1
|
Yu Q, Huang X, Fan L. Advanced stability prediction and mechanism study of goji berry beverage via ultrasound-assisted homogenization utilizing genetic algorithm-based backpropagation neural networks. Food Chem 2025; 482:144186. [PMID: 40209388 DOI: 10.1016/j.foodchem.2025.144186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/23/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025]
Abstract
Traditional cloudy goji berry beverages (CGBs) preparation methods often cause irreversible phase separation during sterilization and require high homogenization pressures. However, combined ultrasound and homogenization (US-HPH) technology achieves stability of CGBs at lower pressures with the combination of 200 W ultrasonic power and 40 MPa homogenizing pressure. US-HPH significantly reduces average particle size by 67.91 % and increases absolute zeta potential by 5.73 % compared to optimal ultrasound conditions. And it reduces particle size by 43.78 % and increases zeta potential by 20.63 % compared to optimal homogenization. Simultaneously, a variety of active components in CGBs, including proteins, polyphenols, and carotenoids, were preserved. Additionally, to comprehensively reveal the effects of US-HPH on CGBs stability, a predictive model based on genetic algorithm (GA) and back-propagation (BP) neural network accurately characterizes were developed, and the results predicts particle size and zeta potential of CGBs, with high accuracy (RMSE = 0.026, MAE < 2).
Collapse
Affiliation(s)
- Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xunyang Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Martínez-Saldarriaga J, Henao-Rojas JC, Flórez-Martínez DH, Cadena-Chamorro EM, Yepes-Betancur DP. Methodological framework for supporting phytochemical bioprospecting re-search: A case study on carrot ( Daucus carota L.) crop by-products. Heliyon 2025; 11:e41822. [PMID: 39916821 PMCID: PMC11799957 DOI: 10.1016/j.heliyon.2025.e41822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/02/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Carrots are among the most crucial and globally preferred vegetables, widely recognized for their importance as a source of phytonutrients, including phenolic compounds, carotenoids, polyacetylenes, and ascorbic acid. However, its production phase incurs substantial losses, estimated at 30 %; these discarded carrots typically find application in animal feed, composting material or organic waste. Therefore, this study aims to develop a methodological framework focusing on the application of a phytochemical bioprospecting process based on scientific surveillance; using carrot crop by-products as a foundational example. Advanced methodologies, such as bibliometric, scientometric, and patent analyses, supported by technological tools such as VOSviewer and Patent Inspiration, were employed. This involved the creation of scientific landscapes, trend maps and co-occurrence networks, intending to explore the potential of carrot crop by-products, their applicability in generating new knowledge, and their utilization in the industry. This approach facilitated the identification of emerging trends in scientific research, providing a comprehensive view of commercial and industrial areas of interest, with a focus on circular economic principles. Furthermore, the study emphasized the importance of bioprospecting, supported by these methodologies and technological tools, as a key factor in the research process on the potential uses of carrot crop by-products, which could extend to other matrices.
Collapse
Affiliation(s)
- Jaison Martínez-Saldarriaga
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación La Selva, Kilómetro 7, vía Rionegro - Las Palmas, Sector Llanogrande, Rionegro, Colombia
- Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Universidad Nacional de Colombia, Sede Medellín, Calle 59A N°63– 20, Medellín, Colombia
| | - Juan Camilo Henao-Rojas
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Centro de Investigación La Selva, Kilómetro 7, vía Rionegro - Las Palmas, Sector Llanogrande, Rionegro, Colombia
| | - Diego Hernando Flórez-Martínez
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Sede Central, Kilómetro 14 vía Mosquera-Bogotá, Mosquera, Colombia
| | - Edith Marley Cadena-Chamorro
- Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Universidad Nacional de Colombia, Sede Medellín, Calle 59A N°63– 20, Medellín, Colombia
| | - Diana Paola Yepes-Betancur
- Servicio Nacional de Aprendizaje (SENA), Centro de la Innovación, la Agroindustria y la Aviación, Cra48 N°49-62, Rionegro, Colombia
| |
Collapse
|
3
|
Chen Z, Zhu Z, Marszałek K. Changes in the storage quality of fresh-cut vegetables using supercritical carbon dioxide treatment. Food Chem 2025; 465:142131. [PMID: 39581152 DOI: 10.1016/j.foodchem.2024.142131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Supercritical carbon dioxide (SCCD) has been studied for its effectiveness in preserving vegetables, but most research has focused on overall changes in the total phenolic, carotenoid and sugar contents. However, the detailed changes in individual nutrients during storage, as well as their relationship, remain largely unexplored. Herein, in this work, high-performance liquid chromatography (HPLC) was used to analyze the variations in individual carotenoids and sugars in SCCD-treated carrots and pumpkins during 21 days of storage. The results demonstrated that SCCD effectively inhibited microbial growth, and maintained the low levels of polyphenol oxidase (PPO) and peroxidase (POD) activity during storage. SCCD also deferred the degradation of carotenoid profile and phenolic compounds. Additionally, SCCD accelerated the hydrolysis of sucrose content while postponing the reduction of glucose and fructose. In summary, the SCCD technique could delay the quality deterioration of fresh-cut vegetables, preserving them with minimal quality changes.
