1
|
Zhang J, Zhang B, Duan F, Xuan Z, Sun T, Lu L. Metagenomic exploration of novel β-galactosidases for glycosylation engineering. BIORESOURCE TECHNOLOGY 2025; 430:132546. [PMID: 40245993 DOI: 10.1016/j.biortech.2025.132546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
β-Galactosidases are important enzymatic tools for glycosylation, but their properties vary greatly with the source. Here, ten putative β-galactosidase genes, designated as bga1 to bga10, encoding proteins Bga1 to Bga10, were mined from an environmental metagenomic dataset comprising 119,152 sequences. Five of the encoded enzyme proteins exhibited less than 80% sequence similarity to known enzymes, but displayed conserved catalytic sites in their predicted three-dimensional models. After heterologous expression and characterization, two recombinant enzymes showed specific hydrolysis activity toward o-nitrophenyl-β-d-galactopyranoside. One of them, Bga4R, exhibited remarkable activity at pH 7.4 and 50℃, with excellent alkaline stability. Notably, Bga4R tolerated a wide range of acceptors for transglycosylation. It catalyzed galactosyl transfer to various monosaccharides and sugar alcohols, and enabling the synthesis of diverse glycosylated derivatives. This study identifies a novel GH 1 β-galactosidase as a powerful tool for glycosylation engineering, with promising potential for synthesizing galactosides valuable to food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Binge Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
2
|
Gao Y, Fan M, Cheng X, Liu X, Yang H, Ma W, Guo M, Li L. Deep eutectic solvent: Synthesis, classification, properties and application in macromolecular substances. Int J Biol Macromol 2024; 278:134593. [PMID: 39127290 DOI: 10.1016/j.ijbiomac.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Deep eutectic solvent (DES) is a kind of solvent prepared by mixing hydrogen bond donors and hydrogen bond acceptors, and have become a hot topic in ecological civilization construction due to its low toxicity and sustainability. Its excellent properties such as low volatility, thermal stability and biodegradability make it stand out among many organic solvents and widely used in fields including medicine, chemical industry and agriculture, with broad development prospects. In recent years, the application of DES in the food field has mostly focused on the extraction of small molecular substances, and there are few summaries on the application of DES in macromolecular substances. In this review, we introduced the synthesis, classification and properties of DES, and summarized the application of DES in the food industry for macromolecular substances, including the extraction of macromolecular substances such as chitosan and pectin, as well as the preparation of related macromolecular substrate films. At the same time, we analyzed the characteristics of DES and its advantages and limitations in application, and provided prospects for future development.
Collapse
Affiliation(s)
- Yuying Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoxiao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaofang Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Yang
- Xin Yang Vocational and Technical College, Xinyang 464000, China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Guo
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
4
|
Wysokowski M, Luu RK, Arevalo S, Khare E, Stachowiak W, Niemczak M, Jesionowski T, Buehler MJ. Untapped Potential of Deep Eutectic Solvents for the Synthesis of Bioinspired Inorganic-Organic Materials. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7878-7903. [PMID: 37840775 PMCID: PMC10568971 DOI: 10.1021/acs.chemmater.3c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Indexed: 10/17/2023]
Abstract
Since the discovery of deep eutectic solvents (DESs) in 2003, significant progress has been made in the field, specifically advancing aspects of their preparation and physicochemical characterization. Their low-cost and unique tailored properties are reasons for their growing importance as a sustainable medium for the resource-efficient processing and synthesis of advanced materials. In this paper, the significance of these designer solvents and their beneficial features, in particular with respect to biomimetic materials chemistry, is discussed. Finally, this article explores the unrealized potential and advantageous aspects of DESs, focusing on the development of biomineralization-inspired hybrid materials. It is anticipated that this article can stimulate new concepts and advances providing a reference for breaking down the multidisciplinary borders in the field of bioinspired materials chemistry, especially at the nexus of computation and experiment, and to develop a rigorous materials-by-design paradigm.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Rachel K. Luu
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Sofia Arevalo
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Witold Stachowiak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Michał Niemczak
