1
|
Lukacs M, Somogyi T, Mukite BM, Vitális F, Kovacs Z, Rédey Á, Stefaniga T, Zsom T, Kiskó G, Zsom-Muha V. Investigation of the Ultrasonic Treatment-Assisted Soaking Process of Different Red Kidney Beans and Compositional Analysis of the Soaking Water by NIR Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2025; 25:313. [PMID: 39860682 PMCID: PMC11769365 DOI: 10.3390/s25020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our aim was to examine the hydration process of red kidney beans of varying sizes and origins. Despite the varying surface areas, the beans' soaking times of 13-15, 15-17, and 17-19 mm did not reveal significant differences between any of the groups (control; low power: 180 W, 20 kHz; high power: 300 W, 40 kHz). US treatment was observed to result in the release of greater quantities of water-soluble components from the beans. This was evidenced by the darkening of the soaking water's color, the increase in the a* color parameter, and the rise in the dry matter value. NIRs, in combination with chemometric tools, are an effective tool for predicting the characteristics of bean-soaking water. The PLSR- and SVR-based modelling for dry matter content and light color parameters demonstrated robust model fits with cross and test set-validated R2 values (>0.95), suggesting that these techniques can effectively capture the chemical information of the samples.
Collapse
Affiliation(s)
- Matyas Lukacs
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Tamás Somogyi
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Barasa Mercy Mukite
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Flóra Vitális
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Zoltan Kovacs
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Ágnes Rédey
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Tamás Stefaniga
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| | - Tamás Zsom
- Department of Postharvest, Supply Chain, Commerce and Sensory Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Ménesi út 43-45., H-1118 Budapest, Hungary;
| | - Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16., H-1118 Budapest, Hungary
| | - Viktória Zsom-Muha
- Department of Food Measurement and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Somlói út 14-16., H-1118 Budapest, Hungary; (M.L.); (T.S.); (B.M.M.); (F.V.); (Z.K.); (Á.R.); (T.S.); (V.Z.-M.)
| |
Collapse
|
2
|
Mallick SR, Hassan J, Hoque MA, Sultana H, Kayesh E, Ahmed M, Ozaki Y, Al-Hashimi A, Siddiqui MH. Color, proximate composition, bioactive compounds and antinutrient profiling of rose. Sci Rep 2024; 14:21690. [PMID: 39289436 PMCID: PMC11408722 DOI: 10.1038/s41598-024-72424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Rose (Rosa sp.) is one of the most important ornamentals which is commercialize for its aesthetic values, essential oils, cosmetic, perfume, pharmaceuticals and food industries in the world. It has wide range of variations that is mostly distinguished by petal color differences which is interlinked with the phytochemicals, secondary metabolites and antinutrient properties. Here, we explored the color, bioactive compounds and antinutritional profiling and their association to sort out the most promising rose genotypes. For this purpose, we employed both quantitative and qualitative evaluation by colorimetric, spectrophotometric and visual analyses following standard protocols. The experiment was laid out in randomized complete block design (RCBD) with three replications where ten rose genotypes labelled R1, R2, R3, R4, R5, R6, R7, R8, R9 and R10 were used as plant materials. Results revealed in quantitative assessment, the maximum value of lightness, and the luminosity indicating a brightening of rose petals close to a yellow color from rose accessions R4, and R10, respectively which is further confirmed with the visually observed color of the respective rose petals. Proximate composition analyses showed that the highest amount of carotenoid and β-carotene was found in R10 rose genotype, anthocyanin and betacyanin in R7. Among the bioactive compounds, maximum tocopherol, phenolic and flavonoid content was recorded in R8, R6 and R3 while R1 showed the highest free radical scavenging potentiality with the lowest IC50 (82.60 µg/mL FW) compared to the others. Meanwhile, the enormous variation was observed among the studied rose genotypes regarding the antinutrient contents of tannin, alkaloid, saponin and phytate whereas some other antinutrient like steroids, coumarines, quinones, anthraquinone and phlobatanin were also figured out with their presence or absence following qualitative visualization strategies. Furthermore, according to the Principal Component Analysis (PCA), correlation matrix and cluster analysis, the ten rose genotypes were grouped into three clusters where, cluster-I composed of R3, R4, R5, R8, cluster-II: R9, R10 and cluster-III: R1, R2, R6, R7 where the rose genotypes under cluster III and cluster II were mostly contributed in the total variations by the studied variables. Therefore, the rose genotypes R9, R10 and R1, R2, R6, R7 might be potential valuable resources of bioactive compounds for utilization in cosmetics, food coloration, and drugs synthesis which have considerable health impact.
