1
|
Li W, Chen W, Wu D, Zhang Z, Liu P, Li Z, Yang Y. TMC4 receptor binding properties and interaction mechanisms of salty mushroom peptides. Food Chem 2025; 475:143403. [PMID: 39956075 DOI: 10.1016/j.foodchem.2025.143403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
The transmembrane channel-like protein 4 (TMC4) has been identified as a receptor for anionic salty compounds. However, whether salty peptides can activate TMC4 remains unresolved, and the underlying interaction mechanism between these peptides and the receptor is also unclear. In this study, we analyzed the binding properties and interaction mechanisms of salty mushroom peptides with the TMC4 receptor. A spontaneous, enthalpy-driven specific binding reaction was observed, with TMC4 binding to 2 molecules of the salty peptide KSWDDFFTR and 4 molecules of the peptide RIEDNLVIIR. The intracellular amino acid residues in pocket 1 of the receptor primarily recognized KSWDDFFTR, whereas the extracellular amino acid residues in pocket 4 predominantly bound to RIEDNLVIIR. Notably, the TMC4 receptor can be activated by the salty peptides, and the receptor specifically recognized uncharged peptides. Insights into the interaction between salty peptides and TMC4 may pave the way for the development of novel food additives.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
2
|
Fu B, Li M, Chang Z, Yi J, Cheng S, Du M. Identification of novel umami peptides from oyster hydrolysate and the mechanisms underlying their taste characteristics using machine learning. Food Chem 2025; 473:142970. [PMID: 39899925 DOI: 10.1016/j.foodchem.2025.142970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Excessive sodium consumption poses considerable health risks, prompting the exploration of umami peptides as potential alternative for reducing sodium intake. This research investigated umami peptides (PQFAPEED, EEHPVLLTEA and DQAIPNKPEE) using machine learning, determining sensory thresholds to be 0.24, 0.30 and 0.29 mg/mL. Molecular docking studies revealed hydrogen bonds and hydrophobic interactions are vital for their binding to umami receptors T1R1/T1R3, with key residues identified as Val714, Leu852, Gln853 and Glu855. Combination of DQAIPNKPEE with 3 mg/mL sodium chloride (NaCl) closely mimicked the salinity perception of 5 mg/mL NaCl. Additionally, DQAIPNKPEE and PQFAPEED were recognised as salt-enhancing peptides, with Ala283, Glu284, Glu286, Arg294, Arg330 and Arg583 identified as critical amino acid residues of human transmembrane channel-like 4 (TMC4). These peptides substitute chloride ions to activate TMC4, resulting in sensation of saltiness. This study highlights efficacy of machine learning in rapid identification of umami peptides from oysters and taste receptors interactions.
Collapse
Affiliation(s)
- Baifeng Fu
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Minbo Li
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihui Chang
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuzhen Cheng
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Wang P, Li J, Yi H, Zhu D, Wang S, Zhang N, Guo X, Liu H. Identification, saltiness-enhancing effect, and antioxidant properties of novel saltiness-enhancing peptides from peanut protein. Food Funct 2025. [PMID: 40260794 DOI: 10.1039/d4fo05274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
In order to reduce the use of traditional salt (NaCl), this study aimed to rapidly identify novel peptides with salt-reducing effects from peanut protein. Four potential peptides were identified through virtual screening and molecular docking. The sensory evaluation and electronic tongue confirmed that the peptides SPDIY, DPSPR, QPGDY, and SPPGER had significant saltiness-enhancing effects, with saltiness enhancement thresholds ranging from 0.16 to 0.64 mmol L-1. Among them, DPSPR exhibited the most pronounced effect in enhancing saltiness, capable of replacing approximately 56.7% of NaCl. Molecular docking and dynamics simulation studies indicated that amino acid residues Arg272, Glu161, Gln279, Arg168, and Ser165 were found to play key roles in ligand-receptor binding. Additionally, antioxidant activity assays demonstrated that the peptide QPGDY contributed to free radical scavenging in a dose-dependent manner through the hydrogen atom transfer mechanism. The combination of virtual screening technology and experimental validation greatly improved the efficiency and accuracy of peptide discovery and functional characterization, offering a promising strategy for the development of low-sodium foods with antioxidant properties.