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute
of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Markus J. Buehler
- Laboratory
for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Yadav N, Chahar D, Bisht M, Venkatesu P. Assessing the compatibility of choline-based deep eutectic solvents for the structural stability and activity of cellulase: Enzyme sustain at high temperature. Int J Biol Macromol 2023; 249:125988. [PMID: 37499720 DOI: 10.1016/j.ijbiomac.2023.125988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
As a new generation of 'green solvents' deep eutectic solvents (DESs) represents a promising alternative to the conventional solvents. Their environmental-benign nature and designer properties promote their utility in biocatalysis. Enzymes are marginally stable when exposed to physical/chemical disturbances. One such enzyme is cellulase which is a propitious catalyst for the depolymerization of cellulose under mild conditions. Therefore, their stability is a prerequisite condition to match demands of biorefineries. To address this issue of low stability, activity and thermal denaturation of cellulase, there is a need to find a sustainable and suitable co-solvent that is biocompatible with enzymes ultimately to facilitate their application in bio-industries. In this regard, we synthesized three choline-based DESs, choline chloride (ChCl)-glycerol, ChCl-ethylene glycol and ChCl-lactic acid and employed them to analyze their suitability for cellulase. The present study systematically evaluates the influence of the mentioned DESs on stability, activity and thermal stability of cellulase with the help of various spectroscopic techniques. The spectroscopic analysis revealed that the structural stability and activity of the enzyme were improved in presence of ChCl-glycerol and ChCl-ethylene glycol. The thermal stability was also very well maintained in both the DESs. Interestingly, the relative activity of cellulase was >80 % even after incubation at 50 °C after 48 h for both the DESs. This activity preservation behaviour was more pronounced for ChCl-ethylene glycol than ChCl-glycerol. Moreover, temperature variations studies also reveal promising results by maintain conformational intactness. On the other side, ChCl-lactic acid showed a deleterious effect on the enzyme both structurally as well as thermally. The dynamic light scattering (DLS) analysis provides more specific information about the negative influence of ChCl-lactic acid towards cellulase native structure. This DES induces unavoidable alterations in the enzyme structure which leads to the unfolding of enzyme, ultimately, destabilizing it. Overall, our results present a physical insight into how the enzyme stability and activity depend on the nature of DES. Also, the findings will help to facilitate the development and application of DESs as biocatalytic process.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Meena Bisht
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
6
|
Castro-Muñoz R, Can Karaça A, Saeed Kharazmi M, Boczkaj G, Hernández-Pinto FJ, Anusha Siddiqui S, Jafari SM. Deep eutectic solvents for the food industry: extraction, processing, analysis, and packaging applications - a review. Crit Rev Food Sci Nutr 2023; 64:10970-10986. [PMID: 37395659 DOI: 10.1080/10408398.2023.2230500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Food factories seek the application of natural products, green feedstock and eco-friendly processes, which minimally affect the properties of the food item and products. Today, water and conventional polar solvents are used in many areas of food science and technology. As modern chemistry evolves, new green items for building eco-friendly processes are being developed. This is the case of deep eutectic solvents (DESs), named the next generation of green solvents, which can be involved in many food industries. In this review, we timely analyzed the progress on applying DES toward the development of formulations, extraction of target biomolecules, food processing, extraction of undesired molecules, analysis and determination of specific analytes in food samples (heavy metals, pesticides), food microbiology, and synthesis of new packaging materials, among many other applications. For this, the latest developments (over the last 2-3 years) have been discussed emphasizing innovative ideas and outcomes. Relevantly, we discuss the hypothesis and the key features of using DES in the mentioned applications. To some extent, the advantages and limitations of implementing DES in the food industry are also elucidated. Finally, based on the findings of this review, the perspectives, research gaps and potentialities of DESs are stated.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
- Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Buenavista, Toluca de Lerdo, Mexico
| | - Aslı Can Karaça
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
| | | | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, Quakenbrück, Germany