Collapse
Affiliation(s)
- Zhe Chen
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology- State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Krystian Marszałek
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology- State Research Institute, Department of Fruit and Vegetable Product Technology, 36 Rakowiecka St., 02-532 Warsaw, Poland.
| |
Collapse
|
4
|
Su J, Qiu X, Pei Y, Zhang Z, Liu G, Luan J, Nie J, Li X. Physical Stability of Lotus Seed and Lily Bulb Beverage: The Effects of Homogenisation on Particle Size Distribution, Microstructure, Rheological Behaviour, and Sensory Properties. Foods 2024; 13:769. [PMID: 38472882 DOI: 10.3390/foods13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The lotus seed and lily bulb beverage (LLB) has a problem with solid particle sedimentation. To address this issue, LLB was homogenised twice at different pressures (0~100 MPa) using a homogeniser. This study aims to investigate the changes in the particle size distribution (PSD), microstructure, rheological behaviour, sedimentation index (IS), turbidity, physicochemical properties, and sensory quality of LLBs after homogenisation treatments. The results regarding PSD and microstructure showed that the suspended particles were decomposed at high pressure with increasing homogenisation pressure, forming small particles of cellular material, cell wall fragments, fibre fractions, and polymers. The LLB showed shear-thinning behaviour and weak gelation characteristics (G' > G″) and rheological properties. Among all homogenisation pressures, the 60 MPa sample showed the lowest sedimentation rate and the highest turbidity. When the pressure was increased from 0 to 100 MPa, the total soluble solid (TSS) content showed an upward trend, while the ascorbic acid content (AAC) gradually decreased. The highest sensory evaluation was observed in the 60 MPa sample in terms of overall acceptability.
Collapse
Affiliation(s)
- Jiajia Su
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaokun Qiu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Yi Pei
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhuo Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Guanghui Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiaojiao Luan
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiangli Nie
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Zhang Z, Cui T, Tai L, Mu K, Shi Y, Chen F, Liao X, Hu X, Dong L. Effect of High-Pressure Micro-Fluidization on the Inactivation of Staphylococcus aureus in Liquid Food. Foods 2023; 12:4306. [PMID: 38231783 DOI: 10.3390/foods12234306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
High-pressure homogenization has been extensively studied for its excellent homogenization effect and the prospect of continuous liquid food production, but its sterilization ability still needs to be improved. In this study, we replaced the homogenization valve with two opposing diamond nozzles (0.05 mm inner diameter) so that the fluid collided at high velocity, corresponding to high-pressure micro-fluidization (HPM). Moreover, HPM treatment significantly inactivated Staphylococcus aureus ~7 log in the liquid with no detectable sub-lethal state at a pressure of 400 MPa and a discharge temperature of 50 °C. The sterilization effect of HPM on S. aureus subsp. aureus was attributed to a significantly disrupted cell structure and increased membrane permeability, which led to the leakage of intracellular proteins, resulting in bacterial death. At the same time, HPM treatment was able to significantly reduce the ability of S. aureus subsp. aureus to form biofilms, which, in turn, reduced its virulence. Finally, compared to the simulated system, more effective sterilization was observed in apple juice, with its color and pH remaining unchanged, which suggested that HPM can be used to process other liquid foods.
