1
|
Krivošija S, Nastić N, Karadžić Banjac M, Kovačević S, Podunavac-Kuzmanović S, Vidović S. Supercritical Extraction and Compound Profiling of Diverse Edible Mushroom Species. Foods 2025; 14:107. [PMID: 39796397 PMCID: PMC11720195 DOI: 10.3390/foods14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Mushrooms are a raw material rich in many nutritional compounds, and that is why a number of them are widely known as functional food. They contain fatty acids, carbohydrates, lycopene, sterols, lovastatin, trace elements, and other valuable compounds that show a wide range of properties, such as hepatoprotective, anticancer, antiviral, etc. For more efficient utilisation of mushrooms' biologically active substances, widespread supercritical carbon dioxide extraction (Sc-CO2) was used as an efficient way to isolate the high-value phytoconstituents from this type of raw material. Using Sc-CO2, the extracts of five types of edible mushrooms-Lycoperdon saccatum, Pleurotus ostreatus, Craterellus cornucopioides, Russula Cyanoxantha and Cantharellus cibarius-were obtained. During the Sc-CO2 process, the extraction time was reduced to 4 h compared to the prolonged process time applied in the typical traditional techniques (6-24 h). The extraction pressure (30 MPa) and temperature (40 °C) were constant. Fatty acids and the compounds of steroid structures were determined in the obtained extracts using GC-MS and GC-FID methods of analysis. The dominant compounds identified in the lipid extracts were fatty acids (linoleic, oleic, palmitic and stearic) and sterols (ergosterol, 7,22-ergostadienone and 7,22-ergostadienol). For complete insight into the process and to obtain the value of the extracts, chemometric analysis is provided. Principal component analysis (PCA) and hierarchical cluster analysis (HCA), as well as k-means clustering, showed that Craterellus cornucopioides was distinguished based on the extraction yield results.
Collapse
Affiliation(s)
| | | | | | | | | | - Senka Vidović
- Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 21000 Novi Sad, Serbia; (S.K.); (N.N.); (M.K.B.); (S.K.); (S.P.-K.)
| |
Collapse
|
2
|
Ferraro V, Spagnoletta A, Rotondo NP, Marsano RM, Miniero DV, Balenzano G, De Palma A, Colletti A, Gargano ML, Lentini G, Cavalluzzi MM. Hypoglycemic Properties of Leccinum scabrum Extracts-An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination. J Fungi (Basel) 2024; 10:718. [PMID: 39452670 PMCID: PMC11508548 DOI: 10.3390/jof10100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Type-2 diabetes affects an increasing percentage of the world's population and its control through dietary management, involving the consumption of health-promoting foods or their derived supplements, is a common strategy. Several mushroom species have been demonstrated to be endowed with antidiabetic properties, resulting from their ability in improving insulin sensitivity and production, or inhibiting the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase. This study aimed to investigate for the first time the hypoglycemic properties of the edible mushroom Leccinum scabrum (Bull.) Gray. Mushroom extracts were prepared through the microwave-assisted extraction (MAE) technique using green solvents with different polarity degrees. The inhibition activity of all the obtained extracts on both α-glucosidase and α-amylase was evaluated and the highest activity was observed for the EtOAc extract which showed an IC50 value about 60-fold lower than the reference compound 1-deoxynojirimycin (DNJ) on α-glucosidase (0.42 ± 0.02 and 25.4 ± 0.6 µg/mL, respectively). As expected on the basis of the literature data concerning both α-glucosidase and α-amylase inhibition, a milder inhibition activity on pancreatic α-amylase was observed. Preliminary in vivo tests on Drosophila melanogaster carried out on the most active obtained extract (EtOAc) confirmed the in vitro observed hypoglycemic activity. Finally, the EtOAc extract metabolic profile was determined through GC-MS and HRMS analyses.
