1
|
He C, Bai Q, Huang J, Xue Z, Wu M, Lv Y. Construction of magnetic response nanocellulose particles to realize smart antibacterial of Pickering emulsion. Int J Biol Macromol 2025; 294:139408. [PMID: 39753168 DOI: 10.1016/j.ijbiomac.2024.139408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, Fe3O4 was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl3 and FeCl2 was 1.5:1, the prepared particles CNC/Fe1.5 exhibited the maximum saturation magnetization intensity of 54.98 emu/g and good emulsion stability, which was used to emulsify oregano essential oil (OEO) to fabricate smart antibacterial Pickering emulsion with magnetically responsive ability. The emulsion with the oil-water ratio of 3:7 and the particle concentration of 0.3 wt% showed the excellent stability and sensitive responsiveness of magnetic. The OEO released rapidly within 0-8 h followed by the slow release when the emulsion was stimulated by 0.2 T, 0.4 T and 0.6 T magnetic field. The antibacterial rate of the emulsion was close to 100 % against both E. coli and L. monocytogenes at magnetic field with 0.4 T and 0.6 T in 12 h, achieving the smart antimicrobial. The prepared smart antibacterial Pickering emulsion would provide a novel material and have the potential in food packaging.
Collapse
Affiliation(s)
- Chongfeng He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qishu Bai
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jingshao Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhou Xue
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Yanna Lv
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Sun M, Zhang Y, Hao Y, Miao J, Sun G, Xiao J, Yang X, Zhang J, Shi L. Antioxidant and Antibacterial Activities of Chinese Native Thyme Essential Oils with Different Chemotypes. Molecules 2024; 29:6035. [PMID: 39770122 PMCID: PMC11678765 DOI: 10.3390/molecules29246035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Thyme essential oils (EOs) have antioxidant, antiviral, antifungal, antibacterial, anti-inflammatory, and immunological properties and are used in medicine, food, feed additives, and cosmetics. Here, we made use of a multidimensional analytical method to analyze the differences in the chemical components, chemotypes, and antioxidant and antibacterial activities of EOs from 24 Chinese native thymes. These Chinese native thymes comprised 10 species (Thymus quinquecostatus, T. mongolicus, T. inaequalis, T. mandschuricus, T. curtus, T. amurensis, T. roseus, T. proximu, T. marschallianus, and T. altaicus) and two varieties (T. quinquecostatus var. asiaticus and T. quinquecostatus var. przewalskii). Four primary chemotype groups were identified, namely carvacrol, thymol, geraniol, and α-terpineol. The maximum carvacrol, thymol, geraniol, and α-terpineol contents were 72.4, 58.6, 59.5, and 65.4%, respectively. The antioxidant capacities of the thymol and carvacrol chemotype EOs were found to be significantly superior to the other chemotypes using three antioxidant assays: DPPH, ABTS, and FRAP. Moreover, the thymol and carvacrol EO chemotypes could significantly inhibit the growths of the common food-borne pathogenic bacteria Staphylococcus aureus and Escherichia coli. A correlation analysis between the EO components and the bacteria showed that thymol significantly positively correlated with the bacteria. In summary, we analyzed the thyme EOs' antioxidant and antibacterial activities, which laid a foundation for their use in medicines, foods, feed additives, and cosmetics. The results will also be very useful for the selection of wild thymes for functional research on carvacrol-, thymol-, geraniol-, and α-terpineol-rich essential oil chemotypes and the product development of feed additives, cosmetics, etc.
Collapse
Affiliation(s)
- Meiyu Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (M.S.); (Y.Z.); (Y.H.); (J.M.); (X.Y.)
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
| | - Yanan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (M.S.); (Y.Z.); (Y.H.); (J.M.); (X.Y.)
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanpeng Hao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (M.S.); (Y.Z.); (Y.H.); (J.M.); (X.Y.)
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
| | - Jiahui Miao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (M.S.); (Y.Z.); (Y.H.); (J.M.); (X.Y.)
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofeng Sun
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
| | - Jianhua Xiao
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
| | - Xiao Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (M.S.); (Y.Z.); (Y.H.); (J.M.); (X.Y.)
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzheng Zhang
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (M.S.); (Y.Z.); (Y.H.); (J.M.); (X.Y.)
- China National Botanical Garden, Beijing 100093, China; (G.S.); (J.X.)
| |
Collapse
|
3
|
Tejada-Muñoz S, Cortez D, Rascón J, Chavez SG, Caetano AC, Díaz-Manchay RJ, Sandoval-Bances J, Huyhua-Gutierrez S, Gonzales L, Chenet SM, Tapia-Limonchi R. Antimicrobial Activity of Origanum vulgare Essential Oil against Staphylococcus aureus and Escherichia coli. Pharmaceuticals (Basel) 2024; 17:1430. [PMID: 39598342 PMCID: PMC11597097 DOI: 10.3390/ph17111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Oreganum vulgare essential oil (OEO) is safe, effective, multifunctional, and widely used. This study aimed to evaluate OEO's chemical composition and antimicrobial activity in vitro against S. aureus and E. coli. Methods: The composition of OEO was determined by gas chromatography-mass spectrometry (GC-MS). Results: Compounds included monoterpenes with known antimicrobial activity, such as 2-menthen-1-ol (36.33%), linalyl acetate (9.26%), terpinene-4-ol (9.01%), 4-thujanol (6.33%), menthen (5.81%), sabinene (5.18%), and carvacrol methyl ether (5.14%). Conclusions: OEO had a strong antimicrobial activity with a minimum inhibitory concentration (MIC) of 1.90 mg/mL for S. aureus and 0.49 mg/mL for E. coli after 18 h incubation. The minimum bactericidal concentration (MBC) was 7.9 mg/mL against S. aureus and 0.99 mg/mL against E. coli. Thus, OEO could be used as a natural antimicrobial against S. aureus and E. coli infections.
