1
|
Zou X, Bai Y, Ji Y, Zhang L, Gao Q, Fang X. Integrated transcriptomic and metabolomic analyses provide insights into defense against Colletotrichum fructicola in octoploid strawberries. BMC PLANT BIOLOGY 2025; 25:190. [PMID: 39948459 PMCID: PMC11823099 DOI: 10.1186/s12870-025-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND The Colletotrichum fructicola (C. fructicola) is a hemibiotrophic fungus, which causes devastating anthracnose in strawberry. At present, the resistance mechanism to C. fructicola remains poorly understood. RESULTS Here, we used RNA-sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics to excavate the molecular mechanism of strawberry resistance to C. fructicola. The differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were screened at different stages after C. fructicola infection in the susceptible 'Benihoppe' and resistant cultivar 'Sweet Charlie'. The core common DEGs with high association of common DAMs were identified by multi-omics integration analysis, and showed convergence and divergence in the two strawberry cultivars. Strikingly, the phenylpropanoids biosynthesis was simultaneously enriched in a multi-level omics at different stages after C. fructicola infection in the resistant (R) and susceptible (S) strawberries. Furthermore, we constructed the DEGs-DAMs map of phenylpropanoid biosynthesis. More importantly, we showed that chloroplasts and starch and sugar metabolism related genes, such as chlorophyII A-B binding genes, glycosyl hydrolase (GH) family genes and so on, were differentially expressed. CONCLUSIONS Taken together, our study revealed major changes in genes and metabolites expression associated with C. fructicola resistance, and identified the multi-level regulatory network based on phenylpropanoid biosynthesis, useful for further mechanistic excavation of resistance to C. fructicola in strawberries.
Collapse
Affiliation(s)
- Xiaohua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Yun Bai
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Ying Ji
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liqing Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qinghua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xianping Fang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
2
|
Wu L, Wang X, Hao J, Zhu N, Wang M. Geographical Indication Characteristics of Aroma and Phenolic Acids of the Changping Strawberry. Foods 2023; 12:3889. [PMID: 37959008 PMCID: PMC10650669 DOI: 10.3390/foods12213889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Strawberry is the most consumed berry fruit worldwide due to its unique aroma and high nutritive value. This fruit is also an important source of phenolic compounds. Changping strawberries are recognized as a national agricultural product of geographical indication (GI) due to their unique flavor. Widely accepted standards for identifying GI strawberries from non-GI strawberries are currently unavailable. This study compared the aroma and phenolic acid composition of GI and non-GI strawberries. Furthermore, the characteristic aroma and phenolic acid markers of GI strawberries were determined. A classification model based on the markers was established using Fisher discriminant analysis (FDA). In this study, six groups of strawberries with variety name of "Hongyan", including GI strawberries from Changping and non-GI strawberries from Changping, Miyun, Pinggu, Shunyi, and Tongzhou, were collected. A total of 147 volatile substances were discovered using gas chromatography-tandem mass spectrometry. The contents of a few compounds principally responsible for the distinctive aroma in GI strawberries were in the top three of the six groups, providing GI strawberries with a generally pleasant fragrance. OPLS-DA identified isoamyl butyrate and trans-2-octen-1-ol as characteristic markers. Enrichment analysis indicated that beta-oxidation of very long-chain fatty acids, mitochondrial beta-oxidation of very long-chain fatty acids, fatty acid biosynthesis, and butyrate metabolism played critical roles in volatile compound biosynthesis. The total phenolic content was 24.41-36.46 mg/kg of fresh weight. OPLS-DA results revealed that cinnamic acid could be used as a characteristic phenolic acid marker of GI strawberries. Based on the three characteristic markers, FDA was performed on the different groups, which were then divided. The separation of strawberry samples from different origins using the three characteristic markers was found to be feasible. These findings help effectively understand the aroma and phenolic acid composition of strawberries and contribute to the development of strawberries with a pleasant fragrance and health benefits.
Collapse
Affiliation(s)
- Linxia Wu
- Institute of Quality Standards and Testing Technology of BAAFS, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (X.W.)
| | - Xinlu Wang
- Institute of Quality Standards and Testing Technology of BAAFS, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (X.W.)
| | - Jianqiang Hao
- Beijing Center of AGRI-Products Quality and Safety, No. 6 Middle Road of Yumin, Xicheng District, Beijing 100029, China;
| | - Ning Zhu
- Beijing Changping Agricultural Technology Extension Station, Science and Technology Center Building, Fuxue Road, Changping District, Beijing 102200, China;
| | - Meng Wang
- Institute of Quality Standards and Testing Technology of BAAFS, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China; (L.W.); (X.W.)