Collapse
Affiliation(s)
- Zequn Zhang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Tianlin Cui
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Luyang Tai
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Kangyi Mu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Yicong Shi
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Li Dong
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| |
Collapse
|
6
|
Wu M, He X, Feng D, Li H, Han D, Li Q, Zhao B, Li N, Liu T, Wang J. The Emulsifying Properties, In Vitro Digestion Characteristics and Storage Stability of High-Pressure-Homogenization-Modified Dual-Protein-Based Emulsions. Foods 2023; 12:4141. [PMID: 38002198 PMCID: PMC10670896 DOI: 10.3390/foods12224141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The droplet size, zeta potential, interface protein adsorption rate, physical stability and microrheological properties of high-pressure-homogenization (HPH)-modified, dual-protein-based whey-soy (whey protein isolate-soy protein isolate) emulsions containing different oil phase concentrations (5%, 10% and 15%; w/w) were compared in this paper. The in vitro digestion characteristics and storage stability of the dual-protein emulsions before and after HPH treatment were also explored. The results show that with an increase in the oil phase concentration, the droplet size and interface protein adsorption rate of the untreated dual-protein emulsions increased, while the absolute value of the zeta potential decreased. When the oil phase concentration was 10% (w/w), HPH treatment could significantly reduce the droplet size of the dual-protein emulsion, increase the interface protein adsorption rate, and improve the elasticity of the emulsion. Compared with other oil phase concentrations, the physical stability of the dual-protein emulsion containing a 10% (w/w) oil phase concentration was the best, so the in vitro digestion characteristics and storage stability of the emulsions were studied. Compared with the control group, the droplet size of the HPH-modified dual-protein emulsion was significantly reduced after gastrointestinal digestion, and the in vitro digestibility and release of free amino groups both significantly increased. The storage stability results show that the HPH-modified dual-protein emulsion showed good stability under different storage methods, and the storage stability of the steam-sterilized dual-protein emulsion stored at room temperature was the best. These results provide a theoretical basis for the development of new nutritional and healthy dual-protein liquid products.
Collapse
Affiliation(s)
- Meishan Wu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoye He
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hu Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Di Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingye Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Boya Zhao
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tianxin Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Lab of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
7
|
Yang Z, Fan H, Li R, Li B, Fan J, Ge J, Xu X, Pan S, Liu F. Potential role of cell wall pectin polysaccharides, water state, and cellular structure on twice "increase-decrease" texture changes during kohlrabi pickling process. Food Res Int 2023; 173:113308. [PMID: 37803613 DOI: 10.1016/j.foodres.2023.113308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Pickled kohlrabi is a traditional and favored vegetable product in China. During pickling, the hardness, springiness, and chewiness of kohlrabi all experienced a typical change with twice "increase-decrease" trend. However, little is known about its mechanism. In this study, in situ analysis including immunofluorescence, low field nuclear magnetic, and transmission electron microscopy were used to explore the effects of cell wall pectin, water state, and cellular structure on kohlrabi texture changes during pickling. Results revealed that at the early stage, due to the rapid loss of water after three times salting, the cells shrank and the interstitial space reduced, resulting in the first increase on kohlrabi texture. Subsequently, the dehydration-rehydration caused by the first brine processing resulted in the first decrease on kohlrabi texture. Then under the action of PME enzyme, more low-esterified pectin was produced, and chelate-soluble pectin with more branched structure was further formed, leading to another elevation of the sample texture. As the pickling continued, under the combined action of PG and PME, the molecular weight of pectin was decreased and the rigidity of the cell tissue was destroyed, caused kohlrabi texture continued to decline. These researches could provide important information and guidance for better maintaining the texture of pickled vegetables during processing.
Collapse
Affiliation(s)
- Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Hekai Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Ruoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Bowen Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jiangtao Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jinjiang Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Wu M, He X, Feng D, Li H, Han D, Li Q, Zhao B, Li N, Liu T, Wang J. The Effect of High Pressure Homogenization on the Structure of Dual-Protein and Its Emulsion Functional Properties. Foods 2023; 12:3358. [PMID: 37761067 PMCID: PMC10529657 DOI: 10.3390/foods12183358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
It has been proven that high-pressure homogenization (HPH) could improve the functional properties of proteins by modifying their structure. This study researched the effect of HPH on the structural and functional properties of whey-soy dual-protein (Soy Protein Isolation-Whey Protein Isolation, SPI-WPI). Different protein solution samples were treated with HPH at 30, 60, 90, 120 and 150 MPa, and the structure changed under different pressures was analyzed by measuring particle size, zeta potential, Fourier infrared spectrum (FTIR), fluorescence spectrum and scanning electron microscope (SEM). The results showed that HPH significantly reduced the particle size of SPI-WPI, changed the secondary and tertiary structures and improved the hydrophobic interaction between molecules. In addition, HPH significantly improved the solubility and emulsification of all proteins, and the improvement effect on SPI-WPI was significantly better than SPI and WPI. It was found that SPI-WPI treated with 60 MPa had the best physicochemical properties. Secondly, we researched the effect of HPH by 60 MPa on the emulsion properties of SPI-WPI. In this study, the SPI-WPI had the lowest surface tension compared to a single protein after HPH treatment. The emulsion droplet size was obviously decreased, and the elastic properties and physical stability of SPI-WPI emulsion were significantly enhanced. In conclusion, this study will provide a theoretical basis for the application of HPH in modifying the structure of dual-protein to improve its development and utilization in liquid specialty food.
