1
|
Manavalan S, Thiruppathi M, Senthil C, Kim SS, Jung HY, Jung SM. Controllable construction of γ-Fe 2O 3 nanocubes anchored on carbon nanotube nanoribbons; boosting electrocatalytic activity for organic pollutant detection in vegetables. Food Chem 2025; 470:142725. [PMID: 39764887 DOI: 10.1016/j.foodchem.2024.142725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Developing a highly efficient electrocatalyst for detecting hazardous bisphenol S (BPS) is essential to minimize health risks. Herein, we fabricate γ-Fe2O3 nanocubes (IONCs) anchored on carbon nanotube nanoribbons (CNRs) (denoted as IONCs-CNRs) for the electrochemical detection of BPS in vegetables. Importantly, the IONCs can be selectively formed only on CNRs via amperometric deposition, while γ-Fe2O3 cubic clusters (IOCCs) form in the absence of CNRs. This results in a remarkable 300 % increase in electrocatalytic activity compared to that exhibited by IOCCs. As a result, the IONCs-CNRs sensor exhibits high sensitivity (S = 14.7548 μAμM-1 cm-2), a low detection limit of 1.9 nM, and good selectivity for BPS detection. Moreover, the sensor shows a good recovery rate of 96.23 to 99.95 % in detecting BPS in vegetable samples. The controlled IONCs-CNRs, with enhanced catalytic activity, represent a promising electrocatalyst for the on-site detection of trace amounts of BPS in food safety applications.
Collapse
Affiliation(s)
- Shaktivel Manavalan
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea
| | - Murugan Thiruppathi
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea
| | - Chenrayan Senthil
- Future Convergence Technology Research Institute, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52849, South Korea
| | - Sun-Sik Kim
- Department of Energy Engineering, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Hyun Young Jung
- Future Convergence Technology Research Institute, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52849, South Korea.; Department of Energy Engineering, Gyeongsang National University (GNU), Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Sung Mi Jung
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, Republic of Korea.
| |
Collapse
|
2
|
Yao L, Fu Z, Duan Q, Wu M, Song F, Wang H, Qin Y, Bai Y, Zhou C, Quan X, Lee J. An intelligent spectral identification approach for the simultaneous detection of endocrine-disrupting chemicals in aquatic environments. ENVIRONMENTAL RESEARCH 2025; 264:120368. [PMID: 39547564 DOI: 10.1016/j.envres.2024.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
With the rapid progression of industrialization, the application and release of endocrine disruptors (EDCs), including bisphenol A (BPA), octylphenol and nonylphenol have significantly increased, presenting substantial health hazards. Conventional analytical techniques, such as high-performance liquid chromatography and gas chromatography-mass spectrometry, are highly sophisticated but suffer from complex procedures and high costs. To overcome these limitations, this study introduces an innovative spectral methodology for the simultaneous detection of multiple aquatic multicomponent EDCs. By leveraging chemical machine vision, specifically with convolutional neural network (CNN) models, we employed a long-path holographic spectrometer for rapid, cost-effective identification of BPA, 4-tert-octylphenol, and 4-nonylphenol in aqueous samples. The CNN, refined with the ResNet-50 architecture, demonstrated superior predictive performance, achieving detection limits as low as 3.34, 3.71 and 4.36 μg/L, respectively. The sensitivity and quantification capability of our approach were confirmed through the analysis of spectral image Euclidean distances, while its universality and resistance properties were validated by assessments of environmental samples. This technology offers significantly advantages over conventional techniques in terms of efficiency and cost, offering a novel solution for EDC monitoring in aquatic environments. The implications of this research extend beyond improved detection speed and cost reduction, presenting new methodologies for analyzing complex chemical systems and contributing to environmental protection and public health.