Collapse
Affiliation(s)
- Valeria Ferraro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna Spagnoletta
- Laboratory “Regenerative Circular Bioeconomy”, ENEA-Trisaia Research Centre, 75026 Rotondella, Italy;
| | - Natalie Paola Rotondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
- Department of Medicine & Surgery, LUM University Giuseppe Degennaro Torre Rossi, Piano 5 S.S. 100 Km. 18, 70010 Casamassima, Italy
| | - Gaetano Balenzano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Annalisa De Palma
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Turin, 10124 Torino, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| |
Collapse
|
3
|
Wang J, Pan J, Zou J, Shi Y, Guo D, Zhai B, Zhao C, Luan F, Zhang X, Sun J. Isolation, structures, bioactivities, and utilizations of polysaccharides from Dictyophora species: A review. Int J Biol Macromol 2024; 278:134566. [PMID: 39116988 DOI: 10.1016/j.ijbiomac.2024.134566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Dictyophora species is an edible and medicinal fungus belonging to the Basidiomycotina, Gasteromycetes, Phallales, family Phallaceae, and genus Dictyophora, which is popular with consumers in China and across various Asian regions. Polysaccharides from Dictyophora species (DPs) are important bioactive macromolecules with multiple health benefits, according to published studies, including anti-tumor, antioxidative, anti-obesity, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory, regulation of gut microbiota, antibacterial, renoprotective, and other pharmacological effects. Based on their rich pharmacological activities, the preparation techniques, structural characteristics and pharmacological activities of DPs have been extensively studied. However, to the best of our knowledge, there is no dedicated review to shed light on recent advances in DPs. Therefore, in order to fill this gap, this review provides a comprehensive overview of the research on DPs, including the latest advances in extraction, isolation and purification, structural characteristics, pharmacological properties, safety assessment and potential utilizations, which will provide a theoretical basis for the research and development of subsequent DPs-related products.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Chongbo Zhao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
4
|
Zhang Y, Yu W, Lu Y, Wu Y, Ouyang Z, Tu Y, He B. Epigenetic Regulation of Fungal Secondary Metabolism. J Fungi (Basel) 2024; 10:648. [PMID: 39330408 PMCID: PMC11433216 DOI: 10.3390/jof10090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Secondary metabolism is one of the important mechanisms by which fungi adapt to their living environment and promote survival and reproduction. Recent studies have shown that epigenetic regulation, such as DNA methylation, histone modifications, and non-coding RNAs, plays key roles in fungal secondary metabolism and affect fungal growth, survival, and pathogenicity. This review describes recent advances in the study of epigenetic regulation of fungal secondary metabolism. We discuss the way in which epigenetic markers respond to environmental changes and stimulate the production of biologically active compounds by fungi, and the feasibility of these new findings applied to develop new antifungal strategies and optimize secondary metabolism. In addition, we have deliberated on possible future directions of research in this field. A deeper understanding of epigenetic regulatory networks is a key focus for future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (Y.Z.); (W.Y.); (Y.L.); (Y.W.); (Z.O.)
| |
Collapse
|
5
|
Chen X, Liu J, Chen AJ, Wang L, Jiang X, Gong A, Liu W, Wu H. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. PEST MANAGEMENT SCIENCE 2024; 80:4125-4136. [PMID: 38578571 DOI: 10.1002/ps.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Maize stalk rot (MSR) caused by Fusarium graminearum is the primary factor contributing to the reduction in maize yield and quality. However, this soil-borne disease presents a significant challenge for sustainable control through field management and chemical agents. The screening of novel biocontrol agents can aid in developing innovative and successful strategies for MSR control. RESULTS A total of 407 strains of bacteria were isolated from the rhizosphere soil of a resistant maize inbred line. One strain exhibited significant antagonistic activity in plate and pot experiments, and was identified as Burkholderia ambifaria H8. The strain could significantly inhibit the mycelial growth and spore germination of F. graminearum, induce resistance to stalk rot, and promote plant growth. The volatile compounds produced by strain H8 and its secondary metabolites in the sterile fermentation broth exhibited antagonistic activity. The primary volatile compound produced by strain H8 was identified as dimethyl disulfide (DMDS) using gas chromatography tandem mass spectrometry. Through in vitro antagonistic activity assays and microscopic observation, it was confirmed that DMDS was capable of inhibiting mycelial growth and disrupting the mycelial structure of F. graminearum, suggesting it may be the major active compound for strain H8. The transcriptome data of F. graminearum further indicated that strain H8 and its volatile compounds could alter pathogenic fungi metabolism, influence the related metabolic pathways, and potentially induce cell apoptosis within F. graminearum. CONCLUSION Our results showed that B. ambifaria H8 was capable of producing the volatile substance dimethyl disulfide, which influenced the synthesis and permeability of cell membranes in pathogens. Thus, B. ambifaria H8 was found to be a promising biological control agent against MSR. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Lin Wang
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
6
|
Al Qutaibi M, Kagne SR. Exploring the Phytochemical Compositions, Antioxidant Activity, and Nutritional Potentials of Edible and Medicinal Mushrooms. Int J Microbiol 2024; 2024:6660423. [PMID: 38841191 PMCID: PMC11152763 DOI: 10.1155/2024/6660423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Mushrooms are a valuable source of food and medicine that have been used for centuries in various cultures. They contain a variety of phytochemicals, such as terpenoids and polysaccharides, that exhibit diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, antimicrobial, immunomodulatory, and antidiabetic effects. However, mushroom's phytochemical composition and bioactivity vary depending on their species, cultivation conditions, processing methods, and extraction techniques. Therefore, using reliable analytical methods and standardized protocols is important for systematically evaluating the quality and quantity of mushroom phytochemicals and their therapeutic potential. This review provides a bibliometric analysis of the recent literature on biological activities, highlights trends in the field, and highlights the countries and journals with the highest contribution. It also discusses the nutritional value of the total content of phenolic and other phytochemicals in some species of mushrooms.
