1
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2025; 203:1251-1268. [PMID: 38829477 PMCID: PMC11872778 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
3
|
Zheng AR, Wei CK, Wang MS, Ju N, Fan M. Characterization of the key flavor compounds in cream cheese by GC-MS, GC-IMS, sensory analysis and multivariable statistics. Curr Res Food Sci 2024; 8:100772. [PMID: 38840807 PMCID: PMC11150910 DOI: 10.1016/j.crfs.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The aroma types of cream cheese affect its commercial value and consumer acceptability. However, the types of volatile substances and sensory characteristics of cream cheese at different fermentation stages are still unclear. Therefore, in this study, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to analyze the volatile substances in cream cheese fermentation. Orthogonal partial least squares discriminant analysis (OPLS-DA), odor activity value (OAV), relative odor activity value (ROAV) and variable projection importance (VIP) were used to identify the characteristic flavor substances in cream cheese fermentation. Finally, the relationship between key flavor substances and sensory characteristics was determined by partial least squares (PLS) analysis. A total of 34 and 36 volatile organic compounds were identified by HS-SPME-GC-MS and HS-GC-MS, respectively, and 14 characteristic flavor substances were found, based on VIP, ROAV and OAV models. Combined with sensory analysis and flavor substance changes, it was found that the cream cheese fermented for 15 d had the best flavor and taste. This study reveals the characteristics and contribution of volatile substances in cream cheese at different fermentation stages, which provides new insights into improving flavor and quality control.
Collapse
Affiliation(s)
- An-Ran Zheng
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Chao-Kun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Meng-Song Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Ning Ju
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Min Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
- Inner Mongolia Yili Industrial Group Company Limited, Hohhot 151100, People's Republic of China
| |
Collapse
|
4
|
Rahman MM, Pires RS, Herneke A, Gowda V, Langton M, Biverstål H, Lendel C. Food protein-derived amyloids do not accelerate amyloid β aggregation. Sci Rep 2023; 13:985. [PMID: 36720893 PMCID: PMC9889329 DOI: 10.1038/s41598-023-28147-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
The deposition of proteins in the form of amyloid fibrils is closely associated with several serious diseases. The events that trigger the conversion from soluble functional proteins into insoluble amyloid are not fully understood. Many proteins that are not associated with disease can form amyloid with similar structural characteristics as the disease-associated fibrils, which highlights the potential risk of cross-seeding of disease amyloid by amyloid-like structures encountered in our surrounding. Of particular interest are common food proteins that can be transformed into amyloid under conditions similar to cooking. We here investigate cross-seeding of amyloid-β (Aβ), a peptide known to form amyloid during the development of Alzheimer's disease, by 16 types of amyloid fibrils derived from food proteins or peptides. Kinetic studies using thioflavin T fluorescence as output show that none of the investigated protein fibrils accelerates the aggregation of Aβ. In at least two cases (hen egg lysozyme and oat protein isolate) we observe retardation of the aggregation, which appears to originate from interactions between the food protein seeds and Aβ in aggregated form. The results support the view that food-derived amyloid is not a risk factor for development of Aβ pathology and Alzheimer's disease.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | - Rodrigo Sanches Pires
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | - Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentrum, Almas Allé 5, 756 61, Uppsala, Sweden
| | - Vasantha Gowda
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentrum, Almas Allé 5, 756 61, Uppsala, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO/Floor 8, Blickgången 16, 141 52, Huddinge, Sweden
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden.
| |
Collapse
|
5
|
Bahraminejad E, Paliwal D, Sunde M, Holt C, Carver JA, Thorn DC. Amyloid fibril formation by α S1- and β-casein implies that fibril formation is a general property of casein proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140854. [PMID: 36087849 DOI: 10.1016/j.bbapap.2022.140854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Caseins are a diverse family of intrinsically disordered proteins present in the milks of all mammals. A property common to two cow paralogues, αS2- and κ-casein, is their propensity in vitro to form amyloid fibrils, the highly ordered protein aggregates associated with many age-related, including neurological, diseases. In this study, we explored whether amyloid fibril-forming propensity is a general feature of casein proteins by examining the other cow caseins (αS1 and β) as well as β-caseins from camel and goat. Small-angle X-ray scattering measurements indicated that cow αS1- and β-casein formed large spherical aggregates at neutral pH and 20°C. Upon incubation at 65°C, αS1- and β-casein underwent conversion to amyloid fibrils over the course of ten days, as shown by thioflavin T binding, transmission electron microscopy, and X-ray fibre diffraction. At the lower temperature of 37°C where fibril formation was more limited, camel β-casein exhibited a greater fibril-forming propensity than its cow or goat orthologues. Limited proteolysis of cow and camel β-casein fibrils and analysis by mass spectrometry indicated a common amyloidogenic sequence in the proline, glutamine-rich, C-terminal region of β-casein. These findings highlight the persistence of amyloidogenic sequences within caseins, which likely contribute to their functional, heterotypic self-assembly; in all mammalian milks, at least two caseins coalesce to form casein micelles, implying that caseins diversified partly to avoid dysfunctional amyloid fibril formation.
Collapse
Affiliation(s)
- Elmira Bahraminejad
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Devashi Paliwal
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Margaret Sunde
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | - Carl Holt
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|