Collapse
Affiliation(s)
- Liulu Yao
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Zhizhi Fu
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity. College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, PR China
| | - Mingzhe Wu
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Fan Song
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Haoyu Wang
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yiheng Qin
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Yonghui Bai
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Chi Zhou
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an, 71005, PR China
| | - Xudong Quan
- Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Shaanxi Provincial Environmental Monitoring Centre, Xi'an, 71005, PR China
| | - Jianchao Lee
- Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, PR China.
| |
Collapse
|
3
|
Zhang J, Chen Y, Ni M, Hou C, Qiao X, Wang T. A novel halloysite nanotubes-based hybrid monolith for in-tube solid-phase microextraction of polar cationic pesticides. Food Chem 2024; 458:140205. [PMID: 38943962 DOI: 10.1016/j.foodchem.2024.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME). This novel hybrid monolith extended service life, improved adsorption capacity, and exhibited excellent extraction performance for polar cationic pesticides. Based on these advancements, a robust and sensitive in-tube SPME-HILIC-MS/MS method was constructed to determine trace levels of polar cationic pesticides in complex food matrices. The method achieved limits of detection of 1.9, 2.1, and 0.1 μg/kg for maleic hydrazide, amitrole, and cyromazine, respectively. The spiked recoveries in five food samples ranged from 80.2 to 100.8%, with relative standard deviations below 10.7%.
Collapse
Affiliation(s)
- Jinhan Zhang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Yihui Chen
- Ningbo Customs Technology Center, Ningbo 315040, PR China.
| | - Meilin Ni
- Ningbo Customs Technology Center, Ningbo 315040, PR China
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China.
| |
Collapse
|
4
|
Liu H, Rao H, Guo J, Lu B, Wang Y, Zhu R, Du X. Ultrasound-assisted rapid growth of chemically bonded bifunctional mesoporous covalent organic framework submicrospheres on a nickel-chromium alloy support for efficient solid-phase microextraction of bisphenols from water and milk samples. J Chromatogr A 2024; 1736:465438. [PMID: 39405637 DOI: 10.1016/j.chroma.2024.465438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
A layer-by-layer chemical bonding strategy was developed for fast in situ growth of bifunctional mesoporous covalent organic framework submicrospheres (COF SMSs) on the nickel-chromium alloy (Ni-Cr) fiber substrate via the ultrasound-assisted Schiff-base reaction for the first time. COF SMSs showed well-defined morphology, extraordinary high surface area (1211 m2·g-1) and narrow mesopore (2.50 nm) as well as excellent stability. Furthermore, the resulting Ni-Cr fiber presented outstanding adsorption capability and improved selectivity for bisphenols (BPs). Consequently, an attractive SPME-HPLC-UV approach with the Ni-Cr@Ni-Cr LDHs NSs@COF SMSs fiber was proposed for rapid preconcentration and sensitive determination of BPs. By optimizing adsorption parameters, the SPME-HPLC-UV method presented good linearity for five BPs in the ranges of 0.02-200 ng·mL-1 with coefficients of determination (R2) higher than 0.999. Limits of detection and limits of quantitation were obtained from 0.003 ng·mL-1 to 0.006 ng·mL-1 and from 0.010 to 0.019 ng·mL-1, respectively. Moreover, the intra-day and inter-day precision expressed as relative standard deviations (RSDs) was 1.57-3.52 % and 2.65-4.38 % for the proposed method with a single fiber, respectively. RSDs of the proposed method with different duplicate fibers were 3.25-6.72 %. The proposed SPME-HPLC-UV method was available for efficient preconcentration and sensitive detection of five BPs from real water and milk samples. The relative recoveries at three spiking levels of BPs were achieved in the range of 80.00-118.8 % with RSDs below 7.81 %. In addition, the prepared fiber still exhibited satisfactory adsorption performance after 120 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Haixia Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Honghong Rao
- School of Chemical Engineering, Lanzhou City University, Lanzhou, China
| | - Jinxin Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Baolan Lu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuyun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongxi Zhu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China.