Collapse
Affiliation(s)
- Peng Wang
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Jun Li
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Hongbo Yi
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Danshi Zhu
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Shengnan Wang
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| | - Na Zhang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang, China
| | - Xiaofei Guo
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - He Liu
- College of Food Science and Technology, Bohai, University, Jinzhou, LiaoNing 121010, China.
| |
Collapse
|
4
|
Yan L, Zhang Q, Liu D, Zhao W, Yu Z. Identification and molecular mechanism of novel salt-enhancing peptide in crocodile hemoglobin: a combined E-tongue, molecular docking, and dynamic simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40251916 DOI: 10.1002/jsfa.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/28/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND This study aimed to reduce salt intake without compromising food sensory properties. Novel salt-enhancing peptides were identified from crocodile hemoglobin via virtual screening and evaluated for their salt-reducing effects using molecular docking, electronic tongue analysis, and molecular dynamics simulations. RESULTS A total of 24 water-soluble and non-toxic peptides were obtained by virtual enzymolysis. The protein structure of human transmembrane channel-like 4 (TMC4), a novel salt taste receptor, was constructed using AlphaFold2 and applied as a receptor. The salt-reducing effect of these peptides was verified using electronic tongue analysis, in which the peptide SSDDK had a significant salt-reducing effect. Molecular docking results showed that the main force for peptide binding to the TMC4 receptor was conventional hydrogen bonding, and Arg 583, Arg330, and Glu284 were the key amino acid residues for its binding. Molecular dynamics simulations also verified the stability of peptide-receptor binding. CONCLUSION This study demonstrates that the peptide SSDDK, derived from crocodile hemoglobin, can be used to enhance salty taste and reduce sodium salt use. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linyuezhi Yan
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Qian Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
5
|
Fang R, Zhu Z. Advances in Reducing Salt Content in Processed Meats with Basic Amino Acids. Foods 2025; 14:940. [PMID: 40231953 PMCID: PMC11940861 DOI: 10.3390/foods14060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
Basic amino acids have emerged as a pivotal area of research in efforts to decrease the sodium content in meat products, primarily due to their ability to enhance flavor, improve taste, and effectively replace sodium salts. This review synthesizes current strategies for sodium reduction in meat products and offers an overview of previous studies examining the role of basic amino acids in such applications, including their impact on sensory attributes and structural alterations. Furthermore, the implications of these strategies on product quality are examined, addressing aspects such as protein hydrolysis, oxidation, color, and textural changes, as well as potential underlying mechanisms. Additionally, future challenges and trends in the utilization of basic amino acids in processed meats are explored. Overall, basic amino acids exhibit significant potential as sodium salt substitutes, particularly at low NaCl concentrations. Their combinations with chloride salts, yeast extracts, and other salts have been explored as alternative sodium reduction strategies. However, challenges remain in their application to meat products, including high production costs, consumer acceptance, and stability during large-scale production. Future research should focus on optimizing the use of basic amino acids, enhancing their economic feasibility, and addressing technical hurdles.
Collapse
Affiliation(s)
- Rui Fang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China;
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Zongshuai Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, No. 655 Hua Lan Street, Xinxiang 453003, China
| |
Collapse
|
6
|
Sakai K, Broches N, Okuda K, Okada M, Yamaguchi S. Umami and saltiness enhancements of textured pea proteins by combining protease- and glutaminase-catalyzed reactions. Curr Res Food Sci 2025; 10:101022. [PMID: 40130214 PMCID: PMC11931316 DOI: 10.1016/j.crfs.2025.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Plant-based meat analogs (PBMAs) have attracted attention owing to their various advantages, however, their taste limits their application, requiring improvement of the umami and saltiness levels while meeting clean-label requirements. Enzymatic treatments for food processing are effective strategies for developing clean-label food products because enzymes are not considered food additives. In this study, we aimed to enhance the umami and saltiness intensity of PBMA patties by combining protease- and glutaminase-catalyzed reactions. For the production of extrudates to construct PBMA patties, enzymatically hydrolyzed pea proteins (eHPP) were produced via enzyme catalysis combinations, followed by the preparation of eHPP-mixed textured pea protein (eTPP) from eHPP and starch. Sensory evaluation revealed that the umami, kokumi, and saltiness levels of the eTPP-based patties containing 0.5% NaCl were significantly higher than those of the control patties containing 0.5% NaCl. Notably, the eTPP-based patties exhibited a 20% salt reduction. By screening for saltiness-enhancing amino acids and peptides released from eTPP-based patties in artificial saliva, the combination of Glu, Arg, Lys, and the separated peptide 3 was determined important in enhancing the saltiness intensity of NaCl. Moreover, it was revealed that the saltiness-enhancing peptide 3 may be a Maillard-induced peptide, based on the Lys residues in Glu-Gly-Lys-Gly and 5-hydroxymethylfurfural condensed from Glucose in starch during the extrusion process. Our findings suggest that the combination of proteases and glutaminases could be an attractive approach to enhance the umami and saltiness levels of PBMA products while meeting clean-label requirements.