Collapse
Affiliation(s)
- Meishan Wu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoye He
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Duo Feng
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hu Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Di Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qingye Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Boya Zhao
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Li
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tianxin Liu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- The Key Laboratory of Food Resources Monitoring and Nutrition Evaluation, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
9
|
Meléndez-Martínez AJ, Esquivel P, Rodriguez-Amaya DB. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res Int 2023; 169:112773. [DOI: 10.1016/j.foodres.2023.112773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
|
10
|
Pomegranate Peel Powder: In Vitro Efficacy and Application to Contaminated Liquid Foods. Foods 2023; 12:foods12061173. [PMID: 36981100 PMCID: PMC10048077 DOI: 10.3390/foods12061173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
In this study the recycling of pomegranate peel powder (PPP) was proposed. In particular, the use of powder loaded in a silk fibroin polymeric matrix to create an active pad was tested. For the sake of comparison, the powder alone was also analysed. Both powder and active pad efficacy was assessed in two different food systems, soymilk (rich in proteins), preliminarily contaminated with Pseudomonas spp. and yeasts, and apple juice (rich in carbohydrates), preliminarily contaminated with Alyciclobacillus acidoterrestris. Three different concentrations of powder alone and powder in the pad were tested (5%, 7.5% and 10% w/v) in both types of beverages. To assess a possible dependence of the efficacy on the powder granulometry, different powder sizes were preliminarily analysed on Pseudomonas spp. and yeasts using an in vitro test. PPP was effective on both Pseudomonas spp. and yeasts. No significant differences appeared among the tested granulometries and therefore in the subsequent tests powder with an average diameter of 250 µm was used. Results recorded with soymilk and apple juice were different. When applied to the soymilk, the activity of PPP in the pad was less effective than that recorded when the powder was directly added to the beverage. With the two highest powder concentrations directly added to food, more than four log cycle reductions in Pseudomonas spp. and yeast cells were recorded, compared to soymilk without any powder. Compared to the control sample, all the soymilk samples either with PPP or with the active pad showed a delayed microbial and fungal growth. When applied to apple juice, both powder and pad were effective at completely inhibiting the proliferation of A. acidoterrestris (<102 CFU/g).
Collapse
|
11
|
Kruszewski B, Domian E, Nowacka M. Influence of High-Pressure Homogenization on the Physicochemical Properties and Betalain Pigments of Red Beetroot ( Beta vulgaris L.) Juice. Molecules 2023; 28:molecules28052018. [PMID: 36903265 PMCID: PMC10004726 DOI: 10.3390/molecules28052018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
High-pressure homogenization (HPH) is considered an innovative and modern method of processing and preserving liquid and semi-liquid foods. The aim of this research was to examine the impact of HPH processing on the content of betalain pigments and physicochemical properties of beetroot juice. Combinations of the following HPH parameters were tested: the pressure used (50, 100, 140 MPa), the number of cycles (1 and 3) and the applied cooling or no cooling. The physicochemical analysis of the obtained beetroot juices was based on the determination of the extract, acidity, turbidity, viscosity and color values. Use of higher pressures and a greater number of cycles reduces the turbidity (NTU) of the juice. Moreover, in order to maintain the highest possible extract content and a slight color change of the beetroot juice, it was crucial to perform sample cooling after the HPH process. The quantitative and qualitative profiles of betalains have been also determined in the juices. In terms of the content of betacyanins and betaxanthins, the highest values were found in untreated juice at 75.3 mg and 24.8 mg per 100 mL, respectively. The high-pressure homogenization process resulted in a decrease in the content of betacyanins in the range of 8.5-20.2% and of betaxanthins in the range of 6.5-15.0%, depending on the parameters used. Studies have shown that that the number of cycles was irrelevant, but an increase in pressure from 50 MPa to 100 or 140 MPa had a negative effect on pigment content. Additionally, juice cooling significantly limits the degradation of betalains in beetroot juice.