Collapse
Affiliation(s)
- Sonia Tejada-Muñoz
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Salud Integral Intercultural, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Denny Cortez
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
| | - Jesús Rascón
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Segundo G. Chavez
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Aline C. Caetano
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (S.G.C.); (A.C.C.)
| | - Rosa J. Díaz-Manchay
- Departamento de Ciencias de la Salud, Escuela de Enfermería, Universidad Católica Santo Toribio de Mogrovejo, Chiclayo 14012, Peru;
| | - Julio Sandoval-Bances
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
| | - Sonia Huyhua-Gutierrez
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Instituto de Salud Integral Intercultural, Facultad de Ciencias de la Salud, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Lizandro Gonzales
- Dirección Regional de Salud de Amazonas, Laboratorio de Referencia Regional, Chachapoyas 01001, Peru;
| | - Stella M. Chenet
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Rafael Tapia-Limonchi
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (D.C.); (J.R.); (J.S.-B.); (S.H.-G.); (S.M.C.)
- Facultad de Medicina, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| |
Collapse
|
4
|
Criollo-Feijoo J, Salas-Gomez V, Cornejo F, Auras R, Salazar R. Cassava bagasse starch and oregano essential oil as a potential active food packaging material: A physicochemical, thermal, mechanical, antioxidant, and antimicrobial study. Heliyon 2024; 10:e36150. [PMID: 39253124 PMCID: PMC11382050 DOI: 10.1016/j.heliyon.2024.e36150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
This research evaluates the use of cassava bagasse starch and oregano essential oil (OEO) in an active film. For comparison, films of cassava starch (CS) and cassava bagasse starch (BS) were prepared with OEO at 1, 2, and 3 %. Physical, thermal, mechanical, antioxidant, and antimicrobial properties were determined. BS films presented higher thickness, WVP, ΔE, modulus of elasticity, and maximum stress, but lower strain at break compared to CS films. Adding OEO into the films increased their thickness, moisture, solubility, WVP and strain at break. However, maximum stress, modulus of elasticity, and T dmax decreased. The CS films added with 3 % of OEO showed higher WVP (6.32 × 10-14 kg m/m2.s.Pa), intermediate solubility of 39 % and low maximum stress (0.19 MPa) while the BS film with 3 % of OEO presented 5.73 × 10-14 kg m/m2.s.Pa, 30 % and 0.39 MPa, respectively. The increase from 1 % to 3 % of OEO increased the total phenolic compound content and antioxidant activity of the films by 1.3-fold and 3.7-fold, respectively. The incorporation of 3 % OEO in the films inhibited the growth of S. aureus and E. coli. Therefore, BS and OEO films offer a promising solution as biodegradable active food packaging, providing a more sustainable alternative to traditional non-biodegradable plastic packaging.
Collapse
Affiliation(s)
- Juliana Criollo-Feijoo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Verónica Salas-Gomez
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Fabiola Cornejo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI, 48824-1223, USA
| | - Rómulo Salazar
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| |
Collapse
|
5
|
Fernandes L, Barco-Tejada A, Blázquez E, Araújo D, Ribeiro A, Silva S, Cussó L, Costa-de-Oliveira S, Rodrigues ME, Henriques M. Development and Evaluation of Microencapsulated Oregano Essential Oil as an Alternative Treatment for Candida albicans Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40628-40640. [PMID: 39067028 PMCID: PMC11311128 DOI: 10.1021/acsami.4c07413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Vulvovaginal candidiasis (VVC) is characterized as a very common fungal infection that significantly affects women's health worldwide. Essential oils (EOs) are currently being evaluated as an alternative therapy. The development of efficient techniques such as micro- or nanoencapsulation for protecting and controlling release is essential to overcome the limitations of EO applications. Therefore, the aim of this study was to develop and characterize oregano EO-loaded keratin microparticles (OEO-KMPs) as a potential treatment for VVC. OEO-KMPs were produced using high-intensity ultrasonic cycles and characterized in terms of morphological and physicochemical parameters. In vitro evaluation included assessing the toxicity of the OEO-KMPs and their effect against Candida albicans using microdilution and agar diffusion, while the activity against biofilm was quantified using colony forming units (CFU). The efficacy of the OEO-KMPs in an in vivo VVC mouse model was also studied. Female BALB/c mice were intravaginally infected with C. albicans, 24 h postinfection animals were treated intravaginally with 15 μL of OEO-KMPs and 24 h later vaginal fluid was analyzed for C. albicans and Lactobacillus growth (CFU mL-1). The results showed the stability of the OEO-KMPs over time, with high encapsulation efficiency and controlled release. This nanoparticle size facilitated penetration and completely inhibited the planktonic growth of C. albicans. In addition, an in vitro application of 2.5% of the OEO-KMPs eradicated mature C. albicans biofilms while preserving Lactobacillus species. In in vivo, a single intravaginal application of OEO-KMPs induced a reduction in C. albicans growth, while maintaining Lactobacillus species. In conclusion, this therapeutic approach with OEO-KMPs is promising as a potential alternative or complementary therapy for VVC while preserving vaginal microflora.