Collapse
Affiliation(s)
- Kiyota Sakai
- Amano Enzyme Inc. Innovation Center, Kakamigahara, Japan
| | | | - Keita Okuda
- Amano Enzyme Inc. Innovation Center, Kakamigahara, Japan
- Amano Enzyme U.S.A. Co., Ltd. IL, 60124, USA
| | | | | |
Collapse
|
7
|
Li M, Xia X, Zhang F, Hussain S, Hayat K, Zhang X, Ho CT. Molecular Characteristics and Thermal Stability of Salty/Saltiness-Enhancing Peptides from Enzymatic Hydrolysates of Agaricus bisporus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5436-5449. [PMID: 39982016 DOI: 10.1021/acs.jafc.4c12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Agaricus bisporus peptides with a saltiness-enhancing effect (24%) were obtained through favorable enzymatic hydrolysis conditions. To identify the molecular characteristics of saltiness-enhancing peptides, A. bisporus protein was extracted and hydrolyzed under the selected optimal conditions. The resulting peptides were further separated through ultrafiltration and gel chromatography and characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Molecular docking was then performed with the transmembrane channel-like 4 (TMC4), leading to the identification of four key peptides: WDDVRGW, GRGGYFDEF, ARSIGVS, and WDEVRGE. The synthetic WDDVRGW was proved to be a salty peptide and saltiness-enhancing peptide. The aqueous solution of 0.05% WDDVRGW displayed a saltiness of 3.66 ± 0.13, and 0.005% WDDVRGW with 0.4% NaCl solution presented a saltiness of 4.93 ± 0.05, showing a saltiness enhancement of 11.4%. Both synthetic and enzymatic hydrolyzed peptides exhibited higher saltiness-enhancing effects at lower NaCl concentrations. A. bisporus peptides can maintain a high saltiness-enhancing effect (>15%) after the thermal process at 105-125 °C for 120 min, exhibiting desirable thermal stability. The initial pH of 8.0 in the thermal reaction solution was more beneficial to the formation of saltiness-enhancing peptides.
Collapse
Affiliation(s)
- Meihua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiang Wang Flavouring Food Co., Ltd., Jieshou 236500, Anhui, P. R. China
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Khizar Hayat
- Department of Natural Sciences, Parkland College, Champaign, Illinois 61821, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
8
|
Xu Z, Gan M, Guan W, Tian F, Wang Y, Zhang J, Cai L. In Slico Screening and In Vitro Identification of Hyperuricemia-Inhibiting Peptides from Trachurus japonicus. Foods 2025; 14:524. [PMID: 39942117 PMCID: PMC11817512 DOI: 10.3390/foods14030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Hyperuricemia arises from imbalanced uric acid metabolism, contributing to gout and related chronic diseases. When traditional drugs are used to treat hyperuricemia, side effects are inevitable, which promotes the exploration of new bioactive compounds. Protein hydrolysates and peptides are gradually showing potential in the treatment of hyperuricemia. This study investigated the uric acid inhibitory activity of peptides extracted from Trachurus japonicus using in silico and in vitro methods. We employed in silico virtual enzymolysis and experimental validation to identify bioactive peptides from Trachurus japonicus proteins. Four peptides (DF, AGF, QPSF, and AGDDAPR) were comprehensively screened by molecular docking and database analysis. After solid-phase synthesis, the inhibitory effects of these peptides on hyperuricemia were further verified in vitro and at the cellular level. The results showed that all four peptides have good hyperuricemia-inhibiting activities. Molecular docking and molecular dynamics revealed that peptides DF and AGDDAPR affect the production of uric acid by binding to the active sites of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), and xanthine oxidase (XOD), while peptides QPSF and AGF mainly influence the XOD active site, confirming that it is feasible to rapidly screen hyperuricemia-inhibiting peptides by molecular docking.
Collapse
Affiliation(s)
- Zexuan Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China;
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems and Food Science, Zhejiang University, Ningbo 315100, China; (M.G.); (Y.W.)
| | - Weiliang Guan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
| | - Fang Tian
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yuxi Wang
- Ningbo Innovation Center, College of Biosystems and Food Science, Zhejiang University, Ningbo 315100, China; (M.G.); (Y.W.)