| |
Collapse
|
5
|
Wang S, Liu W, Lei X, Huang T, Huang G, Lin C, Wu X. Surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes for pipette tip solid-phase extraction of microcystins in water. J Chromatogr A 2024; 1736:465390. [PMID: 39326382 DOI: 10.1016/j.chroma.2024.465390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The occurrence of microcystins (MCs) during harmful algal blooms (HABs) represents a major threat to freshwater environments. In this work, a novel surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes (PCSs) was prepared for the enrichment of MCs. The copolymerization of bifunctional amphiphilic monomers, 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-benzylquininium chloride (BQN), with the cross-linker methacryl substituted polyhedral oligomeric silsesquioxane (POSS) was achieved in an ionic liquid-based porogenic medium. The hierarchical porous structure, a variety of surface functional groups and weak hydrophilicity were well characterized on the prepared materials using scanning electron microscopy, nitrogen adsorption/desorption analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential analysis and water contact angle testing, respectively. The as-prepared surface amphiphilic PCSs was used as an adsorbent for pipette tip solid-phase extraction (PT-SPE) to enrich microcystins (MCs) from surface waters before their analysis by capillary electrochromatography (CEC) and liquid chromatography-mass spectrometry (LC-MS). Under the optimal conditions, the established PT-SPE-LC-MS method exhibited a wide linear range (10-10,000 ng L-1), low limits of detection (4.0-8.0 ng L-1) and satisfactory recoveries (89.5-102.8 %) for MCs. An adsorption mechanism involving electrostatic interactions, hydrogen bonding, hydrophilic interactions, and π-π stacking has been proposed. The findings suggest that the use of surface amphiphilic PCSs materials as adsorbents in the PT-SPE platform facilitates efficient enrichment of MCs for subsequent chromatographic analysis. These investigations offer a new perspective on the simple and uncomplicated pretreatment of complex environmental samples.
Collapse
Affiliation(s)
- Shuqiang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Wenning Liu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Xiaoyun Lei
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Ting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Guobin Huang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China.
| |
Collapse
|
6
|
Zhang Z, Feng Y, Teng H, Ru S, Li Y, Liu M, Wang J. Development and application of bisphenol S electrochemical immunosensor and iridium oxide nanoparticle-based lateral flow immunoassay. CHEMOSPHERE 2024; 364:143034. [PMID: 39117083 DOI: 10.1016/j.chemosphere.2024.143034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Bisphenol S (BPS) is a common pollutant in the environment and has posed a potential threat to aquatic animals and human health. To accurately assess the pollution level and ecological risk of BPS, there is an urgent need to establish simple and sensitive detection methods for BPS. In this study, BPS complete antigen was successfully prepared by introducing methyl 4-bromobutyrate and coupling bovine serum albumin (BSA). The monoclonal antibody against BPS (anti-BPS mAb) with high affinity (1: 256,000) was developed based on the BPS complete antigen, which showed low cross-reactivity with BPS structural analogues. Then, an electrochemical immunosensor was constructed to detect BPS using multi-walled carbon nanotubes and gold nanoflower composites as signal amplification elements and using anti-BPS mAb as the probe. The electrochemical immunosensor had a linear range from 1 to 250 ng⋅mL-1 and a limit of detection (LOD) down to 0.6 ng⋅mL-1. Additionally, a more stable and sensitive lateral flow immunoassay (LFIA) for BPS was developed based on iridium oxide nanoparticles, with a visual detection limit of 1 ng⋅mL-1, which was 10 times lower than that of classical Au-NPs LFIA. After evaluation of their stability and specificity, the reliability of these two methods were further validated by measuring BPS concentrations in the water and fish tissues. Thus, this study provides sensitive, robust and rapid methods for the detection of BPS in the environment and organisms, which can provide a methodological reference for monitoring environmental contaminants.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yongliang Feng
- Department of Basic Courses, Tangshan University, Tangshan, 063000, China
| | - Hayan Teng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Souza ID, Queiroz MEC. Organic-silica hybrid monolithic sorbents for sample preparation techniques: A review on advances in synthesis, characterization, and applications. J Chromatogr A 2024; 1713:464518. [PMID: 38000199 DOI: 10.1016/j.chroma.2023.464518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Organic-silica hybrid monolithic materials have attracted considerable attention as potential stationary phases in separation science. These materials combine the advantages of organic polymer and silica-based monoliths, including easy preparation, lower back pressure, high permeability, excellent mechanical strength, thermal stability, and tunable surface chemistry with high surface area and selectivity. The outstanding chromatographic efficiency as stationary phase of hybrid monolithic capillary columns for capillary liquid chromatography and capillary electrochromatography has been reported in many papers. Organic-silica hybrid monolithic materials have also been extensively used in the field of sample preparation. Owing to their surface functionalities, these porous sorbents offer unique selectivity for pre-concentration of different analytes in the most complex matrixes by fast dynamic transport. These sorbents not only improve the analytical method sensitivity, but also introduce novelties in terms of extraction devices and instrument coupling strategies. The current review covers the period spanning from 2017 to 2023 and describes the properties of organic-inorganic hybrid monolithic materials, the present status of this technology and summarizes recent developments in their use as innovative sorbents for microextraction sample preparation techniques (solid phase microextraction with pipette tip, offline in-tube SPME, in-tube SPME online with LC, and in-tube SPME directly coupled with mass spectrometry). Aspects such as the synthesis methods (sol-gel process, one-pot approach, and polyhedral oligomeric silsesquioxanes-based procedure), characterization techniques, and strategies to improve extraction efficiency in various applications in different areas (environmental, food, bioanalysis, and proteomics) are also discussed.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14040-901, Brazil.