Collapse
Affiliation(s)
- Sharmila Rani Mallick
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Jahidul Hassan
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Md Azizul Hoque
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Hasina Sultana
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Emrul Kayesh
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Minhaz Ahmed
- Department of Agroforestry and Environment, Faculty of Forestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Yukio Ozaki
- Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Wang Z, Zuo C, Chen M, Song J, Tu K, Lan W, Li C, Pan L. A Novel Variable Selection Method Based on Ordered Predictors Selection and Successive Projections Algorithm for Predicting Gastrodin Content in Fresh Gastrodia elata Using Fourier Transform Near-Infrared Spectroscopy and Chemometrics. Foods 2023; 12:4435. [PMID: 38137239 PMCID: PMC10743185 DOI: 10.3390/foods12244435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Gastrodin is one of the most important biologically active components of Gastrodia elata, which has many health benefits as a dietary and health food supplement. However, gastrodin measurement traditionally relies on laboratory and sophisticated instruments. This research was aimed at developing a rapid and non-destructive method based on Fourier transform near infrared (FT-NIR) to predict gastrodin content in fresh Gastrodia elata. Auto-ordered predictors selection (autoOPS) and successive projections algorithm (SPA) were applied to select the most informative variables related to gastrodin content. Based on that, partial least squares regression (PLSR) and multiple linear regression (MLR) models were compared. The autoOPS-SPA-MLR model showed the best prediction performances, with the determination coefficient of prediction (Rp2), ratio performance deviation (RPD) and range error ratio (RER) values of 0.9712, 5.83 and 27.65, respectively. Consequently, these results indicated that FT-NIRS technique combined with chemometrics could be an efficient tool to rapidly quantify gastrodin in Gastrodia elata and thus facilitate quality control of Gastrodia elata.
Collapse
Affiliation(s)
- Zhenjie Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (Z.W.); (C.Z.); (M.C.); (K.T.); (W.L.)
| | - Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (Z.W.); (C.Z.); (M.C.); (K.T.); (W.L.)
| | - Min Chen
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (Z.W.); (C.Z.); (M.C.); (K.T.); (W.L.)
| | - Jin Song
- College of Artificial Intelligence, Nanjing Agricultural University, No. 40 Dianjiangtai Road, Nanjing 210095, China;
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (Z.W.); (C.Z.); (M.C.); (K.T.); (W.L.)
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (Z.W.); (C.Z.); (M.C.); (K.T.); (W.L.)
| | - Chunyang Li
- Institute of Agro-Products Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Road, Nanjing 210014, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (Z.W.); (C.Z.); (M.C.); (K.T.); (W.L.)
| |
Collapse
|
4
|
Abera S, Yohannes W, Chandravanshi BS. Effect of Processing Methods on Antinutritional Factors (Oxalate, Phytate, and Tannin) and Their Interaction with Minerals (Calcium, Iron, and Zinc) in Red, White, and Black Kidney Beans. Int J Anal Chem 2023; 2023:6762027. [PMID: 37886707 PMCID: PMC10599953 DOI: 10.1155/2023/6762027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 10/28/2023] Open
Abstract
The purpose of this study was to assess how different processing techniques affected mineral compositions, antinutritional factors, and their interactions in red, white, and black kidney beans consumed in Ethiopia. Mineral contents were found to be 41-44, 58-78, and 112-126 mg Ca/100 g in the raw, soaked, and cooked samples, respectively. Iron content in the raw, soaked and cooked samples were found to be 2.77-2.97, 1.94-2.20 and 2.87-3.28 mg Fe/100 g, respectively, showing 26-30% loss on soaking followed by 33-48% increase on cooking. While Zn content in the raw, soaked and cooked samples were found to be 2.47-3.26, 3.34-4.68 and 2.83-3.31 mg Zn/100 g, respectively, showing 35-43% increase on soaking followed by 15-29% decrease on cooking. In the case of antinutrients, both treatments showed incredible decrements. Phytate in the raw samples was 178-179 mg/100 g and showed a 12-16% decrement on soaking and a 37-38% decrement up on cooking, oxalate was 1.5-1.8 mg/100 g in the raw samples and showed a 4.4-13% decrement during treatments, and tannin in the raw samples was 102-160 mg/100 g and showed a 23-30% decrement on soaking, followed by 21-41% during cooking. Phytate : Ca and oxalate : Ca molar ratios in soaked and cooked samples were within the critical values in the raw samples. In contrast, phytate : Zn and Ca × phytate : Zn in all treatments were found to be within the critical value, confirming the good bioavailability of zinc in all the samples, while phytate : Fe was found over the critical value, showing its poor availability.
Collapse
Affiliation(s)
- Serkalem Abera
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Weldegebriel Yohannes
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Perera D, Devkota L, Garnier G, Panozzo J, Dhital S. Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chem 2023; 415:135743. [PMID: 36863234 DOI: 10.1016/j.foodchem.2023.135743] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Future dietary protein demand will focus more on plant-based sources than animal-based products. In this scenario, legumes and pulses (lentils, beans, chickpeas, etc.) can play a crucial role as they are one of the richest sources of plant proteins with many health benefits. However, legume consumption is undermined due to the hard-to-cook (HTC) phenomenon, which refers to legumes that have high resistance to softening during cooking. This review provides mechanistic insight into the development of the HTC phenomenon in legumes with a special focus on common beans and their nutrition, health benefits, and hydration behaviour. Furthermore, detailed elucidation of HTC mechanisms, mainly pectin-cation-phytate hypothesis and compositional changes of macronutrients like starch, protein, lipids and micronutrients like minerals, phytochemicals and cell wall polysaccharides during HTC development are critically reviewed based on the current research findings. Finally, strategies to improve the hydration and cooking quality of beans are proposed, and a perspective is provided.