| |
Collapse
|
3
|
Abouelenein D, Acquaticci L, Alessandroni L, Borsetta G, Caprioli G, Mannozzi C, Marconi R, Piatti D, Santanatoglia A, Sagratini G, Vittori S, Mustafa AM. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules 2023; 28:5810. [PMID: 37570780 PMCID: PMC10420878 DOI: 10.3390/molecules28155810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Strawberries are the most popular berry fruit in the world, due to their distinctive aroma, flavor, and known health properties. Because volatile substances play a large role in strawberry flavor, even little alterations can have a big impact on how the fruit tastes. Strawberries are thought to have a complex aroma. Fresh strawberry fruits contain more than 360 volatile compounds, including esters, furans, terpenes, alcohols, aldehydes, ketones, and sulfur compounds. Despite having far lower concentrations than esters, terpenoids, furanones, and sulfur compounds, all have a considerable impact on how people perceive the aroma of strawberries. With a focus on the active aroma components and the many analytical methods used to identify them, including gas chromatography, electronic nose sensing, and proton-transfer- reaction mass spectrometry, the present review's aim was to provide a summary of the relevant literature. Additionally, strawberry fruits are frequently dried to create a powder in order to increase their shelf life. Consequently, the impact of various drying techniques on strawberries' volatile profile was investigated in the current review. This review can be considered a good reference for research concerning the aroma profile of strawberries. It helps to better understand the complex aroma and flavor of strawberries and provides a guide for the effects of drying processing.
Collapse
Affiliation(s)
- Doaa Abouelenein
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Laura Acquaticci
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Laura Alessandroni
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Germana Borsetta
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Cinzia Mannozzi
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Riccardo Marconi
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Agnese Santanatoglia
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Gianni Sagratini
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Sauro Vittori
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Ahmed M. Mustafa
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
He C, Zhou J, Li Y, zhang D, Ntezimana B, Zhu J, Wang X, Xu W, Wen X, Chen Y, Yu Z, Wang Y, Ni D. The aroma characteristics of oolong tea are jointly determined by processing mode and tea cultivars. Food Chem X 2023; 18:100730. [PMID: 37397208 PMCID: PMC10314214 DOI: 10.1016/j.fochx.2023.100730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
This study delved into the aroma characteristics of "Qingxiang" oolong tea, analyzing six different cultivars and their processing modes. The findings showed that both cultivars and processing modes have a significant impact on the oolong tea aroma system. The study identified 18 terpenoid volatiles (VTs), 11 amino-acid-derived volatiles (AADVs), 15 fatty-acid-derived volatiles (FADVs), 3 carotenoid-derived volatiles (CDVs), and 10 other compounds in oolong tea that differentiate it from green and black tea. The turn-over stage was found to be the primary processing stage for oolong tea aroma formation. Molecular sensory analysis revealed that the "fresh" odor attribute is the basis for its aroma, while "floral and fruity" fragrances are its aroma characteristics. The perception of oolong tea as "fresh" and "floral and fruity" is influenced by the interactions of its aroma components. These findings provide a new basis for breed improvement and process enhancement in oolong tea production.
Collapse
Affiliation(s)
- Chang He
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Jingtao Zhou
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Yuchuan Li
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - De zhang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Bernard Ntezimana
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Junyu Zhu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Xiaoyong Wang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Wenluan Xu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Xiaoju Wen
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Yuqiong Chen
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People’s Republic of China
| | - Zhi Yu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People’s Republic of China
| | - Yu Wang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People’s Republic of China
| | - Dejiang Ni
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, Hubei 430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
5
|
Comparative Metabolomic Analysis of the Nutritional Aspects from Ten Cultivars of the Strawberry Fruit. Foods 2023; 12:foods12061153. [PMID: 36981080 PMCID: PMC10048718 DOI: 10.3390/foods12061153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Strawberry (Fragaria × ananassa) is among the most widely cultivated fruits with good taste and rich nutrients. Many strawberry species, including white strawberries, are planted all over the world. The metabolic profiles of strawberry and distinctions among different cultivars are not fully understood. In this study, non-targeted metabolomics based on UHPLC-Q-Exactive Orbitrap MS was used to analysis the metabolites in 10 strawberry species. A total of 142 compounds were identified and were divided into six categories. Tochiotome may differ most from the white strawberry (Baiyu) by screening 72 differential metabolites. Histidine, apigenin, cyanidin 3-glucoside and peonidin 3-glucoside had potential as biomarkers for distinguishing Baiyu and another 11 strawberry groups. Amino acid metabolisms, anthocyanin biosynthesis and flavonoid biosynthesis pathways were mainly involved in the determination of the nutrition distinctions. This research contributes to the determination of the nutrition and health benefits of different strawberry species.