Collapse
Affiliation(s)
- Mohammed Al Qutaibi
- Department of Medical Microbiology, Faculty of Science, Ibb University, Ibb, Yemen
- Department of Microbiology, Badrinarayan Barwale College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India
| | - Suresh R. Kagne
- Department of Microbiology, Badrinarayan Barwale College, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India
| |
Collapse
|
7
|
Wu Y, Zhang H, Zhu J, Zhang Z, Ma S, Zhao Y, Wang Y, Yuan J, Guo X, Li Y, Zhang S. The Effect of Fermentation on the Chemical Constituents of Gastrodia Tuber Hallimasch Powder (GTHP) Estimated by UHPLC-Q-Orbitrap HRMS and HPLC. Molecules 2024; 29:1663. [PMID: 38611942 PMCID: PMC11013358 DOI: 10.3390/molecules29071663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE To compare the effect of fermentation on the chemical constituents of Gastrodia Tuder Halimasch Powder (GTHP), to establish its fingerprinting and multicomponent content determination, and to provide a basis for the processing, handling, and clinical application of this herb. METHODS Ultra-high-performance liquid chromatography-quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was used to conduct a preliminary analysis of the chemical constituents in GTHP before and after fermentation. High-performance liquid chromatography (HPLC) was used to determine some major differential components of GTHP and establish fingerprints. Cluster analysis (CA), and principal component analysis (PCA) were employed for comprehensive evaluation. RESULTS Seventy-nine compounds were identified, including flavonoids, organic acids, nucleosides, terpenoids, and others. The CA and PCA results showed that ten samples were divided into three groups. Through standard control and HPLC analysis, 10 compounds were identified from 22 peaks, namely uracil, guanosine, adenosine, 5-hydroxymethylfurfural (5-HMF), daidzin, genistin, glycitein, daidzein, genistein, and ergosterol. After fermentation, GTHP exhibited significantly higher contents of uracil, guanosine, adenosine, 5-hydroxymethylfurfural, and ergosterol and significantly lower genistein and daidzein contents. CONCLUSIONS The UHPLC-Q-Orbitrap HRMS and HPLC methods can effectively identify a variety of chemical components before and after the fermentation of GTHP. This study provides a valuable reference for further research on the rational clinical application and quality control improvement of GTHP.
Collapse
Affiliation(s)
- Yaning Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hongwei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianguang Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenling Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou 450046, China
- Henan Engineering Technology Research Center for Integrated Traditional Chinese Medicine Production, Zhengzhou 450046, China
- Henan Engineering Research Center of Traditional Chinese Medicine Characteristic Processing Technology, Zhengzhou 450046, China
| | - Songbo Ma
- Luoyang Wokang Pharmaceutical Co., Ltd., Luoyang 471521, China
| | - Yongqi Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yiming Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jun Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xing Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yajing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuai Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
8
|
Daroodi Z, Taheri P, Tarighi S, Iranshahi M, Akaberi M. Efficacy of ergosterol peroxide obtained from the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. J Appl Microbiol 2024; 135:lxae031. [PMID: 38346851 DOI: 10.1093/jambio/lxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024]
Abstract
AIM To investigate antifungal activity of the extract and major metabolite of the endophytic fungus Acrophialophora jodhpurensis (belonging to Chaetomiaceae) against crown and root rot caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), as an important pathogen of tomato. METHODS AND RESULTS The endophytic fungus A. jodhpurensis, has high inhibitory effect against R. solani AG4-HG II in vitro and in vivo. The media conditions were optimized for production of the endophyte's metabolites. The highest amounts of secondary metabolites were produced at pH 7, 30°C temperature, and in the presence of 0.5% glucose, 0.033% sodium nitrate, and 1 gl-1 asparagine as the best carbon, nitrogen, and amino acid sources, respectively. The mycelia were extracted by methanol and the obtained extract was submitted to various chromatography techniques. Phytochemical analysis via thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) spectroscopy showed that ergosterol peroxide was the major component in the extract of this endophyte. Antifungal activities of the methanolic extract and ergosterol peroxide in the culture media were studied against R. solani. Minimum inhibitory concentrations of the extract and ergosterol peroxide against the pathogen were 600 and 150 µg ml-1, respectively. Ergosterol peroxide revealed destructive effects on the pathogen structures in microscopic analyses and induced sclerotia production. Histochemical analyses revealed that it induced apoptosis in the mycelia of R. solani via superoxide production and cell death. Application of ergosterol peroxide in the leaf disc assay reduced the disease severity in tomato leaves. CONCLUSIONS Antifungal metabolites produced by A. jodhpurensis, such as ergosterol peroxide, are capable of controlling destructive Rhizoctonia diseases on tomato.