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Yang W, Zhou J, Gu Q, Harindintwali JD, Yu X, Liu X. Combinatorial Enzymatic Catalysis for Bioproduction of Ginsenoside Compound K. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3385-3397. [PMID: 36780449 DOI: 10.1021/acs.jafc.2c08773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginsenoside compound K (CK) is an emerging functional food or pharmaceutical product. To date, there are still challenges to exploring effective catalytic enzymes for enzyme-catalyzed manufacturing processes and establishing enzyme-catalyzed processes. Herein, we identified three ginsenoside hydrolases BG07 (glucoamylase), BG19 (β-glucosidase), and BG23 (β-glucosidase) from Aspergillus tubingensis JE0609 by transcriptome analysis and peptide mass fingerprinting. Among them, BG23 was expressed in Komagataella phaffii with a high volumetric activity of 235.73 U mL-1 (pNPG). Enzymatic property studies have shown that BG23 is an acidic (pH adaptation range of 4.5-7.0) and mesophilic (thermostable < 50 °C) enzyme. Moreover, a one-pot combinatorial enzyme-catalyzed strategy based on BG23 and BGA35 (β-galactosidase from Aspergillus oryzae) was established, with a high CK yield of 396.7 mg L-1 h-1. This study explored the ginsenoside hydrolases derived from A. tubingensis at the molecular level and provided a reference for the efficient production of CK.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, Guizhou, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
8
|
Joarder S, Bansal D, Meena H, Kaushik N, Tomar J, Kumari K, Bahadur I, Ha Choi E, Kaushik NK, Singh P. Bioinspired green deep eutectic solvents: preparation, catalytic activity, and biocompatibility. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Yang W, Gu Q, Zhou J, Liu X, Yu X. High-Value Bioconversion of Ginseng Extracts in Betaine-Based Deep Eutectic Solvents for the Preparation of Deglycosylated Ginsenosides. Foods 2023; 12:496. [PMID: 36766025 PMCID: PMC9914094 DOI: 10.3390/foods12030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Deep eutectic solvents (DES), as a green alternative to traditional organic solvents in biocatalysis, not only activate proteins but even increase the efficiency of enzymatic reactions. Here, DES were used in a combinatorial enzyme-catalyzed system containing β-glucosidase BGLAt and β-galactosidase BGALAo to produce deglycosylated ginsenosides (De-g) from ginseng extracts (GE). The results showed that DES prepared with betaine and ethylene glycol (molar ratio, 1:2) could significantly stimulate the activity of the combinatorial enzymes as well as improve the acid resistance and temperature stability. The DES-based combinatorial enzyme-catalyzed system could convert 5 g of GE into 1.24 g of De-g (F1, F2, 20 (S)-PPT, and CK) at 24 h, which was 1.1 times that of the buffer sample. As confirmed by the spectral data, the changes in the conformations of the combinatorial enzymes were more favorable for the binding reaction with the substrates. Moreover, the constructed DES-based aqueous two-phase system enabled the recovery of substantial amounts of DES and De-g from the top phase. These results demonstrated that DES shows great application as a reaction solvent for the scale-up production of De-g and provide insights for the green extraction of natural products.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550003, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
10
|
Gao H, Wang Y, Guo Z, Liu Y, Wu Q, Xiao J. Optimization of ultrasound-assisted extraction of phenolics from Asparagopsis taxiformis with deep eutectic solvent and their characterization by ultra-high-performance liquid chromatography-mass spectrometry. Front Nutr 2022; 9:1036436. [PMID: 36466400 PMCID: PMC9712969 DOI: 10.3389/fnut.2022.1036436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/31/2022] [Indexed: 07/23/2023] Open
Abstract
Asparagopsis taxiformis is a significant source of phenolics. Owing to the incessant demand of green extraction procedures for phenolics from A. taxiformis, ultrasound-assisted extraction (UAE) using deep eutectic solvents (DESs) was optimized. Among the tested DESs, betaine-levulinic acid afforded the highest total phenolic content (TPC). Moreover, the optimal extraction conditions elucidated from single-factor and response surface methodologies comprised a 52.41°C ultrasonic temperature, 46.48% water content of DES, and 26.99 ml/g liquid-to-solid ratio. The corresponding TPC (56.27 mg GAE/100 g DW) and antioxidant ability fitted the predicted values. UAE afforded superior TPC and antioxidant abilities with DESs than with traditional solvents. Using UHPLC-MS, seven phenolic acids, 18 flavonoids, and two bromophenols were identified and quantified. DES-UAE afforded the highest phenolic compound number (26) and sum of contents. These results disclose the high extraction efficiency of DES-UAE for A. taxiformis phenolics and provide a basis for the higher-value application of this species.