Collapse
Affiliation(s)
- Liliana Fernandes
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ainara Barco-Tejada
- Departamento
de Bioingeniería, Universidad Carlos
III de Madrid, 126, 28903 Getafe, Madrid, Spain
- Unidad
de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, 28029 Madrid, Spain
| | - Elena Blázquez
- Departamento
de Bioingeniería, Universidad Carlos
III de Madrid, 126, 28903 Getafe, Madrid, Spain
- Unidad
de Medicina y Cirugía Experimenta, Instituto de Investigación Sanitaria Gregorio Marañón, 28029 Madrid, Spain
| | - Daniela Araújo
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- National
Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila do Conde, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Sónia Silva
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- National
Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila do Conde, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Lorena Cussó
- Departamento
de Bioingeniería, Universidad Carlos
III de Madrid, 126, 28903 Getafe, Madrid, Spain
- Advanced
Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares
Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de
Salud Mental, Instituto de Salud Carlos
III, 28029 Madrid, Spain
| | - Sofia Costa-de-Oliveira
- Division
of Microbiology, Department of Pathology, and Center for Health Technology
and Services Research − CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - M. Elisa Rodrigues
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| | - Mariana Henriques
- Centre
of Biological Engineering, University of
Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS
− Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Song X, Kang J, Wei X, Liu L, Liu Y, Wang F. Insights into the antibacterial effectiveness of linalool against Shigella flexneri on pork surface: Changes in bacterial growth and pork quality. Int J Food Microbiol 2024; 418:110718. [PMID: 38678956 DOI: 10.1016/j.ijfoodmicro.2024.110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Shigella flexneri has the ability to contaminate pork and cause foodborne diseases. This study aimed to examine the effectiveness of linalool (a natural preservative) against S. flexneri and explore its potential application in contaminated pork. The results showed that linalool was capable of damaging the cell membrane and binding to the DNA of S. flexneri, and inhibiting biofilm formation and disrupting mature biofilms. The antibacterial effectiveness of linalool on the surface of pork was further demonstrated by analyzing the physicochemical properties of the pork (i.e., weight loss rate, pH value, color index, and TVB-N value) and its protein profiles. Linalool did not completely kill S. flexneri in pork at minimum bactericidal concentration (MBC) concentration and its antibacterial effect of linalool was stronger during the initial stage of storage. During storage, linalool influenced the abundance of specific proteins in the pork, particularly those involved in pathways related to fat metabolism. These findings offer novel insights into the antibacterial efficacy of linalool and its underlying mechanism in pork.
Collapse
Affiliation(s)
- Xueying Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiamu Kang
- School of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xingyan Wei
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Liu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng Wang
- Xi'an Supervision & Inspection Institute of Product Quality, Xi'an 710068, China
| |
Collapse
|
7
|
Kiskinis K, Mantzios T, Economou V, Petridou E, Tsitsos A, Patsias A, Apostolou I, Papadopoulos GA, Giannenas I, Fortomaris P, Tsiouris V. The In Vitro Antibacterial Activity of Phytogenic and Acid-Based Eubiotics against Major Foodborne Zoonotic Poultry Pathogens. Animals (Basel) 2024; 14:1611. [PMID: 38891658 PMCID: PMC11171102 DOI: 10.3390/ani14111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of the study was to investigate in vitro the antibacterial activity of 8 commercial drinking water additives against major zoonotic poultry pathogens (Campylobacter spp., Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus and Listeria spp.). We tested two essential oil-based phytogenics (Phyto CSC Liquide B, AEN 350 B Liquid), two acid-based eubiotics (Salgard® liquid, Intesti-Flora), and four blends of essential oils and organic acids (ProPhorceTM SA Exclusive, Herbal acid, Rigosol-N and Eubisan 3000). The antibacterial activity was determined by estimating the minimum inhibitory concentration (MIC) using a microdilution method. The MICs of the products against Campylobacter spp. ranged from 0.071% to 0.568% v/v, in which Herbal acid, a blend rich in lactic and phosphoric acids, also containing thyme and oregano oils, exhibited the highest efficacy (MIC: 0.071% v/v) against all the tested strains. The MICs of the tested products against Escherichia coli ranged between 0.071% and 1.894% v/v. Specifically, the MIC of Rigosol-N, a blend of high concentrations of lactic and acetic acid, was 0.142% v/v for both tested strains, whereas the MICs of Intesti-Flora, a mixture rich in lactic and propionic acid, ranged from 0.284% to 0.568% v/v. The MICs of the products against Salmonella Typhimurium were between 0.095% and 1.894% v/v. Specifically, the MIC of Eubisan 3000, a blend rich in oregano oil, was 0.284% v/v. The MICs against Staphylococcus aureus were between 0.142% and 9.090% v/v. The MICs of Phyto CSC Liquide B, which is rich in trans-cinnamaldehyde, were between 3.030% and 9.090% v/v, showing the highest MIC values of all tested products. Finally, the MIC values of the tested commercial products against Listeria spp. were 0.095% to 3.030% v/v. The MICs of ProPhorceTM SA Exclusive, a highly concentrated blend of formic acid and its salts, were 0.095-0.142% v/v against Listeria spp., while the MICs of AEN 350 B Liquid were between 0.284% and 1.894% exhibiting high Listeria spp. strain variability. In conclusion, all the selected commercial products exhibited more or less antibacterial activity against pathogenic bacteria and, thus, can be promising alternatives to antibiotics for the control of zoonotic poultry pathogens and the restriction of antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Konstantinos Kiskinis
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| | - Vangelis Economou
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.E.); (A.T.)