Collapse
Affiliation(s)
- Zoha Daroodi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran
| | - Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948944, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948944, Iran
| |
Collapse
|
9
|
Hoang CK, Le CH, Nguyen DT, Tran HTN, Luu CV, Le HM, Tran HTH. Steroid Components of Marine-Derived Fungal Strain Penicillium levitum N33.2 and Their Biological Activities. MYCOBIOLOGY 2023; 51:246-255. [PMID: 37711987 PMCID: PMC10498798 DOI: 10.1080/12298093.2023.2248717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Genus Penicillium comprising the most important and extensively studied fungi has been well-known as a rich source of secondary metabolites. Our study aimed to analyze and investigate biological activities, including in vitro anti-cancer, anti-inflammatory and anti-diabetic properties, of metabolites from a marine-derived fungus belonging to P. levitum. The chemical compounds in the culture broth of P. levitum strain N33.2 were extracted with ethyl acetate. Followingly, chemical analysis of the extract leaded to the isolation of three ergostane-type steroid components, namely cerevisterol (1), ergosterol peroxide (2), and (3β,5α,22E)-ergosta-6,8(14),22-triene-3,5-diol (3). Among these, (3) was the most potent cytotoxic against human cancer cell lines Hep-G2, A549 and MCF-7 with IC50 values of 2.89, 18.51, and 16.47 µg/mL, respectively, while the compound (1) showed no significant effect against tested cancer cells. Anti-inflammatory properties of purified compounds were evaluated based on NO-production in LPS-induced murine RAW264.7 macrophages. As a result, tested compounds performed diverse inhibitory effects on NO production by the macrophages, with the most significant inhibition rate of 81.37 ± 1.35% at 25 µg/mL by the compound (2). Interestingly, compounds (2) and (3) exhibited inhibitory activities against pancreatic lipase and α-glucosidase enzymes in vitro assays. Our study brought out new data concerning the chemical properties and biological activities of isolated steroids from a P. levitum fungus.
Collapse
Affiliation(s)
- Chi K. Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Cuong H. Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dat T. Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hang T. N. Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chinh V. Luu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huong M. Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T. H. Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
10
|
Uffelman CN, Doenges KA, Armstrong ML, Quinn K, Reisdorph RM, Tang M, Krebs NF, Reisdorph NA, Campbell WW. Metabolomics Profiling of White Button, Crimini, Portabella, Lion's Mane, Maitake, Oyster, and Shiitake Mushrooms Using Untargeted Metabolomics and Targeted Amino Acid Analysis. Foods 2023; 12:2985. [PMID: 37627983 PMCID: PMC10453450 DOI: 10.3390/foods12162985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion's mane, maitake, oyster, and shiitake mushrooms using untargeted liquid chromatography mass spectrometry (LC/MS)-based metabolomics. We also quantified amino acid concentrations, including L-ergothioneine, a potential antioxidant which is not synthesized by plants or animals. Among the seven mushroom varieties, more than 10,000 compounds were detected. Principal Component Analysis indicated mushrooms of the same species, Agaricus Bisporus (white button, portabella, crimini), group similarly. The other varieties formed individual, distinct clusters. A total of 1344 (520 annotated) compounds were detected in all seven mushroom varieties. Each variety had tens-to-hundreds of unique-to-mushroom-variety compounds. These ranged from 29 for crimini to 854 for lion's mane. All three Agaricus bisporus varieties had similar amino acid profiles (including detection of all nine essential amino acids), while other varieties had less methionine and tryptophan. Lion's mane and oyster mushrooms had the highest concentrations of L-ergothioneine. The detection of hundreds of unique-to-mushroom-variety compounds emphasizes the differences in chemical composition of these varieties of edible fungi.
