1
|
Li J, Guo S, Xiao N, Ai M. Temperature-orientation changes in ROS-oxidized egg white protein conformation modulate the thermal aggregation behavior. Food Chem 2025; 476:143443. [PMID: 39986076 DOI: 10.1016/j.foodchem.2025.143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
In this paper, the differences in thermal aggregation behavior of egg white protein (EWP) mediated by reactive oxygen species (ROS) at different heat temperatures were investigated. Results showed that an increase in EWP turbidity and the change in particle size during the heating process depended on the interactions after protein peptide chain unfolding. With the increase in heating temperature, the EWP aggregates changed from indeterminate fiber-like structure to regular network structure. The thermal stability results showed an increase in the thermal stability of EWP after oxidation. The formation of thermally induced aggregates was accompanied by a significant increase in the hydrophobicity of the protein surface from 249.93 to 2748.10. Raman spectroscopy indicated that oxidized EWP exposed hydrophobic groups to inhibit aggregation during heating, and EWP demonstrated significant anti-aggregation properties when heated at 72 °C. This study provides certain theoretical support for improving the thermal processing level of egg products.
Collapse
Affiliation(s)
- Jiayi Li
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Luo Z, Zhu Y, Xiang H, Wang Z, Sun X, Guo Z. Characterization of heat-induced whey protein-Dendrobium officinale polysaccharide and its application in goat milk yogurt. Int J Biol Macromol 2025; 310:143319. [PMID: 40253021 DOI: 10.1016/j.ijbiomac.2025.143319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The study investigated the effects of Dendrobium Officinale Polysaccharide (DOP, 0, 0.5, 1, 1.5, 2, and 2.5 %, w/v) on the gel characteristics of heat-induced polymerized whey protein (PWP). The potential application of the PWP-DOP gel in goat milk yogurt was also evaluated. The results indicated that the average particle size, absolute zeta potential, and viscosity of the PWP-DOP gel went up with higher DOP concentrations. The endothermic peak of PWP shifted from 81.03 °C to 95.89 °C in Differential scanning calorimetry (DSC) curve, which suggested that DOP enhanced the thermal stability of the PWP-DOP gel. The addition of 1.5 % DOP caused a more compact, uniform, and stable network structure of PWP-DOP gel. Synchronous rheology and Fourier transform infrared spectroscopy (SR-IR) spectra traced the structural changes with new peaks at 1559.11 cm-1, 1443.85 cm-1, 1380.25 cm-1, 1242.64 cm-1, and 1155.10 cm-1 during the formation of the gel. PWP combined with DOP by hydrogen bonding and hydrophobic interactions confirmed by Two-dimensional correlation spectroscopy (2D-COS) and molecular docking. Moreover, the particle size, dehydration shrinkage, and viscosity of goat milk yogurt were enhanced by PWP-DOP. This study gives a foundation of theory for using PWP-DOP gels in the dairy industry.
Collapse
Affiliation(s)
- Zhanjun Luo
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yujia Zhu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huiyu Xiang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ziqian Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Danisco (China) Co. LTD, Kunshan, Jiangsu 215300, China.
| | - Zengwang Guo
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Zang J, Qing M, Chi Y, Chi Y. Egg white protein under thermal stress: Thermal aggregation orientation and gel properties decline. Int J Biol Macromol 2025; 295:139625. [PMID: 39793819 DOI: 10.1016/j.ijbiomac.2025.139625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
This study investigates the effects of varying heat stress temperatures (56 °C to 76 °C) on the gel characteristics of egg white protein. The results indicate that when the heat stress temperature exceeds 60 °C, the textural properties, water-holding capacity, and freeze-thaw stability of egg white gel (EWG) decrease to varying extents compared to untreated EWG. At 76 °C, the proportion of free water in EWG increases from 0.9 % to 1.4 %, while rigidity, as observed in rheological analysis, decreases by approximately 48.6 %. Additionally, the α-helix content in the secondary structure reduces by approximately 20.1 %, and notable changes occur in the crystalline structure, with decreased peak intensities in Ultraviolet and both intrinsic and extrinsic fluorescence spectra. Furthermore, weakened intermolecular interactions in EWG result in the formation of larger aggregates within the microstructure. These findings suggest that increased heat stress promotes protein aggregation into disordered clusters, forming a porous gel network that releases water under external forces. This explains the observed decline in texture and water-holding capacity. The study provides a theoretical basis for improving the production and processing of egg white protein products and developing future strategies to mitigate protein aggregation.