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China;
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems and Food Science, Zhejiang University, Ningbo 315100, China; (M.G.); (Y.W.)
| |
Collapse
|
9
|
Zhao X, Huang P, Cui C, Fan Q, Yang H, Ma S. Discovery of novel saltiness-enhancing peptides from yeast extract and evaluation of their bidirectional saltiness regulation effects. Food Res Int 2025; 202:115622. [PMID: 39967088 DOI: 10.1016/j.foodres.2024.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
This study was undertaken to uncover peptides from yeast extract that can enhance the perception of saltiness and to explore their effects on saltiness enhancement. Utilizing nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis, we identified peptides present in yeast extract. Through a virtual screening strategy, we selected fourteen candidate peptides with potential to enhance saltiness, along with two arginyl dipeptides. Molecular docking indicated that these peptides primarily interact with salt taste receptors via hydrogen bonding, with key binding sites identified as Arg583, Glu 326, and Tyr487, Arg491 for the taste receptors TMC4 and TRPV1, respectively. Sensory evaluation demonstrated that the saltiness-enhancing peptides (ADWPR, GDVDPF, NVDPF, WPEMDAL, LR, and VR) not only intensified the saltiness of a 0.30 % sodium chloride (NaCl) solution but also extended the duration of the saltiness sensation. Sigmoid curve analysis confirmed that these peptides could either synergistically or additively boost the saltiness of the salt solution. Interestingly, ADWPR and WPEMDAL were observed to reduce and moderate the saltiness intensity in high-concentration NaCl solutions, indicating a bidirectional regulatory effect. These findings reveal the potential mechanisms by which yeast extract can modulate saltiness and lay the groundwork for developing strategies to reduce salt content in food products, potentially leading to healthier dietary options.
Collapse
Affiliation(s)
- Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Quanlong Fan
- Ningxia Eppen Biotech Co., Ltd, 750100 Ningxia Hui Autonomous Region, China
| | - Haizhen Yang
- Ningxia Eppen Biotech Co., Ltd, 750100 Ningxia Hui Autonomous Region, China
| | - Shiyu Ma
- Ningxia Eppen Biotech Co., Ltd, 750100 Ningxia Hui Autonomous Region, China
| |
Collapse
|
10
|
Cao Y, Yan L, Liu D, Zhang Q, Zhao W, Yuan L, Yu Y, Yu Z. Identification of novel saltiness/saltiness enhancing peptides in egg proteins: Molecular docking, action mechanism and in vitro activity validation. Food Chem X 2025; 26:102261. [PMID: 40207294 PMCID: PMC11979428 DOI: 10.1016/j.fochx.2025.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
In this study, novel saltiness/saltiness enhancing peptides VESQTNGIIR, NQITKPNDVY, and DEDTQAMP were identified from the hen egg proteins via virtual enzymatic, molecular docking, and electronic tongue analysis. Their saltiness enhancement effect was analyzed by e-tongue analysis. Saltiness enhancement rates of saltiness peptide VESQTNGIIR were 47.24 %, 95.28 % and 105.94 %, and those of the saltiness peptide NQITKPNDVY were 32.40 %, 70.16 %, and 71.25 % at the salt reduction concentrations of 25 %, 35 % and 45 %, respectively. Saltiness enhancement rates of saltiness enhancing peptide DEDTQAMP were 5.83 % and 11.24 % at 25 % and 35 % salt reduction concentrations, respectively. Molecular docking demonstrated that Glu286, Arg330, Arg424, and Arg583 may be the key amino acids interacting with TMC4, whereas that carbon hydrogen bond, conventional hydrogen bond, and attractive charge interactions were important forces in peptides-TMC interactions. The study indicated that the peptides VESQTNGIIR and NQITKPNDVY may be ideal saltiness/saltiness enhancing peptides.