Collapse
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuxi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuxin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qian Wu
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
11
|
Li F, Deng L, Xu Q, Yuan K, Song H. Extractive separation of 1,8-cineole and γ-terpinene with lactic acid-based deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
An effect of choline lactate based low transition temperature mixtures on the lipase catalytic properties. Colloids Surf B Biointerfaces 2022; 216:112518. [PMID: 35594750 DOI: 10.1016/j.colsurfb.2022.112518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
A new series of low transition temperature mixures (LTTM) based on choline lactate quaternary ammonium salt and various hydrogen bond donors was prepared and characterized towards their physicochemical properties and usability as an enzymatic reaction mixture for lipase-catalyzed transesterification reactions. Studies of low transition temperature mixtures have shown a long-term stabilizing effect for lipase as well as a positive influence on lipase thermal stability. In the case of Ch[Lac]:Gly: EthGly increasing the stability of lipase by 8 °C (up to 55.2 °C) compared to the control sample. Conducted transesterification reactions were characterized by high yields - up to 98% - and high purity of the obtained products.
Collapse
|
13
|
Wen Z, Gao D, Lin J, Li S, Zhang K, Xia Z, Wang D. Magnetic porous cellulose surface-imprinted polymers synthetized with assistance of deep eutectic solvent for specific recognition and purification of bisphenols. Int J Biol Macromol 2022; 216:374-387. [PMID: 35798079 DOI: 10.1016/j.ijbiomac.2022.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023]
Abstract
Magnetic porous cellulose molecularly imprinted polymers-based bisphenols have been developed using Fe3O4 as the magnetic material, a deep eutectic solvent as the assisted solvent, and N-isopropylacrylamide as the functional monomer. The resulting magnetic porous cellulose molecularly imprinted polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, and Brunauer-Emmett-Teller analysis. Moreover, the adsorption properties of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A, bisphenol F, and bisphenol AF were investigated using static, dynamic, and selective adsorption experiments. The introduction of porous cellulose materials significantly improves the capabilities of the material. The adsorption capacity, mass transfer efficiency, and selectivity of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A were 5.9, 4.0, and 4.4 times those of traditional molecularly imprinted polymers. Moreover, the adsorption stability of the magnetic porous cellulose molecularly imprinted polymers was investigated under different temperature and pH conditions. The adsorption characteristics of the magnetic porous cellulose molecularly imprinted polymers toward the target molecules were investigated using adsorption isotherm, kinetic, and thermodynamic models. Hydrogen bonding is the main interaction formed between the magnetic porous cellulose molecularly imprinted polymers and the target molecules. Magnetic porous cellulose molecularly imprinted polymers have great application value with excellent stability and reusability. Finally, the combination of the magnetic porous cellulose molecularly imprinted polymers and high-performance liquid chromatography or ultra-performance liquid chromatography-mass spectrometry was successfully used for the purification and detection of bisphenols in milk (1.349 ng/mL bisphenol F and 3.014 ng/mL bisphenol AF), canned fruits (1129 ng/mL bisphenol A, 10.11 ng/mL bisphenol F, and 91.87 ng/mL bisphenol AF), and fish (11.91 ng/mL bisphenol AF) samples. Furthermore, the magnetic porous cellulose molecularly imprinted polymer method is more selective, sensitive, and accurate than the traditional precipitation method.
Collapse
Affiliation(s)
- Zeng Wen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Lin
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Siyi Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|