Collapse
Affiliation(s)
- Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Li J, Wei Y, Gu L, Su Y, Yang Y, Chang C, Han Q. Enhancing stability of fermented egg white gels: Influence of guar and xanthan gum addition order during yogurt-like fermentation. Int J Biol Macromol 2025; 292:139260. [PMID: 39733874 DOI: 10.1016/j.ijbiomac.2024.139260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Egg white gels prepared through fermentation, similar to yogurt production, offer a high-protein, zero-fat alternative to traditional dairy products. This study investigated the impact of guar gum (GG) and xanthan gum (XG) as rheological modifiers on the stability of fermented egg white gels. Rheological analysis revealed that the addition of both gums significantly influenced gel properties, with XG demonstrating superior performance. Specifically, XG-containing gels exhibited increased viscosity and enhanced viscoelasticity compared to GG-containing and control gels. Low-field nuclear magnetic resonance (LF-NMR) analysis showed reduced water mobility in XG-added gels, indicating improved water retention. Furthermore, syneresis rates were notably lower in XG-modified gels, especially when the concentration exceeded 0.3 %, indicating an improved system stability. Fourier transform infrared (FTIR) spectroscopy analysis indicated structural changes in the protein secondary structure, with an increase in β-sheet content in XG-added gels. Notably, the addition of GG and XG prior to fermentation facilitated protein co-aggregation, aiding in the reduction of syneresis rates. However, incorporating GG and XG after fermentation offered superior stability to the gel, achieved through a surface modification process that minimized water loss compared to pre-fermentation addition. These findings reveal how optimizing protein-gum interactions enhances gel stability and functional properties, advancing the design of stable, high-protein, non-dairy gel systems.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingxin Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
5
|
Xiong W, Ding L, Cui W, Zhao L, Cai S. Comparative study of the effects of different lipid oxidation simulation systems on the physicochemical properties of proteins isolated from four cultivated walnut ( Juglans sigillata Dode) varieties. Food Chem X 2025; 25:102207. [PMID: 39925761 PMCID: PMC11803905 DOI: 10.1016/j.fochx.2025.102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
This study aimed to investigate the effects of different lipid oxides on the physicochemical properties of proteins isolated from four walnut cultivars (YBWPI, NQWPI, XXWPI and STWPI). The main proteins in these WPIs are legume B-like and 11S globulin-like, and XXWPI contained the most unique proteins. In three simulation systems, YBWPI showed the greatest changes in carbonyl value, free sulfhydryl value and intrinsic fluorescence intensity. The secondary structure of STWPI changed obviously. NQWPI showed a unique subunit depolymerization, and its solubility and exogenous fluorescence intensity changed significantly, whereas emulsification and particle size of XXWPI changed the most. The 11S globulin-like and cupin type-1 domain-containing protein (A0A833YDI2) have stronger affinities with the key lipid oxides. The radius of gyration and total solvent accessible surface area values of the legumin B-like protein after oxidation reduced obviously. This study may help to better understand the interrelationship between lipid oxides and walnut protein properties.