Collapse
Affiliation(s)
- Cassi N. Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Katrina A. Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Michael L. Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Richard M. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Minghua Tang
- School of Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (N.F.K.)
| | - Nancy F. Krebs
- School of Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (N.F.K.)
| | - Nichole A. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
11
|
Mayirnao HS, Gupta S, Thokchom SD, Sharma K, Mehmood T, Kaur S, Sharma YP, Kapoor R. Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements. J Fungi (Basel) 2023; 9:763. [PMID: 37504751 PMCID: PMC10381459 DOI: 10.3390/jof9070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Kargil is a cold desert with hostile ecological conditions such as low temperature and precipitation, as well as difficult terrains. However, several wild mushrooms thrive well under such an extreme environment. Despite their abundance, the chemical composition of indigenous mushrooms has not been explored. This study aimed to assess the potential of two wild edible mushrooms from Kargil, Lactarius drassinus and Lactarius controversus, as food supplements by evaluating their nutritional and nutraceutical properties. Nutritional attributes such as total protein, available carbohydrates, soluble sugars, and vitamins were found to be high in the mushroom species. Furthermore, high mineral accumulation and relatively lower antinutrient concentrations resulted in higher bioavailabilities of Zn, Fe, Ca, and Mg. Gas-chromatography-mass-spectrometry-based metabolite profiling revealed that although the two mushroom species showed similar metabolite compositions, their relative concentrations differed. Sugars were the predominant compounds identified in both the species, with sugar alcohols being the major contributor. The second most abundant class of compound in L. drassinus was amino acids, with 5-oxoproline as the major contributor. On the other hand, fatty acids were the second most abundant compounds in L. controversus, with high oleic and linoleic acid concentrations. In the ultra-performance-liquid-chromatography-based quantification of phenolic compounds, chlorogenic acid was found to be highest in in terms of its concentration in both the mushrooms studied, followed by quercetin dihydrate and gallic acid in L. drassinus and L. controversus, respectively. Moreover, high antioxidant activities attributable to their high phenol, flavonoid, and carotenoid concentrations were observed. Overall, the two mushrooms offer well-balanced sources of nutritional and nutraceutical compounds, making them healthy foods.
Collapse
Affiliation(s)
| | - Samta Gupta
- Department of Botany, University of Delhi, Delhi 110007, India
| | | | - Karuna Sharma
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Tahir Mehmood
- Department of Botany, University of Jammu, Jammu 180016, India
| | - Surinder Kaur
- SGTB Khalsa College, University of Delhi, Delhi 110007, India
| | - Yash Pal Sharma
- Department of Botany, University of Jammu, Jammu 180016, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
12
|
Rangsinth P, Sharika R, Pattarachotanant N, Duangjan C, Wongwan C, Sillapachaiyaporn C, Nilkhet S, Wongsirojkul N, Prasansuklab A, Tencomnao T, Leung GPH, Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023; 12:2529. [PMID: 37444267 DOI: 10.3390/foods12132529] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Rajasekharan Sharika
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chamaiphron Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Ahmed AF, Mahmoud GAE, Hefzy M, Liu Z, Ma C. Overview on the edible mushrooms in Egypt. JOURNAL OF FUTURE FOODS 2023; 3:8-15. [DOI: 10.1016/j.jfutfo.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Lin G, Li Y, Chen X, Zhang F, Linhardt RJ, Zhang A. Extraction, structure and bioactivities of polysaccharides from Sanghuangporus spp.: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
16
|
Physicochemical Characteristics and Storage Stability of Hybrid Beef Patty Using Shiitake Mushroom (Lentinus edodes). J FOOD QUALITY 2023. [DOI: 10.1155/2023/7239709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study evaluated the physicochemical characteristics and storage stability (at 0, 3, and 7 days) of hybrid beef patties with different amount of shiitake mushrooms (Lentinus edodes) added. Shiitake mushrooms contain healthy ingredients such as ergosterol and β-glucan. Four proportions of shiitake mushrooms were added to beef patties (T1, 20%, T2, 40%, T3, 60%, T4, 80%) as a substitute for beef and compared with a control group (CON 0%). Chemical composition, water holding capacity (WHC), cooking loss, pH, color, texture profile analysis, and sensory properties of the products were compared on day 0. As a storage stability experiment, volatile basic nitrogen (VBN), 2-thiobarbituric acid reactive substances (TBARS), and total microbial count were compared (0, 3, and 7 days). The results revealed that replacement with shiitake improved the WHC and cooking loss of patties but had a negative effect on sensory properties and storage stability. These results indicate that shiitake mushrooms can be added along with beef to produce hybrid patties; however, the usage amount must be considered.
