1
|
Wang J, Zhou L, Xing L, Zhou G, Zhang W. Mechanism of Toona sinensis seed polyphenols inhibiting oxidation and modifying physicochemical and gel properties of pork myofibrillar protein under oxidation system. Food Chem 2025; 464:141666. [PMID: 39432947 DOI: 10.1016/j.foodchem.2024.141666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
This research aimed to elucidate how Toona sinensis seed polyphenols (TSSs) inhibited pork myofibrillar protein (MP) oxidation and modified physicochemical and gel properties in the Fenton oxidation system. Our result displayed that TSSs had a lower carbonyl (from 1.38 to 0.59 nmol/mg) and dityrosine contents (from 47.22 to 25.07), and higher free amino content (from 386.99 to 485.00 nmol/mg), followed by ellagic acid (EA) and quercetin-3-O-rhamnoside (QC). Meanwhile, the incorporation of phenolic compounds changed secondary and tertiary structure of proteins and then increased solubility and absolute value of zeta potential, as well as decreased turbidity and average particle size. Molecular docking indicated that MP interacted with EA primarily via hydrogen bonds and hydrophobic interaction, and with QC mostly through hydrogen bonds and electrostatic interaction. Otherwise, the incorporation of EA promoted MP gel to form a honeycomb-like microstructure after oxidation. Therefore, TSSs, EA, and QC could significantly inhibit MP oxidation as well as modify its physicochemical properties, but only EA enhanced its gel properties after oxidation. The results could be useful to improve the comprehensive utilization of plant by-products and provide theoretical references for the role of TSSs in the improvement of meat products.
Collapse
Affiliation(s)
- Jingyu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; College of Biology and Food Engineering, Fuyang Normal University, Anhui 236037, China
| | - Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Yi H, Yao J, Chen Y, Wang X, Guo J, Pan S. Effect of sodium alginate and egg white protein combinations on the functional properties and structures of chicken myofibrillar protein. Food Res Int 2024; 196:115071. [PMID: 39614498 DOI: 10.1016/j.foodres.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
This research explored the influence of varying sodium alginate (SA) and egg white protein (EWP) ratios (1:2, 2:3, 1:1, 3:2, 2:1, v/v) on the structural and gel characteristics of chicken myofibrillar protein (MP) gels. The findings showed that containing SA and EWP significantly improved (P < 0.05) the water-holding capacity (up to 95.02 %) and whiteness of MP gels. With a 2:1 ratio of SA to EWP, the absolute value of zeta potential reached 17.3 mV, and the lowest cooking loss (16.98 %) was achieved, accompanied by a reduction in turbidity. The MP formulation incorporating a 2:1 ratio of SA to EWP demonstrated the highest hardness, chewiness, cohesiveness, and springiness (P < 0.05), as confirmed by the rheological analysis conducted under temperature sweep mode. As the SA content increased, there was a notable enhancement in both the storage modulus (G') and loss modulus (G″) of MP gel, indicating a strengthened cross-linking effect within the MP protein gel. FTIR and SEM analyses revealed a transformation from α-helix to β-sheet and the formation of a more uniform and dense gel structure due to non-covalent interactions. Overall, MP incorporating SA/EWP at a 2:1 ratio (v/v) has preferable gel properties. This study could provide a theoretical reference to enhance the gel attributes of chicken meat products in the industry through the utilization of SA and EWP.
Collapse
Affiliation(s)
- Huan Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Yifeng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Xinyue Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Jiahui Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Key Laboratory of Environmental Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan 430070, Hubei, PR China.