Collapse
Affiliation(s)
- Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, People's Republic of China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, People's Republic of China
| | - Wendie Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, People's Republic of China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China
- Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming, Yunnan Province 650500, People's Republic of China
| |
Collapse
|
6
|
Mundada V, Karabulut G, Kapoor R, Malvandi A, Feng H. Fabricating dehydrated albumen with a novel variable frequency ultrasonic drying method: Drying kinetics, physiochemical and foaming characteristics. Int J Biol Macromol 2024; 283:137664. [PMID: 39561847 DOI: 10.1016/j.ijbiomac.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Albumen, primarily composed of ovalbumin, is a vital, nutrient-rich ingredient in the food industry. Drying is a critical step in low-water-activity albumen powder production, allowing extended shelf-life and reduced costs in handling, transportation, and storage of albumen products. Traditional drying methods, such as spray drying (SD) and hot air drying (HAD), often degrade albumen. This study explores variable frequency contact ultrasonic drying (CUD) as a novel and green alternative, operating at a central frequency of 20 kHz with sound amplitudes of 0 %, 40 %, and 60 %, and temperatures of 40 °C and 60 °C. The drying kinetics, physical, and foaming properties of CUD-dried albumen proteins were compared with those of hot-air-, spray-, and freeze-dried (FD) samples. Compared to HAD, CUD significantly enhanced the drying process, as evidenced by a 240 % increase in effective moisture diffusivity, a 66-78 % reduction in activation energy (Ea), and a 27 % reduction in drying time. Moreover, CUD maintained higher protein integrity, evident from a 24-35 % decrease in enthalpies, more β-turn and random coil structures, and increased free sulfhydryl groups. Notably, CUD at 40 °C significantly improved foaming capacity by 88 %, and at 60 °C, it enhanced foaming stability by 34 %, outperforming other drying methods. Protein solubility of CUD-albumen was improved by 10-12 % compared to HAD and was slightly better than FD. CUD-albumen showed a brighter color with a 26 % lower browning index than the HAD samples. Overall, CUD emerges as an effective and sustainable method for drying high-protein materials, ensuring high-quality albumen powders.
Collapse
Affiliation(s)
- Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54187 Sakarya, Türkiye
| | - Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amir Malvandi
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
7
|
Pan F, Li X, Chen H, Liu M, Fang X, Peng W, Tian W. Exploring the effect of high-pressure processing conditions on the deaggregation of natural major royal jelly proteins (MRJPs) fibrillar aggregates. Food Chem 2024; 452:139611. [PMID: 38749141 DOI: 10.1016/j.foodchem.2024.139611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
High pressure processing is a safe and green novel non-thermal processing technique for modulating food protein aggregation behavior. However, the systematic relationship between high pressure processing conditions and protein deaggregation has not been sufficiently investigated. Major royal jelly proteins, which are naturally highly fibrillar aggregates, and it was found that the pressure level and exposure time could significantly promote protein deaggregation. The 100-200 MPa treatment favoured the deaggregation of proteins with a significant decrease in the sulfhydryl group content. Contrarily, at higher pressure levels (>400 MPa), the exposure time promoted the formation of disordered agglomerates. Notably, the inter-conversion of α-helix and β-strands in major royal jelly proteins after high pressure processing eliminates the solvent-free cavities inside the aggregates, which exerts a 'collapsing' effect on the fibrillar aggregates. Furthermore, the first machine learning model of the high pressure processing conditions and the protein deaggregation behaviour was developed, which provided digital guidance for protein aggregation regulation.
Collapse
Affiliation(s)
- Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China.
