1
|
Yang J, Song Y, Yu Y, Yang X, Zhang X, Zhang W. Research progress on extraction techniques, structure-activity relationship, and biological functional mechanism of berry polysaccharides: A review. Int J Biol Macromol 2024; 282:137155. [PMID: 39505177 DOI: 10.1016/j.ijbiomac.2024.137155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
In recent years, polysaccharides extracted from berries have received great attention due to their various bioactivities. However, the preparation and application of berry polysaccharides have been greatly limited due to the lack of efficient extraction techniques, unclear structure-activity relationships, and ambiguous functional mechanisms. This review discusses the technological progress in solvent extraction, assisted extraction, critical extraction, and combination extraction. The structure-activity relationship and functional mechanism (antioxidation, hypoglycemic, immunoregulation etc.) of berry polysaccharides are reviewed. After systematic exploration, we believe that industrial production is more suitable for using efficient and low-cost extraction methods, such as ultrasonic assisted extraction and microwave assisted extraction. And some of the bioactivities (antioxidant activity, hypoglycemic activity, etc.) of berry polysaccharides are closely related to their structure (molecular weight, monosaccharide composition, branching structure, etc.). Besides, berry polysaccharides exhibit bioactivities by regulating enzyme activity, cellular metabolism, gene expression, and other pathways to exert their effects on the body. These findings indicate the potential of berry polysaccharides as functional foods and drugs. This paper will contribute to the preparation, bioactivity research, and application of berry polysaccharides.
Collapse
Affiliation(s)
- Jun Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Yao Song
- Department of Daily Chemical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Yuhe Yu
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xu Yang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
2
|
Moldovan C, Frumuzachi O, Babotă M, Pinela J, Barros L, Rocchetti G, López V, Lucini L, Crișan G, Mocan A. Untargeted phytochemical profiling and biological activity of small yellow onion (Allium flavum L.) from different regions of Romania. Food Chem 2023; 426:136503. [PMID: 37301042 DOI: 10.1016/j.foodchem.2023.136503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This study examined the phytochemical profiles (mainly phenolics, carotenoids, and organosulfur compounds) and biological effects of hydroalcoholic extracts of Allium flavum (AF), a species of the Allium genus commonly known as small yellow onion. Unsupervised and supervised statistical approaches revealed clear differences between extracts prepared with samples collected from different areas of Romania. Overall, the AFFF (AF flowers collected from Făget) extract was the best source of polyphenols, also showing the highest antioxidant capacity evaluated through both in vitro DPPH, FRAP, and TEAC anti-radical scavenging assays and cell-based OxHLIA and TBARS assays. All the tested extracts exhibited α-glucosidase inhibition potential, while only the AFFF extract exhibited anti-lipase inhibitory activity. The phenolic subclasses annotated were positively correlated with the assessed antioxidant and enzyme inhibitory activities. Our findings suggested that A. flavum has bioactive properties worth exploring further, being a potential edible flower with health-promoting implications.