| |
Collapse
|
3
|
Badar IH, Wang Z, Zhou Y, Jaspal MH, Liu H, Chen Q, Kong B. Influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions on the rheological and physicochemical properties of myofibrillar protein gels. Food Chem 2024; 456:139970. [PMID: 38850606 DOI: 10.1016/j.foodchem.2024.139970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The study aimed to investigate the influence of flaxseed-derived diglyceride-based high internal phase Pickering emulsions (HIPPE) at different levels (0%, 10%, 20%, 30%, 40%, and 50%) on the rheological and physicochemical properties of myofibrillar protein (MPs) gels. The study indicated that with increasing HIPPE levels, there was a significant increase in whiteness while a decrease in water-holding capacity. The gels with 10% HIPPE levels had higher ionic bonds, while those with 40% and 50% HIPPE levels showed higher hydrogen bonds. By increasing HIPPE levels in the formation of MP gels, the T2 relaxation time was found to decrease. Additionally, in all MP gels, G' values were significantly higher than G" values over time. Adding lower contents of HIPPE levels resulted in a more compact microstructure. These findings indicate that flaxseed-derived diglyceride-based HIPPEs could be utilized as fat substitutes in meat products to enhance their nutritional quality.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yafei Zhou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Muhammad Hayat Jaspal
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Haseeb MT, Muhammad G, Hussain MA, Bukhari SNA, Sheikh FA. Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli-responsive functional biomaterial for pharmaceuticals and healthcare. Int J Biol Macromol 2024; 278:134817. [PMID: 39154696 DOI: 10.1016/j.ijbiomac.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, GC University, Lahore 54000, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| |
Collapse
|
5
|
Lin S, Li X, Zhang J, Kong B, Cao C, Sun F, Zhang H, Liu Q, Liu C. Potential mechanisms and effects of ultrasound treatment combined with pre- and post-addition of κ-carrageenan on the gelling properties and rheological behavior of myofibrillar proteins under low-salt condition. Meat Sci 2024; 215:109554. [PMID: 38838569 DOI: 10.1016/j.meatsci.2024.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and β-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chunyan Liu
- Heilongjiang Academy of Sciences, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
6
|
Guo X, Wang R, Han B, Shao W, Chen L, Feng X. A novel EGCG-Histidine complex improves gelling and physicochemical properties of porcine myofibrillar proteins: Insight into underlying mechanisms. Food Chem 2024; 448:139070. [PMID: 38555690 DOI: 10.1016/j.foodchem.2024.139070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Herein, an EGCG-Histidine complex is prepared, characterized, and further used to improve gel properties of myofibrillar proteins (MP). Results of FTIR, XRD, UV-Vis spectroscopy showed that histidine is covalently bound to EGCG by Michael addition or Schiff base reaction to form EGCG-Histidine complex, and antioxidant activity of EGCG-Histidine complex is significantly increased compared to EGCG or histidine alone (P < 0.05). The addition of EGCG-Histidine complex results in cooking loss of gel decreasing from 66.7 ± 0.23 % to 40.3 ± 2.02 %, and improves rheological properties of MP, and enhances gel strength from 0.10 ± 0.01 N to 0.22 ± 0.03 N, indicating positive effect of EGCG-Histidine complex on MP gel formation, above results is supported by results of SEM, CD spectroscopy, SDS-PAGE, and tryptophan fluorescence. These results indicated that EGCG-Histidine complex can be used as a functional ingredient to improve gel quality of meat products.
Collapse
Affiliation(s)
- Xiao Guo
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Renzheng Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Bofu Han
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wei Shao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Wu Z, Zhang W, Zhao X, Xu X. Gastrointestinal digestion behavior and bioavailability of greenly prepared highly loaded myofibrillar-luteolin vehicle. Food Res Int 2024; 187:114413. [PMID: 38763665 DOI: 10.1016/j.foodres.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 μmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.
Collapse
Affiliation(s)
- Zhenyang Wu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Weiyi Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China.