| |
Collapse
|
8
|
Chi Y, Ma Z, Wang R, Chi Y. A comprehensive review on freeze-induced deterioration of frozen egg yolks: Freezing behaviors, gelation mechanisms, and control techniques. Compr Rev Food Sci Food Saf 2024; 23:e70019. [PMID: 39289788 DOI: 10.1111/1541-4337.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Over the years, the production of eggs has increased tremendously, with an estimated global egg production of 9.7 billion by 2050. Further processing of shell eggs to egg products has gained growing popularity. Liquid egg yolks, an innovative form of egg replacement, still suffer from short shelf-life issues, and freezing has been applied to maintain freshness. An undesirable phenomenon called "gelation" was found during the production of frozen egg yolks, which has attracted numerous scholars to study its mechanism and quality control methods. Therefore, we comprehensively reviewed the history of the studies on frozen egg yolks, including the production procedure, the fundamentals of freezing, the gelation mechanism, the factors affecting gelation behaviors, and the techniques to control the gelation behaviors of frozen egg yolks. Reporting the production procedure and freezing fundamentals of frozen egg yolks will give readers a better understanding of the science and technological aspects of frozen egg yolks. Furthermore, a comprehensive summary of the mechanism of egg yolk gel formation induced by freeze-thawing and relevant control techniques will provide insights to researchers and manufacturers in the field of frozen egg processing.
Collapse
Affiliation(s)
- Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Ruihong Wang
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
9
|
Jiang J, Yang X, Wang H, Chi Y, Chi Y. Study on the gelling properties of egg white/surfactant system by different heating intensities. Poult Sci 2024; 103:103876. [PMID: 38833746 PMCID: PMC11190698 DOI: 10.1016/j.psj.2024.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
The aim of this study was to elucidate the different effects and difference mechanism of gelling properties among egg white (EW) treated with different heating intensities and the composite addition of rhamnolipid and soybean lecithin. Particle size analyzer, potentiometric analyzer, surface hydrophobicity method, and Fourier transform infrared spectroscopy techniques were used to determine the physicochemical properties and molecular structure, respectively. Low-field nuclear magnetic resonance, magnetic resonance imaging, texture profile analysis, and scanning electron microscopy techniques were used to analyze the gelling properties and gel structure, respectively. And we illuminate the different mechanisms in the gelling properties of the EW with various treatments and key internal factors that play important roles in improving gelling properties by establishing the link between the gelling properties and relevant characteristics by mixed effects model and visual network analysis. The results indicate raising the content of rhamnolipid decreased the migration of immobilized water in the EW gel and the free water content. At the heating intensities of 55 °C/3.5, 65 °C/2.5, and 67 °C/1.5 min, with an increase in rhamnolipid, the gel's cohesiveness, gumminess, and chewiness gradually increased. The mixed effects model indicated that heating intensities and composite ratios have a 2-way interaction on zeta potential, the relaxation time of bound water (T21), the content of bound water (P21), the content of immobilized water (P22), and fractal dimension (df) attributes (P < 0.05). The visual network analysis showed that the protein solubility, the relaxation time of immobilized water (T22), surface hydrophobicity, zeta potential, average particle size (d43) and the relaxation time of free water (T23) are critical contributors to the different gelling properties of EW subjected to various treatments and the improvement of gelling properties. This study will provide theoretical guidance for the development of egg white products and the expansion of egg white's application scope in the egg product processing industry.
Collapse
Affiliation(s)
- Jiwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiaoxue Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Huiyong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China.
| |
Collapse
|
10
|
Fan X, Wang Q, Jin H, Zhang Y, Yang Y, Li Z, Jin G, Sheng L. Protein aggregation caused by pasteurization processing affects the foam performance of liquid egg white. Food Chem 2024; 446:138881. [PMID: 38428086 DOI: 10.1016/j.foodchem.2024.138881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.