Collapse
Affiliation(s)
- Cadmiel Moldovan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Víctor López
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain; Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Zaragoza, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Wang Y, Liu T, Xie Y, Li N, Liu Y, Wen J, Zhang M, Feng W, Huang J, Guo Y, Kabbas Junior T, Wang D, Granato D. Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Res Int 2022; 162:112008. [DOI: 10.1016/j.foodres.2022.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
|
4
|
Xie J, Sun N, Huang H, Xie J, Chen Y, Hu X, Hu X, Dong R, Yu Q. Catabolism of polyphenols released from mung bean coat and its effects on gut microbiota during in vitro simulated digestion and colonic fermentation. Food Chem 2022; 396:133719. [PMID: 35868282 DOI: 10.1016/j.foodchem.2022.133719] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
Mung bean coat is a good source of dietary polyphenols. In this study,in vitro simulated digestion and colonic fermentation were performed to investigate the release of polyphenols from mung bean coat and their bioactivities. Polyphenols released by colonic fermentation were much higher than those released by digestion and reached a peak at 12 h, resulting in higher antioxidant capacities (DPPH, ORAC, FRAP assays). About 49 polyphenols and metabolites including quercetin, vanillin, catechin and p-hydroxybenzoic acid were identified, and possible biotransformation pathways were postulated. Moreover, the relative abundance of beneficial bacteria (such as Lactococcus and Bacteroides) was improved during colonic fermentation. Altogether, gut microbiota could release polyphenols, the released polyphenols and their catabolic metabolites, alongside dietary fiber in mung bean coat selectively regulated the composition of gut microbiota and promoted the synthesis of SCFAs. These findings indicated that polyphenols in mung bean coat potentially contributed to gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Jiayan Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Nan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
5
|
Babotă M, Frumuzachi O, Gâvan A, Iacoviță C, Pinela J, Barros L, Ferreira ICFR, Zhang L, Lucini L, Rocchetti G, Tanase C, Crișan G, Mocan A. Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. ULTRASONICS SONOCHEMISTRY 2022; 84:105954. [PMID: 35247683 PMCID: PMC8892194 DOI: 10.1016/j.ultsonch.2022.105954] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 05/24/2023]
Abstract
An optimized ultrasound-assisted extractive method was developed to obtain a polyphenol-enriched extract from the aerial parts of Thymus comosus Heuff. ex Griseb. et Schenk. Optimization process was conducted based on Design of Experiment (DoE) principles, determining the influence of three independent variables (time, ultrasound amplitude, ethanol concentration) on the total phenolic content of the extract (dependent variable). Additionally, the phenolic composition of the extract was characterized through UHPLC-HRMS, revealing beside the most abundant flavonoid-type compounds the presence of salvianolic acids C, D and L in high amounts. Phytochemical profile of the extract was correlated with its antioxidant activity (tested through five complementary assays) and enzyme-inhibitory potential, showing important antiglucosidase and anticholinesterase effects. Overall, it was concluded that the developed method is suitable for obtaining a good recovery of both phenolic and non-phenolic compounds from Thymus comosus aerial parts, and their presence in the optimized extract is responsible for its pharmacological potential.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Alexandru Gâvan
- Department of Medical Devices, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Cristian Iacoviță
- Department of Pharmaceutical Physics-Biophysics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Kobayashi Y, Kärkkäinen E, Häkkinen ST, Nohynek L, Ritala A, Rischer H, Tuomisto HL. Life cycle assessment of plant cell cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151990. [PMID: 34843779 DOI: 10.1016/j.scitotenv.2021.151990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
A novel food such as plant cell culture (PCC) is an important complementary asset for traditional agriculture to tackle global food insecurity. To evaluate environmental impacts of PCC, a life cycle assessment was applied to tobacco bright yellow-2 and cloudberry PCCs. Global warming potential (GWP), freshwater eutrophication potential (FEUP), marine eutrophication potential, terrestrial acidification potential (TAP), stratospheric ozone depletion, water consumption and land use were assessed. The results showed particularly high contributions (82-93%) of electricity consumption to GWP, FEUP and TAP. Sensitivity analysis indicated that using wind energy instead of the average Finnish electricity mix reduced the environmental impacts by 34-81%. Enhancement in the energy efficiency of bioreactor mixing processes and reduction in cultivation time also effectively improved the environmental performance (4-47% reduction of impacts). In comparison with other novel foods, the environmental impacts of the PCC products studied were mostly comparable to those of microalgae products but higher than those of microbial protein products produced by autotrophic hydrogen-oxidizing bacteria. Assayed fresh PCC products were similar or close to GWP of conventionally grown food products and, with technological advancements, can be highly competitive.
Collapse
Affiliation(s)
- Yumi Kobayashi
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland
| | - Elviira Kärkkäinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland
| | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd., Tietotie 2, P.O. Box 1000, 02044 VTT, Espoo, Finland.
| | - Hanna L Tuomisto
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 4, 00014 University of Helsinki, Finland; Natural Resources Institute Finland, P.O. Box 2, 00790 Helsinki, Finland
| |
Collapse
|