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anestis Tsitsos
- Laboratory of Food Animal Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.E.); (A.T.)
| | - Apostolos Patsias
- Agricultural Poultry Cooperation of Ioannina “PINDOS”, Rodotopi, 45500 Ioannina, Greece;
| | - Ioanna Apostolou
- National Reference Laboratory (NRL) for Campylobacter, Veterinary Laboratory of Ioannina, 45221 Ioannina, Greece;
| | - Georgios A. Papadopoulos
- Laboratory of Animal Science, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.A.P.); (P.F.)
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Paschalis Fortomaris
- Laboratory of Animal Science, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.A.P.); (P.F.)
| | - Vasilios Tsiouris
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (V.T.)
| |
Collapse
|
8
|
Uc-Cachón AH, Calvo-Irabien LM, Dzul-Beh ADJ, Dzib-Baak HE, Grijalva-Arango R, Molina-Salinas GM. Potential Anti-Infectious Activity of Essential Oil Chemotypes of Lippia origanoides Kunth on Antibiotic-Resistant Staphylococcus aureus Strains. PLANTS (BASEL, SWITZERLAND) 2024; 13:1172. [PMID: 38732387 PMCID: PMC11085919 DOI: 10.3390/plants13091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Staphylococcus aureus infections are prevalent in healthcare and community environments. Methicillin-resistant S. aureus is catalogued as a superbug of high priority among the pathogens. This Gram-positive coccus can form biofilms and produce toxins, leading to persistent infection and antibiotic resistance. Limited effective antibiotics have encouraged the development of innovative strategies, with a particular emphasis on resistance mechanisms and/or virulence factors. Medicinal aromatic plants have emerged as promising alternative sources. This study investigated the antimicrobial, antibiofilm, and antihemolysis properties of three different chemotypes of Lippia origanoides essential oil (EO) against susceptible and drug-resistant S. aureus strains. The chemical composition of the EO was analyzed using GC-MS, revealing high monoterpene concentrations, with carvacrol and thymol as the major components in two of the chemotypes. The third chemotype consisted mainly of the sesquiterpene β-caryophyllene. The MIC values for the two monoterpene chemotypes ranged from 62.5 to 500 µg/mL for all strains, whereas the sesquiterpene chemotype showed activity against seven strains at concentrations of 125-500 µg/mL, which is the first report of its anti-S. aureus activity. The phenolic chemotypes inhibited biofilm formation in seven S. aureus strains, whereas the sesquiterpene chemotype only inhibited biofilm formation in four strains. In addition, phenolic chemotypes displayed antihemolysis activity, with IC50 values ranging from 58.9 ± 3.8 to 128.3 ± 9.2 µg/mL. Our study highlights the importance of L. origanoides EO from the Yucatan Peninsula, which has the potential for the development of anti-S. aureus agents.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Luz María Calvo-Irabien
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida 97204, Yucatán, Mexico;
| | - Angel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Haziel Eleazar Dzib-Baak
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| | - Rosa Grijalva-Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida 97204, Yucatán, Mexico;
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Yucatán, Mexico; (A.H.U.-C.); (A.d.J.D.-B.); (H.E.D.-B.)
| |
Collapse
|
9
|
Chen F, Shi L, Hu J, Wang J, Li Z, Xiu Y, He B, Lin S, Liang D. Revelation of enzyme/transporter-mediated metabolic regulatory model for high-quality terpene accumulation in developing fruits of Lindera glauca. Int J Biol Macromol 2024; 264:130763. [PMID: 38467223 DOI: 10.1016/j.ijbiomac.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.
Collapse
Affiliation(s)
- Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
10
|
Cheng J, Velez FJ, Singh P, Cui L. Fabrication, characterization, and application of pea protein-based edible film enhanced by oregano essential oil (OEO) micro- or nano-emulsion. Curr Res Food Sci 2024; 8:100705. [PMID: 38435279 PMCID: PMC10907380 DOI: 10.1016/j.crfs.2024.100705] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Pea protein isolate (PPI)-based active films were prepared by incorporating 0.5 %, 1.0 %, or 2.0 % of oregano essential oil (OEO), either in the form of micro-emulsion (MOEO) or nano-emulsion (NOEO). The particle size and polydispersity index of OEO droplets were 2755.00 nm and 0.63 for MOEO, and 256.30 nm and 0.20 for NOEO. The surface and cross-sectional SEM results revealed the presence of holes and internal pores within the film upon the addition of OEO. The molecular interaction between PPI and OEO was confirmed by FTIR. The addition of OEO significantly increased film thickness, decreased water contact angle, and imparted a more yellow color. At a low concentration (0.5 %), the addition of OEO significantly improved the water vapor barrier and mechanical properties of the film. However, at higher concentrations, these film properties were significantly weakened. Additionally, the film antimicrobial properties were assessed after OEO addition. In vitro inhibition zone results indicated that a 2.0 % addition of OEO significantly suppressed the growth of three Salmonella strains [Salmonella Typhimurium (ATCC14028), Salmonella Infantis 94-1, and Salmonella Enteritidis PT-30]. Application of pea protein-based film with 2.0 % OEO on chicken breast demonstrated significant reduction in microbial count. Our results further showed that reducing the particle size of OEO from micrometer-scale to nanometer-scale in the PPI film matrix did not significantly alter film properties or antimicrobial activities. The study demonstrated that the antibacterial film based on pea protein and OEO is an innovative food packing material for prohibiting bacteria growth on poultry products.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Frank J. Velez
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Prashant Singh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Leqi Cui
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
11
|
Wang ZJ, Huang H, Zhu YY, Zhou ZS, Liu T, He XC, Zhang TL, Luo XD. Antimicrobial ingredients of Zanthoxylum motuoense and potential in fresh pork meat preservation. Heliyon 2024; 10:e22963. [PMID: 38163185 PMCID: PMC10755585 DOI: 10.1016/j.heliyon.2023.e22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Zanthoxylum motuoense (Tibetan prickly ash, MTHJ), different from the Chinese prickly ash species, is distributed only in the Tibet. Now the chemical characterization and antibacterial activity of MTHJ extracts were analyzed for the first time. As a result, Schinifoline (12), γ-Fagarine (8), (2E,7E,9E)-6 S-Hydroxy-N-(2-methylpropyl)-11-oxo-2, 7, 9-Dodecatrienamide (6), and Neoechinulin A (17) were found to be the major different factors by untarget LC-MS metabolomics together with quantitative analysis on target. These four compounds were also the major antibacterial constituents. Then, the antimicrobial activity of MTHJ fractions was evaluated with colony forming units (CFU), fluorescence microscopy imaging, SEM and investigating the potential food preservation. Nutritional composition, colour and sensory evaluation of extract-treated samples were evaluated along storage time. The results suggested the MTHJ may be used for meat products preservation, and the scores were significantly higher for its unique flavor, which offered a promising choice for food safety, preservation and reducing foodborne illness.