Collapse
Affiliation(s)
- Xiang Fan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qi Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guofeng Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Li J, Wang X, Chang C, Gu L, Su Y, Yang Y, Agyei D, Han Q. Chicken Egg White Gels: Fabrication, Modification, and Applications in Foods and Oral Nutraceutical Delivery. Foods 2024; 13:1834. [PMID: 38928777 PMCID: PMC11202995 DOI: 10.3390/foods13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chicken egg white (EW) proteins possess various useful techno-functionalities, including foaming, gelling or coagulating, and emulsifying. The gelling property is one of the most important functionalities of EW proteins, affecting their versatile applications in the food and pharmaceutical industries. However, it is challenging to develop high-quality gelled foods and innovative nutraceutical supplements using native EW and its proteins. This review describes the gelling properties of EW proteins. It discusses the development and action mechanism of the physical, chemical, and biological methods and exogenous substances used in the modification of EW gels. Two main applications of EW gels, i.e., gelling agents in foods and gel-type carriers for nutraceutical delivery, are systematically summarized and discussed. In addition, the research and technological gaps between modified EW gels and their applications are highlighted. By reviewing the new modification strategies and application trends of EW gels, this paper provides insights into the development of EW gel-derived products with new and functional features.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
12
|
Ma Z, Qing M, Zang J, Xu Y, Gao X, Chi Y, Chi Y. Effects of freezing on the gelation behaviors of liquid egg yolks affected by saccharides: thermal behaviors and rheological and structural changes. Poult Sci 2024; 103:103657. [PMID: 38552569 PMCID: PMC10995874 DOI: 10.1016/j.psj.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024] Open
Abstract
Monitoring and controlling the freezing process and thermal properties of foods is an important means to understand and maintain product quality. Saccharides were used in this study to regulate the gelation of liquid egg yolks induced by freeze‒thawing; the selected saccharides included sucrose, L-arabinose, xylitol, trehalose, D-cellobiose, and xylooligosaccharides. The regulatory effects of saccharides on frozen egg yolks were investigated by characterizing their thermal and rheological properties and structural changes. The results showed that L-arabinose and xylitol were effective gelation regulators. After freeze‒thawing, the sugared egg yolks exhibited a lower consistency index and fewer rheological units than those without saccharides, indicating controlled gelation. Weaker aggregation of egg yolk proteins was confirmed by smaller aggregates observed by confocal laser scanning microscopy and smaller particle sizes. Saccharides alleviated the freeze-induced conversion of α-helices to β-sheets in egg yolk proteins, exposing fewer Trp residues. Overall, L-arabinose showed the greatest improvement in regulating the gelation of egg yolks, followed by xylitol, which is correlated with its low molecular weight.
Collapse
Affiliation(s)
- Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yonghao Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
13
|
Koyama S, Kodama D, Handa A, Tsujii Y. Dry-heat-induced phosphoserine-specific fragmentation of ovalbumin. Food Chem 2024; 440:138263. [PMID: 38159316 DOI: 10.1016/j.foodchem.2023.138263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
When subjected to dry-heating, egg white ovalbumin, a phosphoglycoprotein, undergoes fragmentation and forms soluble aggregates. We investigated the mechanisms of dry-heat-induced fragmentation of ovalbumin. SDS-PAGE analysis showed that ovalbumin fragmented into five polypeptides, and their amount increased over 6 h of dry-heat treatment at 120 °C. The fragments contained fewer or no phosphoserine, compared with that in crude ovalbumin. Liquid chromatography-tandem mass spectrometry analysis of tryptic digests revealed that the fragmentation sites were located on phosphoserine residues, S68 and S344. During fragmentation, the phosphoserine residues underwent conversion into dehydroalanine residues, which were subsequently hydrolyzed. The nitrogen from the dehydroalanine became a newly formed terminal amide group on the N-terminal fragment, while the remaining molecule predominantly formed a new terminal pyruvoyl group. Furthermore, the fragments were incorporated into monomers or soluble aggregates of ovalbumin via covalent and non-covalent bonds. This study demonstrated a novel mechanism for dry-heat-induced fragmentation of phosphoproteins.