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14040-901, Brazil
| |
Collapse
|
8
|
Zhang Q, Chen M, Xu F, Wu W, Luo X, Wang Y, Li J, Cui X, Tan Y, Li Z, Lin Y, Zhang H, Wang W. One-pot preparation of bi-functional POSS-based hybrid monolith via photo-initiated polymerization for isolation of extracellular vesicles. Anal Chim Acta 2023; 1279:341785. [PMID: 37827681 DOI: 10.1016/j.aca.2023.341785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Extracellular vesicles (EVs) are important participants in numerous pathophysiological processes, and could be used as valuable biomarkers to detect and monitor various diseases. However, facile EV isolation methods are the essential and preliminary issue for their downstream analysis and function investigation. In this work, a polyhedral oligomeric silsesquioxanes (POSS) based hybrid monolith combined metal affinity chromatography (MAC) and distearoyl phospholipid ethanolamine (DSPE) function was developed via photo-initiated thiol-ene polymerization. This synthesis process was facile, simple and convenient, and the obtained hybrid monolith could be applied to efficiently isolate EVs from bio-samples by taking advantages of the specific bond of Ti4+ and phosphate groups on the phospholipid membrane of EVs and the synergistic effect of DSPE insertion. Meanwhile, the eluted EVs could maintain their structural integrity and biological activity, suggesting they could be used for downstream application. Furthermore, 75 up-regulated proteins and 56 down-regulated proteins were identified by comparing the urinary EVs of colorectal cancer (CRC) patients and healthy donors, and these proteins might be used as potential biomarkers for early screening of CRC. These results demonstrated that this hybrid monolith could be used as a simple and convenient tool for isolating EVs from bio-samples and for wider applications in biomarker discovery.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengxi Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Fang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xintong Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Taichang Liuhe People's Hospital, Suzhou, 215431, China
| | - Jiaxi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xuanhao Cui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yujia Tan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhi Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yujie Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Haiyang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Zhou S, Kuang Y, Lin H, Zheng J, Ouyang G. Modulating covalent organic frameworks with accessible carboxyl to boost superior extraction of polar nitrobenzene compounds from matrix-complicated beverages. Food Chem 2023; 426:136626. [PMID: 37354579 DOI: 10.1016/j.foodchem.2023.136626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The wide use and high polarity of nitrobenzene compounds (NBCs) have caused a concern for their residues in daily beverages. Herein, the covalent organic frameworks (COFs) with abundant carboxyl were ingeniously designed by introducing a novel modulator, and further developed as solid phase microextraction (SPME) coatings. Due to the enhanced polar interaction, the extraction efficiencies of modified COF for NBCs were sharply increased. After coupling the high-performance SPME fiber with gas chromatograph-mass spectrometry (GC-MS), an ultrasensitive analytical method was developed, with a wide linear range (0.50-5000 ng/L), and low limits of detection (0.15-3.0 ng/L). More importantly, the method was highly feasible and practical, leading to the precise determinations of trace NBCs from variously matrix-complicated samples. This work provides a viable and efficacious approach for the extraction and analysis of polar pollutants form complicated matrices, and is of great significance for mild COF modification and its extended applications in analytical chemistry.