Collapse
Affiliation(s)
- Bartosz Kruszewski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-593-75-79
| |
Collapse
|
12
|
Marszałek K, Trych U, Bojarczuk A, Szczepańska J, Chen Z, Liu X, Bi J. Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:antiox12020451. [PMID: 36830008 PMCID: PMC9951998 DOI: 10.3390/antiox12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
In the current work, the influence of high-pressure homogenization (HPH) (200, 250, and 300 MPa) on pH, Brix, turbidity, viscosity, particle size distribution (PSD), zeta potential, color, polyphenol oxidase (PPO), peroxidase (POD), polyphenol profile and bioaccessibility of total phenolic compounds was studied. The results show no change in the apple juice's pH, TSS and density. In contrast, other physiochemical properties of apple juice treated with HPH were significantly changed. Besides total phenolic content (15% degradation) in the HPH-treated apple juice at 300 MPa, the PPO and POD activities were reduced by a maximum of 70 and 35%, respectively. Furthermore, among different digestion stages, various values corresponding to PSD and zeta potential were recorded; the total phenolic content was gradually reduced from the mouth to the intestine stage. The polyphenol bioaccessibility of HPH-treated apple juice was 17% higher compared to the untreated apple juice.
Collapse
Affiliation(s)
- Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 2D Zelwerowicza St., 35601 Rzeszow, Poland
- Correspondence:
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Adrianna Bojarczuk
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Justyna Szczepańska
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Xuan Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
13
|
Liu Y, Liao M, Rao L, Zhao L, Wang Y, Liao X. Effect of ultra-high pressure homogenization on microorganism and quality of composite pear juice. Food Sci Nutr 2022; 10:3072-3084. [PMID: 36171764 PMCID: PMC9469897 DOI: 10.1002/fsn3.2906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, composite pear juice was processed by ultra-high pressure homogenization (UHPH) at four different pressures (50, 100, 150, and 200 MPa) with six different temperatures (4, 20, 30, 40, 60, and 80°C), then microorganism and physicochemical and nutritional properties of the samples were investigated. The counts of total aerobic bacteria (TAB) and yeasts and molds (Y&M) were reduced by 0.89-4.72 log10 CFU/ml and 0.40-3.03 log10 CFU/ml after processing, respectively. There was no significant change on total soluble solid and color, but significant decreases of pH and particle size value were observed, and the antioxidant activity, total phenolic content, viscosity, and suspension stability significantly increased in treated samples. Compared to the untreated samples, polyphenol oxidase (PPO) and peroxidase (POD) activity of UHPH-treated samples varied between 97%-126% and 81%-165%, respectively, indicating that the PPO and POD activities could be inactivated or activated by UHPH. This study introduced proper temperature combined with UHPH could improve the microbial inactivation and the quality of the compound juice.
Collapse
Affiliation(s)
- Yan Liu
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- National Engineering Research Centre for Fruit and Vegetable ProcessingBeijingChina
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Beijing Key Laboratory for Food Nonthermal ProcessingBeijingChina
| | - Mengyu Liao
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- National Engineering Research Centre for Fruit and Vegetable ProcessingBeijingChina
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Beijing Key Laboratory for Food Nonthermal ProcessingBeijingChina
| | - Lei Rao
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- National Engineering Research Centre for Fruit and Vegetable ProcessingBeijingChina
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Beijing Key Laboratory for Food Nonthermal ProcessingBeijingChina
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- National Engineering Research Centre for Fruit and Vegetable ProcessingBeijingChina
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Beijing Key Laboratory for Food Nonthermal ProcessingBeijingChina
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- National Engineering Research Centre for Fruit and Vegetable ProcessingBeijingChina
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Beijing Key Laboratory for Food Nonthermal ProcessingBeijingChina
| | - Xiaojun Liao
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- National Engineering Research Centre for Fruit and Vegetable ProcessingBeijingChina
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural AffairsBeijingChina
- Beijing Key Laboratory for Food Nonthermal ProcessingBeijingChina
| |
Collapse
|
14
|
Xu Y, Hu T, Hu H, Xiong S, Shi K, Zhang N, Mu Q, Xu G, Zhang P, Pan S. Comparative Evaluation on the Bioaccessibility of Citrus Fruit Carotenoids In Vitro Based on Different Intake Patterns. Foods 2022; 11:foods11101457. [PMID: 35627027 PMCID: PMC9141588 DOI: 10.3390/foods11101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The intake pattern has a great impact on the bioaccessibility of carotenoids from citrus fruit. Here, we compared the bioaccessibility of carotenoids from fresh citrus fruit (FC), fresh citrus juice (FCJ), and not-from-concentrate citrus juice (NCJ) and analyzed the influencing factors. The results demonstrated that particle size, viscosity, and some active components of the samples during digestion are potential factors affecting the bioaccessibility of carotenoids. The total carotenoid bioaccessibility of NCJ (31.45 ± 2.58%) was significantly higher than that of FC (8.11 ± 0.43%) and FCJ (12.43 ± 0.49%). This work demonstrates that NCJ is an appropriate intake pattern to improve the bioaccessibility of carotenoids from citrus fruit. The findings also suggest that adjustment of food intake patterns is an effective way to improve the digestion and absorption of nutrients.