Collapse
Affiliation(s)
- Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Huan Huang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Zhong-Shun Zhou
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Tie Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Tie-Li Zhang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| |
Collapse
|
12
|
Dong Y, Wei Z, Yang R, Zhang Y, Sun M, Bai H, Mo M, Yao C, Li H, Shi L. Chemical Compositions of Essential Oil Extracted from Eight Thyme Species and Potential Biological Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:4164. [PMID: 38140491 PMCID: PMC10747983 DOI: 10.3390/plants12244164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Thymus is an herbaceous perennial or subshrub of the Lamiaceae family and is widely distributed worldwide. Essential oils extracted from thymus have attracted much attention, owing to their potential biological functions. Here, we evaluated the chemical compositions of eight thyme essential oils (TEOs) using gas chromatography mass spectrometry and assessed their antioxidant activity. The results showed that (1) the main components in eight TEOs were monoterpene hydrocarbons and oxygenated monoterpenes (84.26-92.84%), and the chemical compositions of the TEOs were affected by the specie factor; (2) eight TEOs could be divided into three groups (thymol-, geraniol-, and nerol acetate-types), and thymol was the main type; (3) eight TEOs had some common compounds, such as thymol and p-cymene, which were the main components in seven TEOs; (4) eight TEOs had antioxidant activity, and Thymus pulegioides, Thymus thracicus, and Thymus serpyllum EOs had stronger antioxidant activity than vitamin E (0.07-0.27 fold) at a concentration of 1 mg/mL, while Thymus quinquecostatus and Thymus longicaulis EOs had relatively weak antioxidant activity. In addition, three chemical type standards were used to evaluate potential roles in antibacterial and tumor therapy. The results showed that thymol had strong antibacterial activity against the growth of Escherichia coli and Staphylococcus aureus, and antimigratory activity for A549 cell. Overall, our results can provide a theoretical basis for further exploring the function of natural products from thyme essential oils.
Collapse
Affiliation(s)
- Yanmei Dong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
| | - Ziling Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiyu Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
| | - Meiling Mo
- Sinno Cosmetics Co., Ltd., Zhongshan 528451, China; (M.M.); (C.Y.)
| | - Chunlei Yao
- Sinno Cosmetics Co., Ltd., Zhongshan 528451, China; (M.M.); (C.Y.)
| | - Hui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Y.D.); (Z.W.); (R.Y.); (Y.Z.); (M.S.); (H.B.)
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
13
|
Hu H, Li D, Bai R, Zhang W, Luo H, Yu E. Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy. Int J Mol Sci 2023; 24:15203. [PMID: 37894884 PMCID: PMC10607841 DOI: 10.3390/ijms242015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oils of Juniperus are highly beneficial medicinally. The present study aimed to assess the chemodiversity and bioactivity of Juniperus formosana, Juniperus przewalskii, Juniperus convallium, Juniperus tibetica, Juniperus komarovii, and Juniperus sabina essential oils from the Qinghai-Tibet Plateau. The results revealed 92 components in six essential oils: α-pinene (2.71-17.31%), sabinene (4.91-19.83%), and sylvestrene (1.84-8.58%) were the main components. Twelve components were firstly reported in Juniperus oils, indicating that the geographical location and climatic conditions of the Qinghai-Tibet Plateau produced the unique characteristics of Juniperus essential oils. The chemodiversity of Juniperus essential oils varied greatly, with J. sabina having the most recognized components (64) and the highest chemodiversity (Shannon-Wiener index of 3.07, Simpson's diversity index of 0.91, and Pielou evenness of 0.74). According to the chemodiversity of essential oils, the six plants were decided into the α-pinene chemotype (J. formosana), hedycaryol chemotype (J. przewalskii, J. komarovii, J. convallium, J. tibetica), and sabinene chemotype (J. sabina). PCA, HCA and OPLS-DA showed that J. formosana and J. sabina were distantly related to other plants, which provides a chemical basis for the classification of Juniperus plants. Furthermore, bioactivity tests exhibited certain antioxidant and antibacterial effects in six Juniperus oils. And the bioactivities of J. convallium, J. tibetica, and J. komarovvii were measured for the first time, broadening the range of applications of Juniperus. Correlation analysis of components and bioactivities showed that δ-amorphene, β-udesmol, α-muurolol, and 2-nonanone performed well in the determination of antioxidant activity, and α-pinene, camphene, β-myrcene, as well as (E)-thujone, had strong inhibitory effects on pathogenic bacteria, providing a theoretical basis for further research on these components.