Collapse
Affiliation(s)
- Shota Koyama
- Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| | - Daisuke Kodama
- R&D Division, Kewpie Corporation, 2-5-7 Sengawa, Chofu, Tokyo 182-0002, Japan.
| | - Akihiro Handa
- Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-machi, Hiki-gun, Saitama 350-0394, Japan.
| | - Yoshimasa Tsujii
- Kewpie Research Division for Egg Innovation, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; Faculty of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
14
|
Liu ZW, Tang PP, Zhang YX, Cheng JH, Aadil RM, Liu XB. Preventing thermal aggregation of ovalbumin through dielectric-barrier discharge plasma treatment and enhancing its emulsification properties. Int J Biol Macromol 2024; 267:131578. [PMID: 38641267 DOI: 10.1016/j.ijbiomac.2024.131578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The impact of Dielectric-Barrier Discharge (DBD) plasma treatment on the prevention of heat-induced aggregation of Ovalbumin (OVA) and improvement in emulsification properties was investigated. Results highlighted the effective inhibition of thermal aggregation of OVA following exposure to plasma. Structural analysis revealed that the plasma-induced oxidation of sulfhydryl and intermolecular disulfide bonds played a pivotal role in inhibiting the thermal aggregation, considered by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), multiplies spectroscopy, and analysis of dynamic exchange of sulfhydryl-disulfide bonds. Meanwhile, the oxidation of exposed hydrophobic sites due to plasma treatment resulted in the transformation of the OVA molecule's surface from hydrophobic to hydrophilic, contributing significantly to the aggregation inhibition. Additionally, compared to an untreated sample of OVA, almost one-fold increase in emulsifying ability (EAI) and 1.5-fold in emulsifying stability (ESI) was observed after 4 min of plasma treatment. These findings demonstrated that plasma treatment not only enhanced the thermal stability of OVA, but also improved its emulsification properties.
Collapse
Affiliation(s)
- Zhi-Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Pan-Pan Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Xuan Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Xiu-Bin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
15
|
Guo J, Gao X, Chi Y, Chi Y. Potassium Chloride as an Effective Alternative to Sodium Chloride in Delaying the Thermal Aggregation of Liquid Whole Egg. Foods 2024; 13:1107. [PMID: 38611411 PMCID: PMC11011459 DOI: 10.3390/foods13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The potential of potassium chloride (KCl) to be used as a substitute for sodium chloride (NaCl) was studied by monitoring the effects of salt treatment on thermal behavior, aggregation kinetics, rheological properties, and protein conformational changes. The results show that the addition of KCl can improve solubility, reduce turbidity and particle size, and positively influence rheological parameters such as apparent viscosity, consistency coefficient (K value), and fluidity index (n). These changes indicate delayed thermal denaturation. In addition, KCl decreased the content of β-sheet and random coil structures and increased the content of α-helix and β-turn structures. The optimal results were obtained with 2% KCl addition, leading to an increase in Tp up to 85.09 °C. The correlation results showed that Tp was positively correlated with solubility, α-helix and β-turn but negatively correlated with ΔH, turbidity, β-sheet and random coil. Overall, compared to NaCl, 2% KCl is more effective in delaying the thermal aggregation of LWE, and these findings lay a solid theoretical foundation for the study of sodium substitutes in heat-resistant liquid egg products.
Collapse
Affiliation(s)
- Jiayu Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (J.G.); (X.G.)
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Ma Y, Shan A, Chi Y. Changes in structural, rheological, and gel properties of egg white protein induced by preheating in the dry state. Int J Biol Macromol 2023; 248:125851. [PMID: 37467832 DOI: 10.1016/j.ijbiomac.2023.125851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The knowledge of fundamental rheological concepts is essential to understand the gelling process of egg white proteins (EWP), which can be used to further manipulate the gel performance with desired sensorial attributes. In this study, the rheological and gel properties of EWP as influenced by heating in the dry state were investigated. The structural changes in dry heated EWP (DEWP) were also characterized in terms of morphology, protein stability, and protein microenvironment. The results showed that moderate dry heating induced linear aggregation of DEWP and decreased the denaturation temperature (Td) and enthalpy of denaturation (ΔH). Furthermore, the cross-linking on protein surface led to nonpolar microenvironment of hydrophobic groups, which lays the foundation of improved gel properties. The specific outcomes include the increase in the G'max and the G''max values, k'/k'' values of DEWP dispersions, gel hardness and gumminess of DEWP gels and a decrease in gelation temperature of DEWP dispersions. However, few changes were found in the springiness and cohesiveness of the DEWP gels with increasing dry heating time. Notably, gels prepared with DEWP also had better digestibility. Overall, these results can provide theoretical basis for quality control and sensory evaluation of DEWP in the food industry.