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, NO.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
8
|
Zhang X, Shen H, Qiao J, Li S, Yang X, Liu X, Zhang Y, Zhang H, Zhao X, Wang H, Xie F. Impact of flaxseed gum on the aggregate structure, pasting properties, and rheological behavior of waxy rice starch. Int J Biol Macromol 2024; 270:132421. [PMID: 38759854 DOI: 10.1016/j.ijbiomac.2024.132421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
This study examines the effects of flaxseed gum (FG) on the aggregate structure, pasting and rheological properties of waxy rice starch (WRS). Results display an increase in the ordered molecular structure (R1047/1024), relative crystallinity (RC), compactness (α), and microphase heterogeneity (ε, density degree of nanoaggregates, from 3.52 to 4.23) for WRS-FG complexes. These suggested FG facilitated the development of more organized molecular and crystalline structures of WRS, accompanied by the formation of ordered nanoaggregates with higher density (i.e., nano-aggregation structure). Also, FG addition resulted in the formation of enhanced gel network structure characterized by thicker layer walls and more uniform pores. These structural transformations contributed to a rise in gelatinization temperature (To, from 56.90 °C to 62.10 °C) and enthalpy (ΔH), as well as alterations in paste viscosities (PV, from 1285.00 mPa·s to 1734.00 mPa·s), and the rigidity of network structure (e.g., decreased loss tangent). These results indicate that FG could effectively regulate the techno-functional properties of WRS by rationally controlling the starch intrinsic structures of starch. And this study may improve the pasting and gelling properties of starch, thus driving the development of high-quality starchy foods and prolonging their shelf life, especially for glutinous rice flour products.
Collapse
Affiliation(s)
- Xinping Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jingyue Qiao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Shuaihao Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China
| | - Xiaojuan Yang
- Editorial Department of Journal, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Xingli Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yanyan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Xuewei Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Hongwei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China; School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
9
|
Chang H, Hu Y, Shi Y, Xiong J, Bo Z. Effects of Gnaphalium affine Extract on the Gel Properties of •OH-Induced Oxidation of Myofibrillar Proteins. Foods 2024; 13:1447. [PMID: 38790747 PMCID: PMC11119746 DOI: 10.3390/foods13101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the effect of Gnaphalium affine extract (GAE) (0.04, 0.2 and 1 mg/g protein) on the gel properties of porcine myofibrillar proteins (MPs) in a simulated Fenton oxidation system, using tea polyphenols (TPs) at similar concentrations of 0.04, 0.2, and 1 mg/g protein, respectively, as a contrast. The findings revealed that as the TP concentration increased, the water retention of MP gels decreased significantly (p < 0.05). In contrast, MP gels containing medium and high concentrations of GAE exhibited significantly higher water retention than those with low concentrations of GAE (p < 0.05). When the concentration of GAE was increased to 1 mg/g protein, the strength of MP gels was significantly reduced (p < 0.05) by 33.32% compared with the oxidized control group, suggesting that low and medium GAE concentrations support MP gel formation. A texture profile analysis indicated that an appropriate GAE concentration improved gel structure and texture. Dynamic rheological characterization revealed that low concentrations of TP (0.04 mg/g protein) and low and medium concentrations of GAE (0.04 and 0.2 mg/g protein) strengthened the protein gel system. Conversely, high concentrations of TP and GAE (1.0 mg/g protein) damaged the protein gel system or even promoted the collapse of the gel system. Scanning electron microscopy revealed that higher TP concentrations disrupted the gel, whereas low and medium GAE concentrations maintained a more continuous and complete gel network structure compared with the oxidized control group. This indicates that an appropriate GAE concentration could effectively hinder the destruction of the gel network structure by oxidation. Therefore, based on the obtained results, 0.2 mg/g protein is recommended as the ideal concentration of GAE to be used in actual meat processing to regulate the oxidization and gel properties of meat products.
Collapse
Affiliation(s)
- Haijun Chang
- Chongqing Engineering Research Center for Processing, Storage and Transportation of Characterized Agro-Products, College of Environment and Resources, Chongqing Technology and Business University, No.19 Xuefu Ave., Nan’an District, Chongqing 400067, China; (Y.H.); (Y.S.); (J.X.); (Z.B.)