Collapse
|
6
|
The Metabolomic Profile of the Essential Oil from Zanthoxylum caribaeum (syn. chiloperone) Growing in Guadeloupe FWI using GC × GC-TOFMS. Metabolites 2022; 12:metabo12121293. [PMID: 36557331 PMCID: PMC9782392 DOI: 10.3390/metabo12121293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The essential oil (EO) from the leaves of Zanthoxylum caribaeum (syn. Chiloperone) (Rutaceae) was studied previously for its acaricidal, antimicrobial, antioxidant, and insecticidal properties. In prior studies, the most abundant compound class found in leaf oils from Brazil, Costa Rica, and Paraguay was terpenoids. Herein, essential oil from the leaves of Zanthoxylum caribaeum (prickly yellow, bois chandelle blanc (FWI), peñas Blancas (Costa Rica), and tembetary hu (Paraguay)) growing in Guadeloupe was analyzed with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS), and thirty molecules were identified. A comparison with previously published leaf EO compositions of the same species growing in Brazil, Costa Rica, and Paraguay revealed a number of molecules in common such as β-myrcene, limonene, β-caryophyllene, α-humulene, and spathulenol. Some molecules identified in Zanthoxylum caribaeum from Guadeloupe showed some antimetabolic effects on enzymes; the in-depth study of this plant and its essential oil with regard to metabolic diseases merits further exploration.
Collapse
|
7
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
8
|
Wei M, Liu X, Xie P, Lei Y, Yu H, Han A, Xie L, Jia H, Lin S, Bai Y, Sun B, Zhang S. Characterization of Volatile Profiles and Correlated Contributing Compounds in Pan-Fried Steaks from Different Chinese Yellow Cattle Breeds through GC-Q-Orbitrap, E-Nose, and Sensory Evaluation. Molecules 2022; 27:3593. [PMID: 35684525 PMCID: PMC9182176 DOI: 10.3390/molecules27113593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study focused on characterizing the volatile profiles and contributing compounds in pan-fried steaks from different Chinese yellow cattle breeds. The volatile organic compounds (VOCs) of six Chinese yellow cattle breeds (bohai, jiaxian, yiling, wenshan, xinjiang, and pingliang) were analyzed by GC-Q-Orbitrap spectrometry and electronic nose (E-nose). Multivariate statistical analysis was performed to identify the differences in VOCs profiles among breeds. The relationship between odor-active volatiles and sensory evaluation was analyzed by partial least square regression (PLSR) to identify contributing volatiles in pan-fried steaks of Chinese yellow cattle. The results showed that samples were divided into two groups, and 18 VOCs were selected as potential markers for the differentiation of the two groups by GC-Q-Orbitrap combined multivariate statistical analysis. YL and WS were in one group comprising mainly aliphatic compounds, while the rest were in the other group with more cyclic compounds. Steaks from different breeds were better differentiated by GC-Q-Orbitrap in combination with chemometrics than by E-nose. Six highly predictive compounds were selected, including 3-methyl-butanal, benzeneacetaldehyde, 2-ethyl-6-methyl-pyrazine, 2-acetylpyrrole, 2-acetylthiazole, and 2-acetyl-2-thiazoline. Sensory recombination difference and preference testing revealed that the addition of highly predictive compounds induced a perceptible difference to panelists. This study provides valuable data to characterize and discriminate the flavor profiles in pan-fried steaks of Chinese yellow cattle.
Collapse
Affiliation(s)
- Meng Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang 050035, China; (A.H.); (L.X.)
| | - Xiaochang Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Peng Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Yuanhua Lei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Haojie Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Aiyun Han
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang 050035, China; (A.H.); (L.X.)
| | - Libin Xie
- Chemical Engineering Institute, Shijiazhuang University, Shijiazhuang 050035, China; (A.H.); (L.X.)
| | - Hongliang Jia
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (H.J.); (S.L.)
| | - Shaohua Lin
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (H.J.); (S.L.)
| | - Yueyu Bai
- Henan Animal Health Supervision, Zhengzhou 450046, China;
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Baozhong Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| | - Songshan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.W.); (X.L.); (P.X.); (Y.L.); (H.Y.); (B.S.)
| |
Collapse
|
9
|
Dubrow GA, Tello E, Schwartz E, Forero DP, Peterson DG. Identification of non-volatile compounds that impact consumer liking of strawberry preserves: Untargeted LC-MS analysis. Food Chem 2022; 378:132042. [PMID: 35032799 DOI: 10.1016/j.foodchem.2022.132042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Abstract
Non-volatile compounds that impact the acceptability of strawberry preserves were investigated by untargeted LC-MS flavoromics analysis. Chemical profiles for fifteen strawberry preserves were modeled against consumer liking scores by orthogonal partial least squares (OPLS) with good fit (R2Y = 0.995) and predictive ability (Q2 = 0.918). Four chemical compounds predictive of acceptability were identified, by accurate MS and NMR, as secoisolariciresinol monoglucoside, (+)-isolariciresinol monoglucoside, 1-hexanoyl-phloroglucinol-2-O-β-d-glucoside, and the novel compound decanoic acid-4-O-β-d-glucoside. Sensory recombination testing of preserve samples with added levels of the four predictive LC-MS compounds indicated perceivable sensory changes in the flavor profile. Female consumers significantly preferred the recombination preserve with added levels of both predictive GC-MS and LC-MS compounds as compared to the control preserve, demonstrating the applicability of the approach for understanding product liking.
Collapse
Affiliation(s)
- Geoffrey A Dubrow
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Edisson Tello
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Eric Schwartz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Diana Paola Forero
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Devin G Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|