Collapse
Affiliation(s)
- Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Yang J, Meng D, Wu Z, Chen J, Xue L. Modification and Solubility Enhancement of Rice Protein and Its Application in Food Processing: A Review. Molecules 2023; 28:molecules28104078. [PMID: 37241820 DOI: 10.3390/molecules28104078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rice protein is a high-quality plant-based protein source that is gluten-free, with high biological value and low allergenicity. However, the low solubility of rice protein not only affects its functional properties such as emulsification, gelling, and water-holding capacity but also greatly limits its applications in the food industry. Therefore, it is crucial to modify and improve the solubility of rice protein. In summary, this article discusses the underlying causes of the low solubility of rice protein, including the presence of high contents of hydrophobic amino acid residues, disulfide bonds, and intermolecular hydrogen bonds. Additionally, it covers the shortcomings of traditional modification methods and the latest compound improvement methods, compares various modification methods, and puts forward the best sustainable, economical, and environmentally friendly method. Finally, this article lists the uses of modified rice protein in dairy, meat, and baked goods, providing a reference for the extensive application of rice protein in the food industry.
Collapse
Affiliation(s)
- Jingjing Yang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Dan Meng
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Lu Xue
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
18
|
Lu F, Ma Y, Zang J, Qing M, Ma Z, Chi Y, Chi Y. High-temperature glycosylation modifies the molecular structure of ovalbumin to improve the freeze-thaw stability of its high internal phase emulsion. Int J Biol Macromol 2023; 233:123560. [PMID: 36746301 DOI: 10.1016/j.ijbiomac.2023.123560] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
In this study, ovalbumins (OVAs) were glycosylated with fructo-oligosaccharide (FO) at different temperatures (80 °C, 100 °C, 120 °C, and 140 °C) and durations (1 h and 2 h) via wet-heating. The glycosylated OVAs (GOVAs) were characterized by the degree of glycosylation (DG), particle size, zeta potentials, and structural changes. GOVAs-stabilized high-internal-phase emulsions (HIPEs) were then prepared to compare their macro- and microstructure and freeze-thaw stability. The results showed that the DG of GOVAs increased with the increase in glycosylation temperature and the protein structure unfolded with it. Glycosylation decreased the particle size, zeta potential, and α-helical structures and increased the β-sheets and surface hydrophobicity (H0) of GOVAs compared with unmodified OVAs. Moreover, GOVAs-stabilized HIPEs exhibited smaller particle sizes, zeta potentials, agglomeration indexes, oil loss rates, and freezing points and higher viscoelasticity, centrifugal stabilities, flocculation indexes, and freeze-thaw stabilities. Notably, HIPEs prepared by GOVAs (glycosylated higher than 120 °C) showed the least changes in macro- and microscopic appearances after freeze-thawing. These findings will provide a novel method for improving and broadening the functionalities of OVAs and potentially develop HIPEs with enhanced freeze-thaw stabilities.