| | | | | | | | | |
Collapse
|
10
|
Lin S, Liang X, Zhao Z, Kong B, Cao C, Sun F, Liu Q. Elucidating the mechanisms of ultrasound treatment combined with κ-carrageenan addition enhancing the gelling properties of heat-induced myofibrillar protein gel. Food Res Int 2024; 182:114177. [PMID: 38519164 DOI: 10.1016/j.foodres.2024.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
This work investigated the effect of ultrasound (US) treatment synergized with κ-carrageenan (KC) on the gel properties, structural characteristics and microstructures of myofibrillar protein (MP) gel. The results demonstrated that simply adding KC enhanced the gel strength and water holding capacity (WHC) of MP gels. Moreover, the gel strength and WHC of MP gels were increased by 56.67 % and 76.19 % via 20 min US treatment synergized with KC, which was mainly attributed to the changes in sulfhydryl content, surface hydrophobicity, and fluorescence intensity of MP gels. Based on the results of molecular docking and secondary structure, it can be hypothesized that the synergistic effect resulted in the rearrangement of the proteins, which altered the interaction site between MP gels and KC, accompanied by stronger binding. Furthermore, the microstructural results indicated that moderate US treatment (20 min) facilitated the production of a more compact and denser MP gels matrix with uniformly sized and distributed pores. However, excessive US treatment (40 and 50 min) caused the MP gels to form looser and disordered gel structure, which reduced the gel strength and WHC. This study suggested that combining of US and KC was a potential tactic to enhance the gelling properties of heat-induced MP gels.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
11
|
Chand M, Chopra R, Talwar B, Homroy S, Singh PK, Dhiman A, Payyunni AW. Unveiling the potential of linseed mucilage, its health benefits, and applications in food packaging. Front Nutr 2024; 11:1334247. [PMID: 38385008 PMCID: PMC10879465 DOI: 10.3389/fnut.2024.1334247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
Industrial waste products derived from the oil industry often contain valuable substances and elements with great potential. These by-products can be used for various purposes, including as nutrients, bioactive compounds, fuels, and polymers. Linseed mucilage (LM) is one such example of a beneficial by-product obtained from linseed. It possesses favorable chemical and functional properties, depending on its method of extraction. Different pretreatments, such as enzymatic extraction, microwave-assisted extraction, pulse electric field, and ultrasound-assisted extraction, have been explored by various researchers to enhance both the yield and quality of mucilage. Furthermore, LM has exhibited therapeutic effects in the treatment of obesity, diabetes, constipation, hyperlipidemia, cancer, and other lifestyle diseases. Additionally, it demonstrates favorable functional characteristics that make it suitable to be used in bioplastic production. These properties preserve food quality, prolong shelf life, and confer antimicrobial activity. It also has the potential to be used as a packaging material, especially considering the increasing demand for sustainable and biodegradable alternatives to plastics because of their detrimental impact on environmental health. This review primarily focuses on different extraction techniques used for linseed mucilage, its mechanism of action in terms of health benefits, and potential applications in food packaging.
Collapse
Affiliation(s)
- Monika Chand
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Rajni Chopra
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Binanshu Talwar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Snigdha Homroy
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Priyanka Kumari Singh
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Aishwarya Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| | - Abdul Wahid Payyunni
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Haryana, India
| |
Collapse
|
12
|
Lin S, Liang X, Zhang J, Kong B, Sun F, Cao C, Zhang H, Liu Q. Combined effect of ultrasound treatment and κ-carrageenan addition on the enhancement of gelling properties and rheological behavior of myofibrillar protein: An underlying mechanisms study. Int J Biol Macromol 2024; 257:128569. [PMID: 38065443 DOI: 10.1016/j.ijbiomac.2023.128569] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
This work aimed to investigate the combined effect of ultrasound (US) treatment and κ-carrageenan (KC) addition on the gelling properties and rheological behaviors of myofibrillar protein (MP). Without US treatment, the KC incorporation promoted the gel strength and water-holding capacity (WHC) of MP gels. These properties were further improved by 20 min US treatment with gel strength of 98.61 g and WHC of 79.87 %, which was mainly attributed to changes associated with hydrophobic interactions and disulfide bonds and the transformation from α-helix to β-sheet in MP gels. In addition, US treatment for 20 min effectively resulted in a more homogeneous polymer distribution of the MP-KC mixed system, leading to lower particle size and the largest G' and G″ values of the MP-KC mixed gels. However, longer US treatment times (30, 40 and 50 min) rendered lower gel strength, WHC, storage modulus and loss modulus of MP-KC mixed gels, which was mainly due to the formation of loose and disordered gel structures. Our present results indicated that the application of US to MP for an intermediate treatment time (20 min) combined with KC provides a potential and novel strategy to promote the gel qualities of heat-induced MP gels.