Collapse
Affiliation(s)
- Yaxin Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Linyuezhi Yan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Qian Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Lin Yuan
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yiding Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| |
Collapse
|
11
|
Li W, Chen W, Wu D, Zhang Z, Liu P, Li Z, Yang Y. The ENaC taste receptor's perceived mechanism of mushroom salty peptides revealed by molecular interaction analysis. NPJ Sci Food 2025; 9:10. [PMID: 39880822 PMCID: PMC11779800 DOI: 10.1038/s41538-025-00380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
The ENaC receptor acts as a taste receptor to recognize and perceive salty substances. This study explored the mechanisms by which the ENaC taste receptor recognizes and binds mushroom-derived salty peptides using molecular interaction and molecular simulation. The three subunits α, β, and γ of the ENaC taste receptor (SCNN1α, SCNN1β, and SCNN1γ) showed different recognition characteristics for the salty peptide. The salty peptide binding to the SCNN1α receptor was an entropy-driven reaction, while to SCNN1β and SCNN1γ was an enthalpy-driven reaction. With the salty peptide spatial resistance increasing, salty peptides bind to the ENaC taste receptor shifted from receptor pockets binding to receptor surface binding, with salty octapeptide ESPERPFL preferentially binding to amino acid residues in the receptor pockets 2, 3, and 4, salty nonapeptide KSWDDFFTR and decapeptide RIEDNLVIIR binding to amino acid residues in the pockets 2, 4 and on the surface of the receptor, and salty undecapeptide GQEDYDRLRPL preferentially binding to the atoms on the surface of the receptor. Receptor extracellular arginine, glutamate, aspartate, and lysine residues were the critical amino acid residues recognized to bind salty peptides. The salty peptide-ENaC receptor binding complex was stable around 0.3 nm, and the tight and multisite binding was the main reason the ENaC receptor sensed the salty peptide, enabling it to exert its taste effect. This research can provide a theoretical basis for understanding the taste properties of salty peptides recognized and perceived by the ENaC taste receptor.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China.
| |
Collapse
|
12
|
Song M, Zhou T, Liao Q, Zhang F, Hussain S, Hayat K, Zhang X, Ho CT. Structural Feature of Salty/Saltiness-Enhancing Peptides Derived from Coprinus comatus and Their Stability during Subsequent Thermal Treatment and Maillard Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:756-765. [PMID: 39715013 DOI: 10.1021/acs.jafc.4c10426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Through a quantitative analysis of saltiness perception, favorable enzymatic hydrolysis parameters were confirmed for the preparation of saltiness-enhancing peptide mixtures from Coprinus comatus. The enzymatic hydrolysate was fractionated into four fractions (F1-F4) by gel chromatography, with F3 exhibiting the strongest saltiness-enhancing effect (22% increase). LC-MS/MS analysis of F3 identified 36 peptides, and their secondary structures and interactions with the TMC4 receptor were examined through circular dichroism spectroscopy and molecular docking. Molecular docking analysis revealed Asn588, Ser165, Asp5, and Arg168 as key amino acid residues, with the peptide GDNVGF showing the lowest binding energy. Synthetic GDNVGF (0.01%) in 70 mmol/L NaCl enhanced saltiness by 17%. When 0.7% GDNVGF was added to the aqueous solution, its saltiness was equivalent to that of 36.89 mmol/L NaCl, which suggested that GDNVGF functions both as a saltiness-enhancing peptide and a salty peptide. The taste changes of peptides during thermal reactions were further investigated. The thermal stability of Coprinus comatus peptides was good, but their saltiness-enhancing effect slightly reduced due to thermal degradation. The Maillard reaction further diminished this effect, though the umami level remained satisfactory, offering new insights into using Coprinus comatus peptides as low-sodium salt substitutes.
Collapse
Affiliation(s)
- Mingzhou Song
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
| | - Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, P.R. China
| | - Foxin Zhang
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiang Wang Flavouring Food Co., Ltd, Jieshou 236500, Anhui, P.R. China
| | - Shahzad Hussain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, P. O Box 2460, Riyadh 11451, Saudi Arabia
| | - Khizar Hayat
- Department of Food and Animal Sciences, Alabama A&M University, Normal, Alabama 35762, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P.R. China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, P.R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
13
|
Song C, Yang Y, Zhao Z, Tan M, Chen Z, Zheng H, Gao J, Lin H, Zhu G, Cao W. Insight into the correlation of taste substances and salty-umami taste from Monetaria moneta hydrolysates prepared using different proteases. Food Chem X 2024; 24:102056. [PMID: 39717406 PMCID: PMC11664293 DOI: 10.1016/j.fochx.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
To prepare dual-functional seasoning ingredients with a salty-umami taste, five proteases were applied to hydrolyze Monetaria moneta proteins, preparing enzymatic hydrolysates. Their taste compounds along with the salty-umami taste, were investigated. The results revealed that enzymatic hydrolysis facilitated the release of taste compounds from M. moneta. The whiteness and < 3 kDa peptides of enzymatic hydrolysates significantly increased. Moreover, flavorzyme and protamex, with high DHs, could thoroughly hydrolyze the proteins, generating the enzymatic hydrolysates abundant in taste compounds (e.g., amino acids, nucleotides) that synergistically provided a strong salty-umami taste. Saltiness and umami posed a strong positive correlation, with a correlation coefficient exceeding 0.90, resulting in the highest levels of equivalent salty intensity (ESI = 80.05 gNaCl/L) and equivalent umami concentration (EUC = 84.56 gMSG/100 g) in the flavorzyme-treated hydrolysate, followed by the protamex-treated hydrolysate. In summary, these findings offer novel insights into preparing dual-functional seasoning ingredients with a salty-umami taste, ideal for use in low-salt food production.