Collapse
Affiliation(s)
- Fei Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Wang T, Chang C, Cheng W, Gu L, Su Y, Yang Y, Li J. Combined effect of heating and enzymatic hydrolysis on the dispersibility and structure properties of egg white powder. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
20
|
Effect of radiofrequency processing on the structural and bio-functional properties of egg white proteins. Food Chem 2023; 404:134533. [DOI: 10.1016/j.foodchem.2022.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
21
|
Yu R, Wang L, Ma Y, Zang J, Qing M, Chi Y, Chi Y. Addition of NaCl or Sucrose on the Protein Content, and Functional and Physicochemical Properties of Egg Whites Liquid under Heat Treatment. Foods 2023; 12:foods12040881. [PMID: 36832956 PMCID: PMC9957389 DOI: 10.3390/foods12040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, differences in the protein content and functional and physicochemical properties of four varieties of egg white (EW) were studied by adding 4-10% sucrose or NaCl and then heating them at 70 °C for 3 min. According to a high-performance liquid chromatography (HPLC) analysis, the percentages of ovalbumin, lysozyme and ovotransferrin rose with an increase in the NaCl or sucrose concentration; however, the percentages of ovomucin and ovomucoid decreased. Furthermore, the foaming properties, gel properties, particle size, α-helixes, β-sheets, sulfhydryl groups and disulfide bond content also increased, whereas the content of β-turns and random coils decreased. In addition, the total soluble protein content and functional and physicochemical properties of black bone (BB) chicken and Gu-shi (GS) EWs were higher than those of Hy-Line brown (HY-LINE) and Harbin White (HW) Ews (p < 0.05). Subsequently, transmission electron microscopy (TEM) confirmed the changes in the EW protein structure in the four varieties of Ews. As the aggregations increased, the functional and physicochemical properties decreased. The protein content and functional and physicochemical properties of Ews after heating were correlated with the concentration of NaCl and sucrose and the EW varieties.
Collapse
Affiliation(s)
- Ruihan Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lifeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.C.); (Y.C.); Tel.: +86-451-55191793 (Yujie Chi); Fax: +86-451-55190577 (Yujie Chi)
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.C.); (Y.C.); Tel.: +86-451-55191793 (Yujie Chi); Fax: +86-451-55190577 (Yujie Chi)
| |
Collapse
|
22
|
Glycosylation of egg white protein with maltodextrin in the dry state: Changes in structural and gel properties. Food Chem 2023; 401:134113. [DOI: 10.1016/j.foodchem.2022.134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
|
23
|
Hu Y, Du L, Sun Y, Zhou C, Pan D. Recent developments in phosphorylation modification on food proteins: Structure characterization, site identification and function. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Ma Y, Qing M, Zang J, Shan A, Zhang H, Chi Y, Chi Y, Gao X. Molecular interactions in the dry heat-facilitated hydrothermal gel formation of egg white protein. Food Res Int 2022; 162:112058. [DOI: 10.1016/j.foodres.2022.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
|
25
|
An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Liu B, Jin F, Li Y, Wang H, Chi Y, Tian B, Feng Z. Pasteurization of egg white by integrating ultrasound and microwave: Effect on structure and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Zhao W, Zang J, Qing M, Wang H, Chi Y, Chi Y. Mechanistic insights into the improved properties of mayonnaise from the changes in protein structures of enzymatic modification-treated egg yolk. RSC Adv 2022; 12:27213-27224. [PMID: 36276000 PMCID: PMC9511691 DOI: 10.1039/d2ra04244d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Heat treatment is an important step in mayonnaise production but can affect the quality of mayonnaise because thermal treatment can accelerate oil droplet coalescence. To resolve this issue, in this study, enzymatically modified egg yolks were applied to produce mayonnaise. Egg yolk hydrolyzed with 0.2% neutral protease could effectively produce mayonnaise with superior heat stability, and this effect was attributed to enzymatic modifications that increased the degree of amino acid ionization, the overall hydrophilicity and the ability to adsorb proteins. Moreover, electrophoresis and FT-IR results showed that the enzymatically modified egg yolk proteins had a smaller molecular weight and more flexible structure, which could also favor the improved properties. The study elucidated why mayonnaise prepared by enzymatic modification-treated egg yolk has better thermal stability. Heat treatment is an important step in mayonnaise production but can affect the quality of mayonnaise because thermal treatment can accelerate oil droplet coalescence.![]()
Collapse
Affiliation(s)
- Wenfei Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Huiyong Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|