Collapse
Affiliation(s)
- Huizhong Hu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Ruxue Bai
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Weiping Zhang
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Hong Luo
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Enping Yu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| |
Collapse
|
14
|
Ben Akacha B, Ben Hsouna A, Generalić Mekinić I, Ben Belgacem A, Ben Saad R, Mnif W, Kačániová M, Garzoli S. Salvia officinalis L. and Salvia sclarea Essential Oils: Chemical Composition, Biological Activities and Preservative Effects against Listeria monocytogenes Inoculated into Minced Beef Meat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3385. [PMID: 37836125 PMCID: PMC10574192 DOI: 10.3390/plants12193385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Zduńczyk W, Tkacz K, Modzelewska-Kapituła M. The Effect of Superficial Oregano Essential Oil Application on the Quality of Modified Atmosphere-Packed Pork Loin. Foods 2023; 12:foods12102013. [PMID: 37238830 DOI: 10.3390/foods12102013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
During meat storage, changes in the meat colour occur, making it less intensive and red. The present study was aimed at investigating the effect of oregano EO applied directly on the surface of fresh pork on its quality, with a special emphasis on the colour. In the study, an oregano essential oil in concentrations of 0.5% and 1.0% (v/v) was used on the surface of pork loins (1.5% v/w) packed in a modified atmosphere during 15-d storage at 4 °C. The application of oregano EO in the concentration of 1.0% increased lightness and hue and decreased redness compared to the control, whereas the concentration of 0.5% did not affect the pork colour. EO did not affect pH, free water content, purge and cooking losses, cooked meat juiciness and tenderness; however, it gave the meat a distinctive herbal aroma and taste. The antimicrobial effect of 1% EO was noted only on the 15th day. Therefore, the application of oregano essential oil is not recommended to protect the colour of raw pork nor to prolong its shelf-life; however, it might be used to obtain a new product with a specific herbal aroma and taste, with modifications in water-holding capacity of the meat.
Collapse
Affiliation(s)
- Weronika Zduńczyk
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
| | - Katarzyna Tkacz
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
| | - Monika Modzelewska-Kapituła
- Department of Meat Technology and Chemistry, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-719 Olsztyn, Poland
| |
Collapse
|
16
|
Sun M, Liu N, Miao J, Zhang Y, Hao Y, Zhang J, Li H, Bai H, Shi L. Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization. Int J Mol Sci 2023; 24:ijms24087320. [PMID: 37108486 PMCID: PMC10138667 DOI: 10.3390/ijms24087320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Oregano is a medicinal and aromatic plant of value in the pharmaceutical, food, feed additive, and cosmetic industries. Oregano breeding is still in its infancy compared with traditional crops. In this study, we evaluated the phenotypes of 12 oregano genotypes and generated F1 progenies by hybridization. The density of leaf glandular secretory trichomes and the essential oil yield in the 12 oregano genotypes varied from 97-1017 per cm2 and 0.17-1.67%, respectively. These genotypes were divided into four terpene chemotypes: carvacrol-, thymol-, germacrene D/β-caryophyllene-, and linalool/β-ocimene-type. Based on phenotypic data and considering terpene chemotypes as the main breeding goal, six oregano hybrid combinations were performed. Simple sequence repeat (SSR) markers were developed based on unpublished whole-genome sequencing data of Origanum vulgare, and 64 codominant SSR primers were screened on the parents of the six oregano combinations. These codominant primers were used to determine the authenticity of 40 F1 lines, and 37 true hybrids were identified. These 37 F1 lines were divided into six terpene chemotypes: sabinene-, β-ocimene-, γ-terpinene-, thymol-, carvacrol-, and p-cymene-type, four of which (sabinene-, β-ocimene-, γ-terpinene-, and p-cymene-type) were novel (i.e., different from the chemotypes of parents). The terpene contents of 18 of the 37 F1 lines were higher than those of their parents. The above results lay a strong foundation for the creating of new germplasm resources, constructing of genetic linkage map, and mapping quantitative trait loci (QTLs) of key horticultural traits, and provide insights into the mechanism of terpenoid biosynthesis in oregano.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ningning Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Miao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanpeng Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
17
|
Yang R, Dong Y, Gao F, Li J, Stevanovic ZD, Li H, Shi L. Comprehensive Analysis of Secondary Metabolites of Four Medicinal Thyme Species Used in Folk Medicine and Their Antioxidant Activities In Vitro. Molecules 2023; 28:molecules28062582. [PMID: 36985554 PMCID: PMC10052123 DOI: 10.3390/molecules28062582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Thyme is a colloquial term for number of aromatic species belonging to the genus Thymus L., known for their expressed biological activities and therefore used worldwide for seasoning and in folk medicine. In the present paper, the content of the total polyphenols (TP), total flavonoids (TF), and antioxidant capacity were assessed in the extracts of four traditionally used thyme species. Moreover, a comprehensive metabolomic study of thyme bioactive compounds was performed, and the obtained data were processed using multivariate statistical tests. The results clearly demonstrated the positive correlation between the content of the TP, TF, and antioxidant activity, and TF was more significant than TP. The findings revealed that four selected thyme species contained 528 secondary metabolites, including 289 flavonoids and 146 phenolic acids. Thymus marschallianus had a higher concentration of active ingredients, which improve its antioxidant capacity. Differentially accumulated metabolites were formed by complex pathways such as flavonoid, flavone, flavonol, isoflavonoid, and anthocyanin biosynthesis. Correlation analysis showed that 59 metabolites (including 28 flavonoids, 18 phenolic acids, and 7 terpenoid compounds) were significantly correlated with obtained values of the antioxidant capacity. The results suggested that selected thyme species exhibit a great diversity in antioxidant-related components, whereas flavonoids may be responsible for the high antioxidant capacity of all studied thyme species. The present study greatly expands our understanding of the complex phytochemical profiles and related applications of selected medicinal plants.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Dong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
| | - Zora Dajic Stevanovic
- Department of Agrobotany, University of Belgrade Faculty of Agriculture, Nemanjina 6, 11080 Zemun, Serbia;
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- Correspondence: (H.L.); (L.S.)