Collapse
Affiliation(s)
- Chunyong Song
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yaofang Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhihang Zhao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingtang Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Haisheng Lin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Guoping Zhu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| |
Collapse
|
14
|
Jiang X, Yang Y, Ho CT, Muhoza B, Liu Q, Song S. Exploring the salty peptides of enzymatically hydrolyzed Volvariella volvacea protein: Structural analysis and taste perception insights. Food Res Int 2024; 197:115155. [PMID: 39593367 DOI: 10.1016/j.foodres.2024.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
This study aimed to prepare and screen salty peptides and elucidate the factors triggering their saltiness properties and saltiness-enhancing effects. Electronic tongue results indicated that samples treated with Alcalase (AJ) exhibited the highest saltiness intensity (5.05 ± 0.11) and greater saltiness-enhancing compared to those treated with Flavourzyme (AF), Neutrase (AZ), and Papain (AM). Peptides identified by LC-MS/MS were docked to the TMC4 receptor, resulting in 23 peptides with good docked results. The key amino acid residues (Thr431, Arg433, Phe440, Phe432, and Ser273) were discovered. The salty peptides WPGFK (633.75 Da), YFDWPGFK (1059.17 Da), and YFDWPGFKT (1160.27 Da) were selected for salt reduction and molecular characterization studies. Electronic tongue results showed that the 0.01 % WPGFK solution matched the saltiness of the 0.24 % NaCl solution and demonstrated superior saltiness-enhancing compared to YFDWPGFK and YFDWPGFKT. Primary sequence analysis of three salty peptides suggested that the WPG amino acid segment might play a crucial role in generating saltiness. Circular dichroism (CD) analysis of the secondary structure indicated that increased random coil and decreased β-turn contents resulted in higher saltiness perception and increased random coil content led to greater saltiness-enhancing ability.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yang Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
15
|
Xie X, Dang Y, Pan D, Nawazish H, Li Y, Gao X. Screening of novel umami peptides with saltiness enhancement effect using molecular docking and structure-activity analysis. Food Res Int 2024; 197:115208. [PMID: 39593292 DOI: 10.1016/j.foodres.2024.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
In this study, to explore a healthier and safer alternative method for reducing salt intake, new umami peptides were identified from the hydrolysate of Ruditapes philippinarum through structure-activity relationship and molecular docking. The impact of these peptides on enhancing salty taste was examined using a sensory test and an electronic tongue evaluation. The mechanism of salt reduction was investigated through molecular docking. In addition, eight new umami peptides: LEDKVE, DEELNKLK, DLKEKL, LEER, AEKEEEFENT, EQEEYKK, EFDKK, and GEDFDNKLV, extracted from the hydrolysate of Ruditapes philippinarum, were identified, and their taste thresholds ranged from 0.12 to 0.24 mmol/L. When new umami peptides were mixed with 3 g/L of NaCl, the saltiness of NaCl was enhanced. Among the umami peptides studied, LEDKVE had the most significant impact on improving saltiness, achieving a perception of salty taste equivalent to 5 g/L of NaCl in a solution of 3 g/L of NaCl. Molecular docking revealed that the umami peptide interacted with transmembrane channel-like protein 4 (TMC4) through hydrogen bonds, and the key active sites, including Lys568, Trp145, Tyr565, Arg151, and Gln155, potentially played a crucial role in taste perception. This study offers valuable insights into the development of flavorful and nutritious seasonings that can enhance nutritional quality.