Collapse
Affiliation(s)
- Shiwen Lin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
13
|
Li X, Zhang N, Jiao X, Zhang W, Yan B, Huang J, Zhao J, Zhang H, Chen W, Fan D. Insight into Ionic Strength-Induced Solubilization of Myofibrillar Proteins from Silver Carp ( Hypophthalmichthys molitrix): Structural Changes and 4D Label-Free Proteomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13920-13933. [PMID: 37688549 DOI: 10.1021/acs.jafc.3c04254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
In this study, changes in the physical, structural, and assembly characteristics of silver carp myofibrillar proteins (MPs) at different ionic strength (I) values were investigated. Moreover, the differential proteomic profile of soluble MPs was analyzed using 4D proteomics based on timsTOF Pro mass spectrometry. Solubility of MPs significantly increased at high I (>0.3), and the increase in I enhanced the apparent viscosity, fluorescence intensity, surface hydrophobicity, and α-helix content of MPs solution. Particle size and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns also supported the solubility profiles. Transmission electron microscopy and atomic force microscopy observations revealed the morphological assembly and disassembly of MPs under different I conditions. Finally, proteomic analysis revealed the evolution law of salt-induced solubilization of MPs and the critical molecular characteristics in different I environments. The number of differentially abundant proteins (DAPs) decreased with the increase of I, and most DAPs related to the muscle filament sliding, contraction and assembly, actinin binding, and actin filament binding. The soluble abundance of myosin and some structural proteins was dependent on I, and structural proteins in the Z-disk and M-band might contribute to the solubilization of myosin. Our findings provide insightful information about the impact of common I on the solubility pattern of MPs from freshwater fish.
Collapse
Affiliation(s)
- Xingying Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenhai Zhang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China
- ANJOY FOODS GROUP CO., LTD., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
He X, Lv Y, Li X, Yi S, Zhao H, Xu Y, Li J. Effect of oat β-glucan on gel properties and protein conformation of silver carp surimi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3367-3375. [PMID: 36840432 DOI: 10.1002/jsfa.12525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polysaccharides are the most widely used additives to enhance the quality of surimi gels. Oat β-glucan (OG), a functional polysaccharide, is known to affect the gelation characteristics of surimi. However, it has been rarely reported. Therefore, the effect of OG at different levels on gelling properties, protein conformation, and microstructures of silver carp surimi gels were investigated. RESULTS An increase in the OG content from 0 to 1.0% significantly improved the hardness, springiness, chewiness, puncture properties, storage modulus, and loss modulus of surimi gels. Moreover, the incorporation of OG (0-1.0%) facilitated the unfolding of proteins, resulting in the conformational transformation from α-helix to β-sheet and β-turn. Consequently, surimi-OG gels displayed a denser network structure with smaller and more uniform voids. Furthermore, partial free water in the gel network was converted into immobile water, increasing the water-holding capacity. However, a further increase in the OG concentration (1.0-2.0%) resulted in a looser and more uneven network structure with large and numerous cavities. In addition, the whiteness of composite gels decreased with increasing content of OG. CONCLUSION The addition of 1.0% OG dramatically improved the gelation performance of silver carp surimi, providing a theoretical foundation for the exploitation and manufacture of functional surimi products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueli He
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yanan Lv
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Yongxia Xu
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, P. R. China
| |
Collapse
|
15
|
Feng J, Bai X, Li Y, Kong B, Nuerjiang M, Wu K, Li Z, Xia X. Improvement on gel properties of myofibrillar protein from chicken patty with potato dietary fiber: Based on the change in myofibrillar protein structure and water state. Int J Biol Macromol 2023; 230:123228. [PMID: 36641026 DOI: 10.1016/j.ijbiomac.2023.123228] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