Collapse
|
17
|
Ghafoor A, Niazi AR. Culturability, Cultivation Potential, and Element Analysis of the Culinary-Medicinal Cauliflower Mushroom Sparassis latifolia (Agaricomycetes) from Pakistan. Int J Med Mushrooms 2023; 25:85-95. [PMID: 37824408 DOI: 10.1615/intjmedmushrooms.2023049448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Sparassis Fr. is a recognized nutritionally and therapeutically significant genus of mushrooms. Its species has the potential to meet the nutritious and healthy food needs of the growing population but unfortunately due to their tough, laborious and undefined cultivation conditions, their domestication is very rare and not properly described before. In this study, first time the detailed culturabilty and cultivation potential of a wild S. latifolia species from Pakistan was evaluated. Among the different media used, maximum cultural growth was observed on pine needles extract agar (PEA) medium at 24°C. Cultured strains on PEA medium were used to spawn on wheat, sorghum and barley grains. Sorghum grains at 24°C were found as the best combination for spawn production of this mushroom. Total yield efficacy was investigated on a variety of substrates. A mixed substrate of Morus sawdust and pine sawdust at 20°C showed the optimum yield. Element analysis of wild and cultivated strain was carried out and revealed that this mushroom is enriched with macronutrients. These results showed that S. latifolia has great artificial growth potential. Its domestication can compete with commonly growing mushrooms in nutritional and pharmaceutical attributes.
Collapse
Affiliation(s)
- Aneeqa Ghafoor
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Abdul Rehman Niazi
- Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
18
|
Berikashvili V, Khardziani T, Kobakhidze A, Kulp M, Kuhtinskaja M, Lukk T, Gargano ML, Venturella G, Kachlishvili E, Metreveli E, Elisashvili VI, Asatiani M. Antifungal Activity of Medicinal Mushrooms and Optimization of Submerged Culture Conditions for Schizophyllum commune (Agaricomycetes). Int J Med Mushrooms 2023; 25:1-21. [PMID: 37830193 DOI: 10.1615/intjmedmushrooms.2023049836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The main goal of the present study was the exploration of the antifungal properties of Agaricomycetes mushrooms. Among twenty-three tested mushrooms against A. niger, B. cinerea, F. oxysporum, and G. bidwellii, Schizophyllum commune demonstrated highest inhibition rates and showed 35.7%, 6.5%, 50.4%, and 66.0% of growth inhibition, respectively. To reveal culture conditions enhancing the antifungal potential of Sch. commune, several carbon (lignocellulosic substrates among them) and nitrogen sources and their optimal concentrations were investigated. Presence of 6% mandarin juice production waste (MJPW) and 6% of peptone in nutrient medium promoted antifungal activity of selected mushroom. It was determined that, extracts obtained in the presence of MJPW effectively inhibited the grow of pathogenic fungi. Moreover, the content of phenolic compounds in the extracts obtained from Sch. commune grown on MJPW was several times higher (0.87 ± 0.05 GAE/g to 2.38 ± 0.08 GAE/g) than the extracts obtained from the mushroom grown on the synthetic (glycerol contained) nutrient medium (0.21 ± 0.03 GAE/g to 0.88 ± 0.05 GAE/g). Flavonoid contents in the extracts from Sch. commune varied from 0.58 ± 0.03 to 27.2 ± 0.8 mg QE/g. Identification of phenolic compounds composition in water and ethanol extracts were provided by mass spectrometry analysis. Extracts demonstrate considerable free radical scavenging activities and the IC50 values were generally low for the extracts, ranging from 1.9 mg/ml to 6.7 mg/ml. All the samples displayed a positive correlation between their concentration (0.05-15.0 mg/ml) and DPPH radical scavenging activity. This investigation revealed that Sch. commune mushroom has great potential to be used as a source of antifungal and antioxidant substances.
Collapse
Affiliation(s)
- Violeta Berikashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Tamar Khardziani
- Durmishidze Institute of Biochemistry and Biotechnology, Academy of Science of Georgia, 10 km Agmashenebeli kheivani, 0159 Tbilisi, Georgia; Institute of Microbial Biotechnology, Agricultural University of Georgia, Tbilisi, Georgia
| | - Aza Kobakhidze
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Maria Kulp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Kuhtinskaja
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Maria Letizia Gargano
- Departament of Schol, Plant, and Food Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A - 70126 Bari, Italy
| | - Giuseppe Venturella
- Italian Society of Medicinal Mushrooms, Pisa, Italy; Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Eva Kachlishvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Eka Metreveli
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Vladimir I Elisashvili
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| | - Mikheil Asatiani
- The Institute of Microbial Biotechnology, Agricultural University of Georgia, 0131 Tbilisi, Georgia
| |
Collapse
|
19
|
Hypsizygus marmoreus as a Source of Indole Compounds and Other Bioactive Substances with Health-Promoting Activities. Molecules 2022; 27:molecules27248917. [PMID: 36558049 PMCID: PMC9785099 DOI: 10.3390/molecules27248917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypsizygus marmoreus is an edible medicinal mushroom species with a high dietary value. In this study, the fruiting bodies of commercial and self-cultivated crops and mycelium from in vitro H. marmoreus cultures (both white and brown varieties) were evaluated. This study aimed to analyze the presence of indole compounds and other biologically active substances and determine the effect that the addition of zinc and magnesium ions to the culture medium has on the content of the tested compounds in mycelial cultures. The content of indole compounds and other organic compounds was determined using high-performance liquid chromatography, the content of bioelements was determined using flame atomic absorption spectrometry, the glucan content was determined spectrophotometrically, and the antioxidant activity of extracts was estimated using DPPH, FRAP, and ABTS methods. The results showed that H. marmoreus mycelium from in vitro cultures is a good source of indole compounds, bioelements, glucans, and lovastatin. Mycelia from in vitro cultures showed the most diverse composition of indole compounds (L-tryptophan, 5-hydroxy-L-tryptophan, tryptamine, 5-methyltryptamine, and melatonin). Additionally, in vitro cultures of H. marmoreus enriched with Zn and Mg salts increased the contents of Na, Ca, Zn, 5-methyltryptamine, melatonin, protocatechuic acid, sterols, and total glucans. Only in the case of the white variety of mycelial enriched cultures, ergothioneine and Mg levels also increased. To summarize, the content of the active compounds differed depending on the H. marmoreus variety and the tested material.