Collapse
Affiliation(s)
- Xiangning Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hira Nawazish
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211 Zhejiang, China.
| |
Collapse
|
16
|
You Z, Bai Y, Bo D, Feng Y, Shen J, Wang Y, Li J, Bai Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J Food Sci 2024; 89:8128-8155. [PMID: 39468910 DOI: 10.1111/1750-3841.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Poultry and livestock meat are important parts of the human diet. As living standards have improved, food taste has become a major influence on consumer quality assessment and meat purchasing choices. There is increasing research interest in meat taste and meat taste-active compounds, which include free amino acids, flavor nucleotides, taste-active peptides, organic acids, soluble sugars, and inorganic ions. Taste component research is also an important part of sensory science. A deeper understanding of the meat taste perception mechanism and interactions among different taste compounds will promote the development of meat science and sensory evaluation. This article reviews the main taste compounds in meat, factors influencing their concentrations, and the identification and measurement of taste-active compounds, as well as summarizing the mechanisms of taste sensing and perception. Finally, the future of scientific taste component evaluation is discussed. This review provides a theoretical basis for research on meat taste and an important reference for the development of the meat industry.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilin Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Bo
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Feng
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiameng Shen
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Xiao C, Lai Z, Zhang C, Lu W, Chen D, Wang H, Cheng H, Huang L, Ye X, Liu D. Identification of salty peptides from enzymolysis extract of oyster by peptidomics and virtual screening. Food Res Int 2024; 195:114966. [PMID: 39277236 DOI: 10.1016/j.foodres.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Salty peptide as an important sodium substitute, which could reduce the risk of cardiovascular disease caused by excessive sodium intake. In this study, novel salty peptides were prepared and identified from enzymolysis extract of oysters by peptitomic identification, virtual screening and solid phase synthesis. Additionally, molecular simulation was used to study the taste mechanism of salty peptides. 316 peptides were identified in the enzymatic hydrolysates of oysters. 6 peptides, selected through virtual screening, were synthesized using solid-phase synthesis, and EK, LFE, LEY and DR were confirmed to possess a pleasing salty taste through electronic tongue evaluation. Molecular docking results indicated that these 4 peptides could enter the binding pocket within the transmembrane channel-like 4 (TMC4) cavity, wherein salt bridges, hydrogen bonds and attractive charges were the main binding forces. This study provides a rapid screening method for salty peptides in sea food products but possibly applied for other sources.
Collapse
Affiliation(s)
- Chaogeng Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zeping Lai
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cen Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Wang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
19
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
20
|
Kasahara Y, Narukawa M, Saito Y, Abe K, Asakura T. The complexities of salt taste reception: insights into the role of TMC4 in chloride taste detection. Front Mol Neurosci 2024; 17:1468438. [PMID: 39386048 PMCID: PMC11461469 DOI: 10.3389/fnmol.2024.1468438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Although salt is an essential substance vital to life, excessive salt intake could cause various health issues. Therefore, new technologies and strategies should be developed to reduce salt intake without compromising taste. However, the underlying physiological mechanisms of salt taste reception is complex and not completely understood. Sodium chloride is a typical salty substance. It is widely believed that only sodium is important for the generation of salty taste. On the other hand, from a psychophysical perspective, the importance of chloride in salty taste has been indicated. Thus, understanding the mechanisms of both sodium- and chloride-tastes generation is necessary to completely comprehended the fundamentals of salt taste reception. However, the mechanism for detecting chloride taste has remained unclear for many years. Recently, we have identified transmembrane channel-like 4 (TMC4) as the first molecule that mediates the reception of chloride taste. TMC4 functions as a voltage-dependent chloride channel and plays an important role in the reception of the chloride taste by detecting chloride ions. In this mini-review, we first introduce the known reception mechanism of salty taste, and then discuss the roles of TMC4 in the salt taste reception. The finding of TMC4 may serve as a basis for developing new technologies and formulating strategies to reduce salt intake without compromising taste.
Collapse
Affiliation(s)
- Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Toyo Institute of Food Technology, Hyogo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| |
Collapse
|
21
|
Gu Y, Niu Y, Zhang J, Sun B, Mao X, Liu Z, Zhang Y. Identification of Novel Umami Peptides from Yeast Protein through Enzymatic, Sensory, and In Silico Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20014-20027. [PMID: 39186792 DOI: 10.1021/acs.jafc.3c08346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This study aimed to rapidly develop novel umami peptides using yeast protein as an alternative protein source. Yeast protein hydrolysates exhibiting pronounced umami intensity were produced using flavorzyme under optimum conditions determined via a sensory-guided response surface methodology. Six out of 2138 peptides predicted to possess umami taste by composite machine learning and assessed as nontoxic, nonallergenic, water-soluble, and stable using integrated bioinformatics were screened as potential umami peptides. Sensory evaluation results revealed these peptides exhibited multiple taste attributes (detection threshold: 0.37 ± 0.10-1.1 ± 0.30 mmol/L), including umami. In light of the molecular docking outcomes, it is inferred that hydrogen bond, hydrophobic, and electrostatic interactions enhanced the theoretically stable binding of peptides to T1R1/T1R3, with their contributions gradually diminishing. Hydrophilic amino acids within T1R1/T1R3, especially Ser, may play a particularly pivotal role in binding with umami peptides. Future research will involve establishing heterologous cell models expressing T1R1 and T1R3 to delve into the cellular physiology of umami peptides. Peptide sequences (FADL, LPDP, and LDIGGDF) also had synergistic saltiness-enhancing effects; to overcome the limitation of not investigating the saltiness enhancement mechanism, comprehensive experiments at the molecular and cellular levels will also be conducted. This study offers a rapid umami peptide development framework and lays the groundwork for exploring yeast protein taste compounds.