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (R.Y.); (Y.D.); (F.G.); (J.L.)
- China National Botanical Garden, Beijing 100093, China
- Correspondence: (H.L.); (L.S.)
| |
Collapse
|
18
|
Hao Y, Kang J, Guo X, Sun M, Li H, Bai H, Cui H, Shi L. pH-responsive chitosan-based film containing oregano essential oil and black rice bran anthocyanin for preserving pork and monitoring freshness. Food Chem 2023; 403:134393. [DOI: 10.1016/j.foodchem.2022.134393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022]
|
19
|
Zhang J, Zhang M, Bhandari B, Wang M. Basic sensory properties of essential oils from aromatic plants and their applications: a critical review. Crit Rev Food Sci Nutr 2023; 64:6990-7003. [PMID: 36803316 DOI: 10.1080/10408398.2023.2177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
With higher standards in terms of diet and leisure enjoyment, spices and essential oils of aromatic plants (APEOs) are no longer confined to the food industry. The essential oils (EOs) produced from them are the active ingredients that contribute to different flavors. The multiple odor sensory properties and their taste characteristics of APEOs are responsible for their widespread use. The research on the flavor of APEOs is an evolving process attracting the attention among scientists in the past decades. For APEOs, which are used for a long time in the catering and leisure industries, it is necessary to analyze the components associated with the aromas and the tastes. It is important to identify the volatile components and assure quality of APEOs in order to expand their application. It is worth celebrating the different means by which the loss of flavor of APEOs can be retarded in practice. Unfortunately, relatively little research has been done on the structure and flavor mechanisms of APEOs. This also points the way to future research on APEOs.Therefore, this paper reviews the principles of flavor, identification of components and sensory pathways in humans for APEOs. Moreover, the article outlines the means of increasing the efficiency of using of APEOs. Finally, with respect to the sensory applications of APEOs, the review focuses on the practical application of APEOs in food sector and in aromatherapy.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mingqi Wang
- R & D Center, Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, China
| |
Collapse
|
20
|
Antimicrobial action of Oregano, Thyme, Clove, Cinnamon and Black pepper essential oils free and encapsulated against foodborne pathogens. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Hao Y, Guo X, Zhang W, Xia F, Sun M, Li H, Bai H, Cui H, Shi L. 1H NMR–based metabolomics reveals the antimicrobial action of oregano essential oil against Escherichia coli and Staphylococcus aureus in broth, milk, and beef. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Fabrication and immediate release characterization of UV responded oregano essential oil loaded microcapsules by chitosan-decorated titanium dioxide. Food Chem 2023; 400:133965. [DOI: 10.1016/j.foodchem.2022.133965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
|
23
|
Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L. Potential of Aromatic Plant-Derived Essential Oils for the Control of Foodborne Bacteria and Antibiotic Resistance in Animal Production: A Review. Antibiotics (Basel) 2022; 11:1673. [PMID: 36421318 PMCID: PMC9686951 DOI: 10.3390/antibiotics11111673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance has become a severe public threat to human health worldwide. Supplementing antibiotic growth promoters (AGPs) at subtherapeutic levels has been a commonly applied method to improve the production performance of livestock and poultry, but the misuse of antibiotics in animal production plays a major role in the antibiotic resistance crisis and foodborne disease outbreaks. The addition of AGPs to improve production performance in livestock and poultry has been prohibited in some countries, including Europe, the United States and China. Moreover, cross-resistance could result in the development of multidrug resistant bacteria and limit therapeutic options for human and animal health. Therefore, finding alternatives to antibiotics to maintain the efficiency of livestock production and reduce the risk of foodborne disease outbreaks is beneficial to human health and the sustainable development of animal husbandry. Essential oils (EOs) and their individual compounds derived from aromatic plants are becoming increasingly popular as potential antibiotic alternatives for animal production based on their antibacterial properties. This paper reviews recent studies in the application of EOs in animal production for the control of foodborne pathogens, summarizes their molecular modes of action to increase the susceptibility of antibiotic-resistant bacteria, and provides a promising role for the application of nanoencapsulated EOs in animal production to control bacteria and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
24
|
Gao F, Zhang L, Li H, Xia F, Bai H, Piao X, Sun Z, Cui H, Shi L. Dietary Oregano Essential Oil Supplementation Influences Production Performance and Gut Microbiota in Late-Phase Laying Hens Fed Wheat-Based Diets. Animals (Basel) 2022; 12:ani12213007. [PMID: 36359131 PMCID: PMC9654440 DOI: 10.3390/ani12213007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the potential effects of OEO on production performance, egg quality, fatty acid composition in yolk, and cecum microbiota of hens in the late phase of production. A total of 350 58-week-old Jing Tint Six laying hens were randomly divided into five groups: (1) fed a basal diet (control); (2) fed a basal diet + 5 mg/kg flavomycin (AGP); (3) fed a basal diet + 100 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO1); (4) fed a basal diet + 200 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO2); (5) fed a basal diet + 300 mg/kg oregano essential oil + 20 mg/kg cinnamaldehyde (EO3). Compared to the control group, group EO2 exhibited higher (p < 0.05) egg production during weeks 5−8 and 1−8. EO2 had a lower feed conversion ratio than the control group during weeks 1−8. The content of monounsaturated fatty acid (MUFA) in EO2 was higher (p < 0.05) than that of the control and AGP groups. EO2 increased (p < 0.05) the abundance of Actinobacteriota and decreased the abundance of Desulfovibri in the cecum. The abundances of Anaerofilum, Fournierella, Fusobacterium, and Sutterella were positively correlated with egg production, feed conversion ratio, and average daily feed intake, while the abundances of Bacteroides, Desulfovibrio, Lactobacillus, Methanobrevibacter, and Rikenellaceae_RC9_gut_group were negatively correlated with egg production, feed conversion ratio, and average daily feed intake. Dietary supplementation with 200 mg/kg OEO and 20 mg/kg cinnamaldehyde could improve egg-production performance, decrease feed conversion ratio, and alter the fatty acid and microbial composition of eggs from late-phase laying hens.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lianhua Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiying Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongxia Cui
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
25
|
Comparison of Origanum Essential Oil Chemical Compounds and Their Antibacterial Activity against Cronobacter sakazakii. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196702. [PMID: 36235238 PMCID: PMC9571376 DOI: 10.3390/molecules27196702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Origanum vulgare L. (oregano) is an aromatic plant with wide applications in the food and pharmaceutical industries. Cronobacter sakazakii, which has a high detection rate in powdered infant formula, adversely impacts susceptible individuals. Oregano essential oil (OEO) is a natural antibacterial agent that can be used to fight bacterial contamination. Here, OEO chemical compounds from eight oregano varieties were analyzed by gas chromatography–mass spectrometry and their antibacterial properties were assessed. The eight OEOs were clustered into two groups and were more diverse in group 2 than in group 1. Six compounds, including p-cymene, 3-thujene, γ-terpinene, thymol, carvacrol, and caryophyllene, were shared by eight OEOs. Among the eight oregano varieties, OEOs from O. vulgare sc2 had the strongest antibacterial activity against C. sakazaki, with the inhibition zone of 18.22mm. OEOs from O. vulgare jx, O. ‘Nvying’, O. vulgare ‘Ehuang’, and O. vulgare ssp. virens were also potent. Moreover, the antibacterial activity of OEOs was positively correlated with the relative content of thymol. As the main OEO antibacterial compound, thymol affected the normal growth and metabolism of C. sakazakii cells by destroying the bacterial membrane and decreasing the intracellular ATP concentration. Thus, in light of the antibacterial activity detected in the OEOs from the eight oregano varieties, this study provides a theoretical foundation for oregano cultivar management and development.
Collapse
|
26
|
Antibacterial Activity of Clove, Oregano, Thyme, Eucalyptus, and Tea Tree Essential Oils against Escherichia coli and Klebsiella pneumoniae strains. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Background: In view of the high recurrence rate of urinary tract infections and the increasing number of germs resistant to multiple antibiotics, the aim of the present study was to evaluate the antibacterial properties of clove, oregano, thyme, eucalyptus, tea tree essential oils (EOs) against 32 isolates of Escherichia coli and 28 isolates of Klebsiella pneumoniae from patients with urinary tract infections (UTI).
Methods: The agar disk diffusion method was used to assess the susceptibility of these isolates to essential oils and the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) were determined.
Results: Our results suggest that volatile phenols (such as carvacrol in oregano EO, thymol in thyme EO, and eugenol in clove EO) are more efficacious as antibacterial than non-aromatic compounds (such as eucalyptol in eucalyptus EO and terpinene derivatives in tea tree EO).
Conclusion : The oregano EO, followed by thyme appear to have the highest efficacy against Escherichia coli and Klebsiella pneumoniae isolates investigated.
Collapse
|
27
|
D’Aquila P, Paparazzo E, Crudo M, Bonacci S, Procopio A, Passarino G, Bellizzi D. Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients 2022; 14:nu14020391. [PMID: 35057572 PMCID: PMC8780331 DOI: 10.3390/nu14020391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Natural compounds have historically had a wide application in nutrition. Recently, a fundamental role has been identified for essential oils extracted from aromatic plants for their nutritional, antimicrobial, and antioxidant properties, and as food preservatives. In the present study, essential oils (EOs) from ten aromatic plants grown in Calabria (Italy), used routinely to impart aroma and taste to food, were evaluated for their antibacterial activity. This activity was investigated against Escherichia coli strain JM109, and its derived antibiotic-resistant cells selected by growing the strain at low concentrations of ampicillin, ciprofloxacin, and gentamicin by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Although all the essential oils showed bactericidal activity, those from Clinopodium nepeta, Origanum vulgare, and Foeniculum vulgare displayed the greatest inhibitory effects on the bacterial growth of all cell lines. It is plausible that the antibacterial activity is mediated by epigenetic modifications since the tested essential oils induce methylation both at adenine and cytosine residues in the genomes of most cell lines. This study contributes to a further characterization of the properties of essential oils by shedding new light on the molecular mechanisms that mediate these properties.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Michele Crudo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
- Correspondence:
| |
Collapse
|