1
|
Kadam A, Scanlon MG, Koksel F. Extrusion of Oilseed-Based Ingredients: Unlocking New Potential for Sustainable Protein Solutions. Compr Rev Food Sci Food Saf 2025; 24:e70185. [PMID: 40331694 PMCID: PMC12057318 DOI: 10.1111/1541-4337.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025]
Abstract
The growing demand for plant-based proteins has driven significant interest in utilization of oilseed cakes and meals, which are abundant byproducts of the oil extraction industry. These protein-rich products possess unique functional properties that make them valuable for various food applications in a sustainable and cost-effective way. This review provides an in-depth review of extrusion processes as tools to enhance the functionality of oilseed cakes, meals, and proteins. Under specific processing conditions that dictate thermal and mechanical energy input, extrusion induces structural and functional modifications in proteins, which, in turn, improves the digestibility, reduces antinutritional factors, and enhances the overall nutritional profile of oilseed cakes, meals, and proteins. The importance of optimizing key extrusion parameters and the role of residual oil content in the process are discussed. Additionally, the diverse applications of extruded oilseed proteins in developing meat alternatives, snack foods, and breakfast cereals are highlighted. Advanced techniques such as fermentation and enzyme hydrolysis as treatments prior to extrusion are also examined for their potential to further improve the sensory and nutritional properties of extruded products. Relevant literature published between 2000 and 2024 was identified using databases such as Scopus and Web of Science, with keywords including oilseed proteins, extrusion, and plant-based meat alternatives. Studies were selected based on relevance to processing techniques, functional outcomes, and food applications. This comprehensive analysis underscores the potential of extrusion technology to unlock new opportunities for oilseed cakes and their protein-rich fractions in the food industry, contributing to the development of innovative, plant-based food products that meet consumer demands for nutrition and sustainability.
Collapse
Affiliation(s)
- Aayushi Kadam
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food SciencesUniversity of ManitobaWinnipegManitobaCanada
- Richardson Centre for Food Technology and ResearchUniversity of ManitobaWinnipegManitobaCanada
| | - Martin G. Scanlon
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food SciencesUniversity of ManitobaWinnipegManitobaCanada
- Richardson Centre for Food Technology and ResearchUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
2
|
Sánchez-Quezada V, Luzardo-Ocampo I, Gaytán-Martínez M, Loarca-Piña G. Physicochemical, nutraceutical, and sensory evaluation of a milk-type plant-based beverage of extruded common bean (Phaseolus vulgaris L.) added with iron. Food Chem 2024; 453:139602. [PMID: 38795433 DOI: 10.1016/j.foodchem.2024.139602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Milk-type beverages are popular vegan products requiring iron and calcium fortification to improve their nutritional value, as iron deficiency is the world's most prevalent nutritional problem. This research aimed to develop and characterize an extruded common bean (Phaseolus vulgaris L.)-based milk-type beverage added with bean protein isolate and iron. The formulations included flavors (non-flavored, vanilla, and nut) and two iron concentrations (2 and 3 mg FeSO4/100 mL). Extrusion increased the beverages' protein (+17.38 %) and starch digestibility, and reduced their antinutritional compounds (trypsin inhibitors, condensed tannins, and carbonates). Developed beverages' formulations differed from a commercial soybean beverage in their physicochemical properties but were more nutritious (protein: 3.33-3.44 %; fiber: 3.43-4.08 %). Iron-added beverages displayed a medium sensory acceptance (best overall likeness: 5.3-6.2). The developed beverage is a suitable, sensory-accepted, and nutritious bean-based beverage, suggesting novel research lines improving vegan beverage formulations to increase average daily iron intake.
Collapse
Affiliation(s)
- Vanessa Sánchez-Quezada
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico.
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico; Tecnologico de Monterrey, School of Engineering and Science, Campus Guadalajara, Av. General Ramon Corona 2514, Zapopan 45201, Mexico.
| | - Marcela Gaytán-Martínez
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico.