Influence of potato dietary fiber (PDF) on myofibrillar protein (MP) structure, aggregation behavior, and gel properties of chicken patty was evaluated. The Raman spectroscopy results indicated that the α-helix content decreased by 21.9 %, while β-sheets content increased by 45.0 % in 3.0 % PDF sample compared with the control (P < 0.05), and aliphatic residues cross-linked. Particle size, turbidity, and the roughness of MP surface morphology increased, whereas the zeta-potential of MPs decreased with PDF increasing. The gelation process of MP with PDF proceeded at a fast rate and their elasticity and viscosity were high as determined by dynamic rheology. Gels with 3.0 % PDF exhibited significantly enhanced gel strength and a high WHC, which increased by 44.20 % and 22.5 %, respectively, compared with the control, PDF inhibited the transformation of immobilized water to free water and eliminated the water channels during heating as well as formed a more uniform and denser microstructure. Therefore, PDF can be a potential ingredient for improving the quality of processed meat products.
Collapse
Affiliation(s)
- Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Maheshati Nuerjiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kairong Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihao Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
16
|
Zhu S, Zhu H, Xu S, Lv S, Liu S, Ding Y, Zhou X. Gel-type emulsified muscle products: Mechanisms, affecting factors, and applications. Compr Rev Food Sci Food Saf 2022; 21:5225-5242. [PMID: 36301621 DOI: 10.1111/1541-4337.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
The gel-type emulsified muscle products improve fatty acid composition, maintain the oxidative stability, and achieve a better sensory acceptability. This review emphasizes the stabilization mechanisms of these emulsified muscle products. In particular, factors associated with the stability of the emulsified muscle systems are outlined, including the processing conditions (pH and heating), lipids, and emulsifiers. Besides, some novel systems are further introduced, including the Pickering emulsions and organogels, due to their great potential in stabilizing emulsified gels. Moreover, the promising prospects of emulsion muscle products such as improved gel properties, oxidative stability, freeze-thaw stability, fat replacement, and nutraceutical encapsulation were elaborated. This review comprehensively illustrates the considerations on developing gel-type emulsified products and provides inspiration for the rational design of emulsified muscle formulations with both oxidatively stable and organoleptically acceptable performance.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Siyao Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shuangbao Lv
- Zhejiang NF Refrigerated Food Co. Ltd, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
17
|
Riazi F, Tehrani MM, Lammers V, Heinz V, Savadkoohi S. Unexpected morphological modifications in high moisture extruded pea-flaxseed proteins: Part I, topological and conformational characteristics, textural attributes, and viscoelastic phenomena. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Fan Z, Cheng P, Zhang P, Zhang G, Han J. Rheological insight of polysaccharide/protein based hydrogels in recent food and biomedical fields: A review. Int J Biol Macromol 2022; 222:1642-1664. [DOI: 10.1016/j.ijbiomac.2022.10.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
19
|
Ma J, Pan D, Dong Y, Diao J, Chen H. The Effectiveness of Clove Extract on Oxidization-Induced Changes of Structure and Gelation in Porcine Myofibrillar Protein. Foods 2022; 11:foods11131970. [PMID: 35804785 PMCID: PMC9265466 DOI: 10.3390/foods11131970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the structural characteristics and gelation behavior of myofibrillar proteins (MPs) with or without clove extract (CE) at different oxidation times (0, 1, 3, and 5 h). Circular dichroism spectra and Fourier transform infrared spectra showed that samples with CE addition had significantly higher α-helix content after oxidation than those without CE addition. However, prolonged oxidation (5 h) would make the effect of CE addition less pronounced. Similarly, the ultraviolet-visible (UV) spectra analysis revealed that CE controlled the oxidative stretching of the protein tertiary structure and reduced the exposure of aromatic amino acids. In addition, the particle size and turbidity values of the CE group significantly decreased after oxidation compared to the non-CE group. CE increased the gel strength by 10.05% after 5 h of oxidation, which could be observed by scanning electron microscopy (SEM) as a more homogeneous, dense, less porous, network-like gel structure. Therefore, these results showed that oxidation induced significant changes in the structure and gel properties of MPs, but the addition of CE effectively inhibited these destructive changes.