Collapse
Affiliation(s)
- Dilini Perera
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Gil Garnier
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Joe Panozzo
- Agriculture Victoria Research, Horsham, Victoria 3400, Australia.
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| |
Collapse
|
6
|
Qin S, Sun H, Wan X, Wu Y, Lin X, Kan H, Hou D, Zheng Z, He X, Liu C. Carboxymethylcellulose reinforced starch films and rapid detection of spoiled beverages. Front Bioeng Biotechnol 2023; 10:1099118. [PMID: 36686261 PMCID: PMC9852863 DOI: 10.3389/fbioe.2022.1099118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
The integrity of the packaging of a liquid foodstuff makes it difficult to detect spoilage. Therefore, it is important to develop a sensitive, fast and real-time material for liquid food detection. CMC, as lignocellulose derivatives and starch are widely used in the food industry. In this study, starch films with pH-responsive properties are successfully prepared from full-component starch and corn amylopectin (CA) by adding CMC. The effects of CMC on the mechanical properties, morphology characteristics, physical and chemical structures, stability and pH responsiveness of the starch films are analyzed. The starch/CMC-1.0 g composite films display good electrical conductivity and reduce the resistance of the composite film by two orders of magnitude. The composite films have pH response ability; in the simulation of orange juice spoilage experiment, the CA/CMC composite film has a more sensitive current response and was more suitable for the application to liquid food quality detection. Additionally, the starch/CMC composite films have potential applications for rapid detection and real-time monitoring of the safety of liquid food.
Collapse
Affiliation(s)
- Shijiao Qin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Xiaoli Wan
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China,Lincang Academy of Forestry Sciences, Lincang, China
| | - Yujia Wu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Huan Kan
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | | | - Xiahong He
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China,*Correspondence: Xiahong He, ; Can Liu,
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China,*Correspondence: Xiahong He, ; Can Liu,
| |
Collapse
|
7
|
Jepleting N, N. Sila D, N. Orina I. Nutritional Composition and Antinutrient to Mineral Molar Ratios of Selected Improved Common Beans Grown in Kenya. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A decline in common bean production has been ascribed to climate change. The adoption of improved beans aims to increase productivity, profitability, and consumption, thus reducing food and nutrition insecurity in the country. The aim of this study was to determine the proximate composition, antinutrient content, mineral content, and bioaccessibility of zinc and iron in two improved bean varieties grown in Kenya; Faida (biofortified) and RM 01 (drought tolerant)). The protein content of RM 01 (22.48%) was significantly higher than the Faida bean variety (20.90%). RM 01 bean variety had higher crude fat (4.20%) and crude fiber (4.31%) content compared to Faida which had 3.78% and 3.31% for crude fat and crude fiber respectively. Faida recorded significantly higher levels of iron (61.5 mg/kg) and zinc (26.8 mg/kg) content. Faida beans also had significantly (p< 0.05) high levels of phytates (11.70 mg/g) and tannins (4.39 mg CE/g). Phytate to iron ratio for Faida was 17.08 and RM 01 was 15.19 while the phytate-to-zinc ratio was 42.26 and 35.36 for Faida and RM 01 respectively. The RM 01 bean variety had iron bioaccessibility of 35% and zinc bioaccessibility of 65% compared to the Faida bean variety which had bioaccessibility of 29% and 42% for iron and zinc respectively. In conclusion, RM 01 variety is a better source of iron, zinc, and protein compared to the Faida variety.
Collapse
Affiliation(s)
- Nancy Jepleting
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Daniel N. Sila
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Irene N. Orina
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
8
|
Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices. Int J Mol Sci 2022; 23:ijms232314732. [PMID: 36499058 PMCID: PMC9736294 DOI: 10.3390/ijms232314732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Juice, as a liquid foodstuff, is subject to spoilage and damage due to complications during transport and storage. The appearance of intact outer packaging often makes spoilage and damage difficult to detect. Therefore, it of particular importance to develop a fast, real-time material to evaluate liquid foodstuffs. In this paper, starch films with pH response characteristics are successfully prepared by inorganic ion modification by utilizing whole starch and amylopectin as raw materials. The mechanical properties, stability properties, hydrophilic properties and pH electrical signal response indices of the films are analyzed and measured. The films exhibit good electrical conductivity values with 1.0 mL of ion addition (10 mmol/L), causing the composite film to respond sensitively to solutions with varying pH values. In the test of spoiled orange juice, the full-component corn starch (CS) film has more sensitive resistance and current responses, which is more conducive for applications in the quality monitoring of juice. The results indicate that modified starch films can potentially be applied in the real-time monitoring of the safety of liquid foodstuffs.
Collapse
|