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Qro., Qro, Mexico.
| |
Collapse
|
3
|
Liu D, Xie Y, Deng J, Tang J, Zhao H, Liu G, Chen X, Tian G, Cai J, Jia G. Extrusion puffing as a pretreatment method to change the surface structure, physicochemical properties and in vitro protein digestibility of distillers dried grains with solubles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2772-2782. [PMID: 38010266 DOI: 10.1002/jsfa.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Distillers dried grains with solubles (DDGS) are rich in nutrition, and they are potential protein feed raw material. However, the existence of cellulose, hemicellulose and lignin hinders animals' digestion and absorption of DDGS. Making full use of unconventional feed resources such as DDGS can alleviate the shortage of feed resources to a certain extent. This research investigated the effects of twin-screw extrusion on the macromolecular composition, physical and chemical properties, surface structure and in vitro protein digestibility (IVPD) of DDGS. RESULTS The findings showed that extrusion puffing significantly increased the protein solubility, bulk density, water holding capacity, and swelling capacity, while significantly decreased hemicellulose and crude protein content, particle size and zeta potential of DDGS. The structure damage of DDGS induced by the extrusion was characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FITR) spectroscopy and X-ray diffraction (XRD) analysis. Interestingly, no random coil was observed in the analysis of the secondary structure, and extrusion promoted the transformation of α-helix and β-turn to β-sheet, which led to significant increases in protein solubility and IVPD of DDGS (P < 0.05). Additionally, correlation analysis revealed that IVPD and PS had a positive relationship. CONCLUSION Extrusion puffing was an ideal pretreatment method for DDGS modification to improve in vitro protein digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongyun Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jianguo Deng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Qin N, Nie J, Hou Y, Shuang Q, Bao X. Ultrasound-assisted macroporous resin treatment improves the color and functional properties of sunflower meal protein. ULTRASONICS SONOCHEMISTRY 2024; 102:106750. [PMID: 38171195 PMCID: PMC10793176 DOI: 10.1016/j.ultsonch.2023.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Sunflower meal protein (SMP) has been considered as a high-quality source of plant protein. However, because the chlorogenic acid (CA) contained in sunflower seed meal was prone to oxidation reactions under traditional alkali extraction conditions, the extracted protein has a dark color and some poor functional properties. To this end, this study used ultrasound-assisted macroporous resin treatment to extract SMP. The improvement effects and potential mechanisms of ultrasonic-assisted macroporous resin treatment with different powers (100, 300, and 500 W) on the color and functional properties of SMP were studied. The results showed that compared with untreated sunflower meal protein (USMP), the lightness value (L*), solubility, emulsification, and gel elasticity were significantly enhanced when treated with 100 W and 300 W ultrasonic-assisted macroporous resin. However, when the ultrasonic power was increased to 500 W, the L* value, solubility, emulsification, and gel elasticity decreased instead, indicating that lower power (100 W and 300 W) ultrasonic-assisted macroporous resin treatment significantly improved the color and functional properties of SMP. Further research found that ultrasound-assisted macroporous resin treatment changed the secondary and tertiary structures of SMP, transformed β-sheet into α-helix and β-turn through rearrangement, and significantly improved surface hydrophobicity. It shows that ultrasonic-assisted macroporous resin treatment expands the SMP structure and exposes hydrophobic groups, thereby improving the color and functional properties of SMP. This study provides a potential strategy for extracting SMP with light color and good functional properties. It also provides a theoretical basis for the wide application of SMP in food processing.
Collapse
Affiliation(s)
- Narisu Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jiji Nie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Yifeng Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Quan Shuang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Xiaolan Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China.