Collapse
Affiliation(s)
- Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.M.); (D.P.)
| | - Deyin Pan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.M.); (D.P.)
| | - Ying Dong
- Huangpu Customs Technology Center, Dongguan 523000, China;
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (J.M.); (D.P.)
- China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing 163319, China
- Correspondence:
| |
Collapse
|
20
|
Puligundla P, Lim S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022; 11:1677. [PMID: 35741874 PMCID: PMC9223220 DOI: 10.3390/foods11121677] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Flaxseed contains significant concentration of mucilage or gum (a type of hydrocolloid). Flaxseed mucilage (FM) predominantly occurs in the outermost layer of the seed's hull and is known to possess numerous health benefits such as delayed gastric emptying, reduced serum cholesterol, and improved glycemic control. FM is typically composed of an arabinoxylan (neutral in nature) and a pectic-like material (acidic in nature). Similar to gum arabic, FM exhibits good water-binding capacity and rheological properties (similar functionality); therefore, FM can be used as its replacement in foods. In this review, an overview of methods used for FM extraction and factors influencing the extraction yield were discussed initially. Thereafter, food applications of FM as gelling agent/gel-strengthening agent, structure-forming agent, stabilizing agent, fat replacer, anti-retrogradation agent, prebiotic, encapsulating agent, edible coatings and films/food packaging material, and emulsifier/emulsion stabilizer were included. At the end, some limitations to its wide application and potential solutions were added.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea;
| |
Collapse
|
21
|
Molecular dynamics simulation of the interactions between sesamol and myosin combined with spectroscopy and molecular docking studies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Yu X, Wang Y, Xie Y, Wei S, Ding H, Yu C, Dong X. Gelation properties and protein conformation of Grass Carp fish ball as influenced by egg white protein. J Texture Stud 2022; 53:277-286. [PMID: 35229305 DOI: 10.1111/jtxs.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Dried egg white powder (EWP) and purified ovalbumin (OVA, 98%) were used as supplements to improve grass carp (GC) fish balls (FB) quality. The effects of EWP and/or OVA contents on the gel strength, water holding capacity (WHC), moisture migration and distribution, and rheological properties of GC-FB, as well as on myofibrillar protein (MfP) structures in the GC-FB were evaluated. The results showed that with the increase of EWP addition from 0 to 4% (w/w), the gel strength and WHC of the GC-FB samples were increased from 34.28 to 66.63 N×mm, and 83.02 to 88.36%, respectively, but the increases were insignificant between 3% and 4% EWP-added GC-FBs (p>0.05). As the EWP increased, the T2 relaxation time shifted towards lower values, indicating a general decline in water mobility. The effects of EWP on rheological properties were insignificant. Addition of OVA and/or EWP led to changes in secondary structural units in the FB, with α-helix (27.53%) reaching the highest value in OVA-added GC-FB, β-sheet (46.07%) reaching the highest value in GC-FB, and β-turn (33.54%) reaching the highest value in EWP-added GC-FB, respectively. Raman spectroscopy revealed that OVA-added GC-FB had the lowest hydrophobic interlinkages. Protein pattern analysis suggested that the OVA (1.58%) might contribute to the decrease in the myosin heavy chain (MHC) band intensity through cross-linked with MfP. These results suggested that EWP could improve the quality of GC-FBs and OVA played an important role with MfP gelation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiliang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yue Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Yisha Xie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Shibiao Wei
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| | - Haochen Ding
- Liaoning Anjoyfood Co., Ltd., Anshan, Liaoning, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, Liaoning, China
| |
Collapse
|