Collapse
|
20
|
Conversion of ergosterol into vitamin D2 and other photoisomers in Agaricus bisporus mushrooms under UV-C irradiation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
HPTLC determination of ergosterol in wheat and structure elucidation by NMR: Toward confirming method selectivity. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Dong H, Zhou C, Li X, Gu H, E H, Zhang Y, Zhou F, Zhao Z, Fan T, Lu H, Cai M, Zhao X. Ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry based untargeted metabolomics to reveal the characteristics of Dictyophora rubrovolvata from different drying methods. Front Nutr 2022; 9:1056598. [PMID: 36519000 PMCID: PMC9742599 DOI: 10.3389/fnut.2022.1056598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 08/13/2023] Open
Abstract
Dictyophora rubrovolvata is a highly valuable and economically important edible fungus whose nutrition and flavor components may vary based on drying methods. Herein, an untargeted ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomics method combined with multivariate analysis was first performed to characterize the metabolomics profiles of D. rubrovolvata upon different drying treatments, viz., coal burning drying (CD), electrothermal hot air drying (ED), and freeze drying (FD). The results indicated that 69 differential metabolites were identified, vastly involving lipids, amino acids, nucleotides, organic acids, carbohydrates, and their derivatives, of which 13 compounds were confirmed as biomarkers in response to diverse drying treatments. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis illustrated that differential metabolites were significantly assigned to 59, 55, and 60 pathways of CD vs. ED, CD vs. FD, and FD vs. ED groups, respectively, with 9 of the top 20 KEGG pathways shared. Specifically, most of lipids, such as fatty acyls, glycerophospholipids and sphingolipids, achieved the highest levels in D. rubrovolvata after the CD treatment. ED method substantially enhanced the contents of sterol lipids, nucleotides, organic acids and carbohydrates, while the levels of amino acids, prenol lipids and glycerolipids were elevated dramatically against the FD treatment. Collectively, this study shed light on metabolomic profiles and proposed biomarkers of D. rubrovolvata subjected to multiple drying techniques, which may contribute to quality control and drying efficiency in edible fungi production.
Collapse
Affiliation(s)
- Hui Dong
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Changyan Zhou
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaobei Li
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haotian Gu
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERCLA), Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Hengchao E
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanmei Zhang
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Zhou
- National Research Center of Edible Fungi Biotechnology and Engineering, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Zhao
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tingting Fan
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huan Lu
- National Research Center of Edible Fungi Biotechnology and Engineering, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Min Cai
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERCLA), Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Xiaoyan Zhao
- Laboratory of Agro-Food Quality and Safety Risk Assessment (Shanghai), Institute of Agro-Food Quality Standard and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
23
|
Liu B, Lu H, Shu Q, Chen Q, Wang J. The Influence of Different Pretreatment Methods of Highland Barley by Solid-State Fermentation with Agaricus sinodeliciosus var. Chaidam ZJU-TP-08 on Its Nutrient Content, Functional Properties and Physicochemical Characteristics. J Fungi (Basel) 2022; 8:940. [PMID: 36135665 PMCID: PMC9503706 DOI: 10.3390/jof8090940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
To enhance the nutritional value of highland barley (HB), this work investigated the effects of solid-state fermentation (SSF) by Agaricus sinodeliciosus var. Chaidam ZJU-TP-08 on nutrient content, phenolic components, antioxidant activities, and physicochemical characteristics of HB upon different pretreatments (germination, ultrasound and soaking). The results showed that germinated highland barley (GHB) exhibited higher levels of ergosterol (0.19 ± 0.01 mg/g) in all fermentation groups. The content of β-glucan was higher in the SSF-GHB, with an increase of 24.21% compared to the control. The content of total amino acids, dietary fiber, total phenols and flavonoids were higher in the fermentation HB pretreated by ultrasound, increasing respectively by 5.60%, 61.50%, 25.10% and 65.32% compared to the control group. In addition, the colonized HB exhibited excellent physicochemical characteristics, including increased water solubility index and decreased pasting characteristics. Herein, the nutritional value and the biological activities were enriched in the pretreated HB through SSF, indicating its potential application for nutrition-enriched functional foods.
