacteria and yeasts). Currently, it attracts an increasing number of consumers due to its health-promoting properties. This review focuses on aspects significantly affecting the bioactive compound content and biological activities of Kombucha tea. The literature review shows that the drink is characterized by a high content of bioactive compounds, strong antioxidant, and antimicrobial properties. Factors that substantially affect these activities are the tea type and its brewing parameters, the composition of the SCOBY, as well as the fermentation parameters. On the other hand, Kombucha fermentation is characterized by many unknowns, which result, inter alia, from different methods of tea extraction, diverse, often undefined compositions of microorganisms used in the fermentation, as well as the lack of clearly defined effects of microorganisms on bioactive compounds contained in tea, and therefore the health-promoting properties of the final product. The article indicates the shortcomings in the current research in the field of Kombucha, as well as future perspectives on improving the health-promoting activities of this fermented drink.
Collapse
|