Collapse
Affiliation(s)
- Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hongkai Lin
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
10
|
Zhang C, Li Y, Yuan H, Lu Z, Zhang Q, Zhao L. Methacrylate bonded covalent organic framework monolithic column online coupling with high-performance liquid chromatography for analysis of trace estrogens in food. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123697. [PMID: 37059013 DOI: 10.1016/j.jchromb.2023.123697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous materials with unique properties and have been considered as a promising functional extraction medium in sample pretreatment. In this study, a new methacrylate-bonded COF (TpTh-MA) was well designed and synthesized via the aldehyde-amine condensation reaction, and the TpTh-MA was incorporated into poly (ethylene dimethacrylate) porous monolith by a facile polymerization reaction inside capillary to prepare a novel TpTh-MA monolithic column. The fabricated TpTh-MA monolithic column was characterized with scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and N2 adsorption-desorption experiments. Then, the homogeneous porous structure, good permeability and high mechanical stability of TpTh-MA monolithic column was used as separation and enrichment media of capillary microextraction, which was coupled with high-performance liquid chromatography fluorescence detection for online enrichment and analysis of trace estrogens. The main experimental parameters influencing the extraction efficiency were systematically investigated. The adsorption mechanism for three estrogens was also explored and discussed based on hydrophobic effect, π-π affinity and hydrogen bonding interaction, which contributed to its strong recognition affinity to target compounds. The enrichment factors of the TpTh-MA monolithic column micro extraction method for the three estrogens were 107-114, indicating a significant preconcentration ability. Under optimal conditions, a new online analysis method was developed and exhibited good sensitivity and wide linearity range of 0.25-100.0 µg·L-1 with a coefficient of determination (R2) higher than 0.9990 and a low limit of detection with 0.05-0.07 µg·L-1. The method was successfully applied for online analysis of three estrogens of milk and shrimp samples and the recoveries obtained from spiking experiments were in range of 81.4-113% and 77.9-111%, with the relative standard deviations of 2.6-7.9% and 2.1-8.3% (n = 5), respectively. The results revealed the great potential for the application of the COFs-bonded monolithic column in the field of sample pretreatment.
Collapse
Affiliation(s)
- Chengjiang Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Yuhuang Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Hongmei Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zeyi Lu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qi Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lirong Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
11
|
Ning Y, Xu Y, Bao J, Wang W, Wang AJ. β-cyclodextrin-functionalized magnetic graphene oxide for the efficient enrichment of bisphenols in milk and milk packaging. J Chromatogr A 2023; 1692:463854. [PMID: 36780847 DOI: 10.1016/j.chroma.2023.463854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
In this work, β-cyclodextrin-functionalized magnetic graphene oxide (NiFe2O4@GO@β-CD) was synthesized and employed as magnetic solid-phase extraction adsorbent for the extraction of bisphenols before high performance liquid chromatography analysis. The modification of β-cyclodextrin could enhance the adsorption performance of NiFe2O4@GO@β-CD towards bisphenols through the host-guest interaction and hydrogen-bond interaction. Under the optimal conditions, good linearities between peak area and concentration of bisphenols (1 - 300 μg L-1, r ≥ 0.9989) were obtained with the limits of detection (S/N = 3) in the range of 0.050 - 0.10 μg L-1. The recoveries of bisphenols in milk and milk packaging ranged from 78.0% to 101.6%. Moreover, NiFe2O4@GO@β-CD showed stable chemical properties and good reusability with the recoveries of bisphenols remained above 80.0% after 12 MSPE cycles. The adsorption characteristics of NiFe2O4@GO@β-CD towards bisphenols fitted well with the pseudo-second-order kinetic model and Langmuir model. The hydrogen-bond interaction, π-π interaction, host-guest interaction and electrostatic interaction between sorbent and bisphenols played important role during the adsorption process. The developed method showed potential applications for the analysis of trace bisphenols in milk and milk packaging.
Collapse
Affiliation(s)
- Yuhan Ning
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jingyi Bao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Weiping Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
12
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
In-Tube Solid-Phase Microextraction Directly Coupled to Mass Spectrometric Systems: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since it was introduced in 1997, in-tube solid-phase microextraction (in-tube SPME), which uses a capillary column as extraction device, has been continuously developed as online microextraction coupled to LC systems (in-tube SPME-LC). In the last decade, new couplings have been evaluated on the basis of state-of-the-art LC instruments, including direct coupling of in-tube SPME to MS/MS systems, without chromatographic separation, for high-throughput analysis. In-tube SPME coupling to MS/MS has been possible thanks to the selectivity of capillary column coatings and MS/MS systems (SRM mode). Different types of capillary columns (wall-coated open-tubular, porous-layer open-tubular, sorbent-packed, porous monolithic rods, or fiber-packed) with selective stationary phases have been developed to increase the sorption capacity and selectivity of in-tube SPME. This review focuses on the in-tube SPME principle, extraction configurations, current advances in direct coupling to MS/MS systems, experimental parameters, coatings, and applications in different areas (food, biological, clinical, and environmental areas) over the last years.
Collapse
|
14
|
Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|