Collapse
Affiliation(s)
- Biao Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qin Shu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
24
|
Excessive Oxalic Acid Secreted by Sparassis latifolia Inhibits the Growth of Mycelia during Its Saprophytic Process. Cells 2022; 11:cells11152423. [PMID: 35954267 PMCID: PMC9368360 DOI: 10.3390/cells11152423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Sparassis latifolia is an edible and medicinal mushroom in Asia commercially cultivated on substrates containing pine sawdust. Its slow mycelial growth rate greatly increases the cultivation cycle. In this study, we mainly studied the role of oxalic acid (OA) secreted by S. latifolia in its saprophytic process. Our results show that crystals observed on the mycelial surface contained calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) according to X-ray diffraction (XRD). Vegetative mycelia secreted large amounts of OA during extended culture periods. However, high concentrations of OA decreased the mycelial growth rate significantly. Moreover, the degradation of lignocellulose was significantly inhibited under high concentrations of OA. These changes could be attributed to the significantly decreased activities of lignocellulose-degrading enzymes. In conclusion, by establishing a link between OA secretion by the mycelium and the slow growth rate of its saprophytic process, this work provides fundamental information for shortening the cultivation cycle of S. latifolia.
Collapse
|
25
|
Structural diversity and bioactivity of polysaccharides from medicinal mushroom Phellinus spp.: A review. Food Chem 2022; 397:133731. [PMID: 35908464 DOI: 10.1016/j.foodchem.2022.133731] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
Phellinus spp., an important medicinal fungus mushroom extensively cultivated and consumed in East Asia for over 2000 years, is traditionally considered a precious food supplement and medicinal ingredient. Published studies showed that the polysaccharides are major bioactive macromolecules from Phellinus spp. (PPs) with multiple health-promoting effects, including immunomodulatory, anti-cancer, anti-inflammatory, hepatoprotective, hypoglycemic, hypolipidemic, antioxidant, and other bioactivities. Although the polysaccharides extracted from the fruiting body, mycelium, and fermentation broth of Phellinus spp. have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge for their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. This review systematically summarizes the recent progress in the isolation and purification, chemical structures, bioactivities, and the underlying mechanisms of PPs. Information from this review provides insights into the further development of polysaccharides from PPs as therapeutic agents and functional foods.
Collapse
|
26
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
27
|
Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. SUSTAINABILITY 2022. [DOI: 10.3390/su14074328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, and nanoremediation through different soil management tools. Mushrooms can play a vital role in the soil through bio-nanoremediation, especially under the biological synthesis of nanoparticles, which could be used in the bioremediation process. This review focuses on the green synthesis of nanoparticles using mushrooms and the potential of bio-nanoremediation for polluted soils. The distinguished roles of mushrooms of soil improvement are considered a crucial dimension for sustainable soil management, which may include controlling soil erosion, improving soil aggregates, increasing soil organic matter content, enhancing the bioavailability of soil nutrients, and resorting to damaged and/or polluted soils. The field of bio-nanoremediation using mushrooms still requires further investigation, particularly regarding the sustainable management of soils.
Collapse
|
28
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
29
|
Outdoor versus indoor cultivation: Effects on the metabolite profile of Agaricus subrufescens strains analyzed by untargeted metabolomics. Food Chem 2021; 374:131740. [PMID: 34879324 DOI: 10.1016/j.foodchem.2021.131740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
Agaricus subrufescens has emerged as an important culinary-medicinal mushroom over the last decades. Efforts have been dedicated to upgrade the A. subrufescens productive process via strain selection and cultivation scaling-up. However, little is known on the influence of those variables on the metabolite profiles and nutraceutical properties of this mushroom. In this work, the effects of outdoor versus indoor cultivation on the metabolite profiles of five commercial strains of A. subrufescens were investigated by untargeted metabolomics. UHPLC-MS coupled to multivariate data analysis revealed that the concentration of several metabolites with reported health-related properties as well as related to taste and browning varied significantly between strains and were affected by the cultivation system in a strain-dependent manner. Data suggest that increasing the production scale by means of indoor cultivation may decrease the nutraceutical quality of some A. subrufescens strains while also affecting taste and browning susceptibility to different extents.
Collapse
|