| |
Collapse
|
5
|
Bárta J, Roudnický P, Jarošová M, Zdráhal Z, Stupková A, Bártová V, Krejčová Z, Kyselka J, Filip V, Říha V, Lorenc F, Bedrníček J, Smetana P. Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp ( Cannabis sativa L.) Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 13:111. [PMID: 38202419 PMCID: PMC10780685 DOI: 10.3390/plants13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
As a source of nutritionally important components, hemp seeds are often dehulled for consumption and food applications by removing the hard hulls, which increases their nutritional value. The hulls thus become waste, although they may contain valuable protein items, about which there is a lack of information. The present work is therefore aimed at evaluating the proteome of hemp (Cannabis sativa L.) at the whole-seed, dehulled seed, and hull levels. The evaluation was performed on two cultivars, Santhica 27 and Uso-31, using LC-MS/MS analysis. In total, 2833 protein groups (PGs) were identified, and their relative abundances were determined. A set of 88 PGs whose abundance exceeded 1000 ppm (MP88 set) was considered for further evaluation. The PGs of the MP88 set were divided into ten protein classes. Seed storage proteins were found to be the most abundant protein class: the averages of the cultivars were 65.5%, 71.3%, and 57.5% for whole seeds, dehulled seeds, and hulls, respectively. In particular, 11S globulins representing edestin (three PGs) were found, followed by 7S vicilin-like proteins (four PGs) and 2S albumins (two PGs). The storage 11S globulins in Santhica 27 and Uso-31 were found to have a higher relative abundance in the dehulled seed proteome (summing to 58.6 and 63.2%) than in the hull proteome (50.5 and 54%), respectively. The second most abundant class of proteins was oleosins, which are part of oil-body membranes. PGs belonging to metabolic proteins (e.g., energy metabolism, nucleic acid metabolism, and protein synthesis) and proteins related to the defence and stress responses were more abundant in the hulls than in the dehulled seeds. The hulls can, therefore, be an essential source of proteins, especially for medical and biotechnological applications. Proteomic analysis has proven to be a valuable tool for studying differences in the relative abundance of proteins between dehulled hemp seeds and their hulls among different cultivars.
Collapse
Affiliation(s)
- Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (A.S.)
| | - Pavel Roudnický
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (P.R.); (Z.Z.)
| | - Markéta Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (A.S.)
| | - Zbyněk Zdráhal
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (P.R.); (Z.Z.)
| | - Adéla Stupková
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (A.S.)
| | - Veronika Bártová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic; (J.B.); (M.J.); (A.S.)
| | - Zlatuše Krejčová
- HEMP PRODUCTION CZ, Ltd., 262 72 Chraštice, Czech Republic; (Z.K.); (V.Ř.)
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic (V.F.)
| | - Vladimír Filip
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, 166 28 Prague, Czech Republic (V.F.)
| | - Václav Říha
- HEMP PRODUCTION CZ, Ltd., 262 72 Chraštice, Czech Republic; (Z.K.); (V.Ř.)
| | - František Lorenc
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic (P.S.)
| | - Jan Bedrníček
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic (P.S.)
| | - Pavel Smetana
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, 370 05 České Budějovice, Czech Republic (P.S.)
| |
Collapse
|
6
|
Usman M, Swanson G, Chen B, Xu M. Sensory profile of pulse-based high moisture meat analogs: A study on the complex effect of germination and extrusion processing. Food Chem 2023; 426:136585. [PMID: 37331147 DOI: 10.1016/j.foodchem.2023.136585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Germination and extrusion are two processes that could affect beany flavors in pulse-based high-moisture meat analogs (HMMAs). This research studied the sensory profile of HMMAs made by protein-rich flours from germinated/ungerminated pea and lentil. Air-classified pulse protein-rich fractions were processed into HMMAs with twin screw extrusion cooking, optimized at 140 °C (zone 5 temperature) and 800 rpm screw speed. Overall, 30 volatile compounds were identified by Gas Chromatography-Mass Spectrometry/Olfactory. Chemometric analysis exhibited that the extrusion markedly (p < 0.05) reduced beany flavor. A synergistic effect of germination and extrusion process was observed, decreasing some beany flavors such as 1-octen-3-ol and 2,4-decadienal, and the overall beany taste. Pea-based HMMAs are suitable for lighter, softer poultry meat, while lentil-based HMMAs are suited for darker, harder livestock meat. Those findings offer novel insights into the regulation of beany flavors, odor notes, color, and taste to improve the sensory quality of HMMAs.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Gabriel Swanson
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
7
|
Physicochemical and functional properties of Pleurotus geesteranus proteins. Food Res Int 2022; 162:111978. [DOI: 10.1016/j.foodres.2022.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|