Collapse
Affiliation(s)
- Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Tan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Sihui Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Nawei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Qier Mu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (T.H.); (H.H.); (S.X.); (K.S.); (N.Z.); (Q.M.); (G.X.); (P.Z.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit and Vegetable Processing and Quality Control, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-135-5402-9828
| |
Collapse
|
15
|
Lyu Y, Bi J, Chen Q, Wu X, Gou M, Yang X. Color enhancement mechanisms analysis of freeze-dried carrots treated by ultrasound-assisted osmosis (ascorbic acid-CaCl 2) dehydration. Food Chem 2022; 381:132255. [PMID: 35114628 DOI: 10.1016/j.foodchem.2022.132255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Color enhancement mechanisms of freeze-dried carrot sample (FDS) treated by ultrasound-assisted osmotic (ascorbic acid-CaCl2) dehydration (UAA) were comprehensively investigated from physical microstructures and color-related carotenoid compounds. Results of scanning electron microscope and confocal laser scanning microscopy showed that cells in samples treated by UAA were intact, had less porosity and showed stronger carotenoid autofluorescence. As for color-related compounds, UAA not only increased the retention ratios of total carotenoid content (36.38%) and β-carotene (51.73%) of FDS, but also preserved the high raman intensity of CC in-plane expansion (9986 A.U) and induced the formation of coloring-carotenoid-derivatives. Additionally, correlation and PCA-X model analysis showed that fresh carrot had higher extractable color value (78.46), which was positively linearly related to 2-n-pentylfuran (p < 0.01), whereas FDS mainly affected the surface color that was dominated by β-carotene. This work provided the practical analysis and theoretical basis of color enhancement of freeze-dried carrot foods.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Min Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinrui Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
16
|
Gottardi D, Siroli L, Braschi G, Rossi S, Ferioli F, Vannini L, Patrignani F, Lanciotti R. High-Pressure Homogenization and Biocontrol Agent as Innovative Approaches Increase Shelf Life and Functionality of Carrot Juice. Foods 2021; 10:2998. [PMID: 34945548 PMCID: PMC8701166 DOI: 10.3390/foods10122998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, application of high-pressure homogenization (HPH) treatments has been widely studied to improve shelf life and rheological and functional properties of vegetable and fruit juices. Another approach that has drawn the attention of researchers is the use of biocontrol cultures. Nevertheless, no data on their possible combined effect on fruit juices shelf life and functionality have been published yet. In this work, the microbial, organoleptic, and technological stability of extremely perishable carrot juice and its functionality were monitored for 12 and 7 days (stored at 4 and 10 °C, respectively) upon HPH treatment alone or in combination with a fermentation step using the biocontrol agent L. lactis LBG2. HPH treatment at 150 MPa for three passes followed by fermentation with L. lactis LBG2 extended the microbiological shelf life of the products of at least three and seven days when stored at 10 °C and 4 °C, respectively, compared to untreated or only HPH-treated samples. Moreover, the combined treatments determined a higher stability of pH and color values, and a better retention of β-carotene and lutein throughout the shelf-life period when compared to unfermented samples. Eventually, use of combined HPH and LBG2 resulted in the production of compounds having positive sensory impact on carrot juice.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Federico Ferioli
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Piazza Goidanich 60, 47521 Cesena, FC, Italy; (D.G.); (L.S.); (G.B.); (S.R.); (F.F.); (L.V.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy
| |
Collapse
|