Collapse
Affiliation(s)
- Yuxiang Gu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yajie Niu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
22
|
Zhao Z, Yang M, Li Z, Tang H, Song X, Wang X. Enzymatic Preparation, Identification by Transmembrane Channel-like 4 (TMC4) Protein, and Bioinformatics Analysis of New Salty Peptides from Soybean Protein Isolate. Foods 2024; 13:2798. [PMID: 39272563 PMCID: PMC11395046 DOI: 10.3390/foods13172798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
To address the public health challenges posed by high-salt diets, this study utilized pepsin and flavourzyme for the continuous enzymatic hydrolysis of a soy protein isolate (SPI). The separation, purification, and identification of salt-containing peptides in SPI hydrolysate were conducted using ultrafiltration (UF), gel filtration chromatography (GFC), and Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS). Subsequently, a molecular docking model was constructed between salt receptor protein transmembrane channel 4 (TMC4) and the identified peptides. Basic bioinformatics screening was performed to obtain non-toxic, non-allergenic, and stable salt peptides. After the enzymatic hydrolysis, separation, and purification of SPI, a component with a sensory evaluation score of 7 and an electronic tongue score of 10.36 was obtained. LC-MS/MS sequencing identified a total of 1697 peptides in the above component, including 84 potential salt-containing peptides. A molecular docking analysis identified seven peptides (FPPP, GGPW, IPHF, IPKF, IPRR, LPRR, and LPHF) with a strong theoretical salty taste. Furthermore, residues Glu531, Asp491, Val495, Ala401, and Phe405 of the peptides bound to the TMC4 receptor through hydrogen bonds, hydrophobic interactions, and electrostatic interactions, thereby imparting a significant salty taste. A basic bioinformatics analysis further revealed that IPHF, LPHF, GGPW, and IPKF were non-toxic, non-allergenic, and stable salt-containing peptides. This study not only provides a new sodium reduction strategy for the food industry, but also opens up new avenues for improving the public's healthy eating habits.
Collapse
Affiliation(s)
- Ziying Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingzhe Yang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Heilongjiang Food and Biotechnology Innovation Research Center, Daqing 163319, China
| | - Huacheng Tang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Xuejian Song
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Xinhui Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
23
|
Gao T, Huang X, Chen X, Cai X, Huang J, Vincent G, Wang S. Advances in flavor peptides with sodium-reducing ability: A review. Crit Rev Food Sci Nutr 2024; 64:9568-9584. [PMID: 37218684 DOI: 10.1080/10408398.2023.2214613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.
Collapse
Affiliation(s)
- Tingting Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xincheng Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd, Xiamen, China
| | | | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
24
|
Wang R, Feng X, Gong Z, Chen X, Cai K, Zhou H, Xu B. Decoding of Salty/Saltiness-Enhancing Peptides Derived from Goose Hemoglobin and the Interaction Mechanism with TMC4 Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19107-19119. [PMID: 39146474 DOI: 10.1021/acs.jafc.4c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Amid the growing concern for health-oriented food choices, salt reduction has received widespread attention, particularly in the exploitation of salt alternatives. Peptides with a saltiness-enhancing effect may provide an alternative method for salt reduction. The objective of this study was to isolate and extract novel peptides with salt-reducing effects by fermenting goose blood using a Lactobacillus plantarum strain. Five potential target peptides were screened by a virtual database prediction and molecular docking. Sensory evaluation and E-tongue analysis showed that five peptides (NEALQRM, GDAVKNLD, HAYNLRVD, PEMHAAFDK, and AEEKQLITGL) were identified as target peptides. Particularly, the results of E-tongue showed that GDAVKNLD can increase the saltiness intensity (2.87 ± 0.02) in the complex system. The sensory evaluation results also indicated an increase in saltiness intensity (46.67 ± 4.67 mmol/L NaCl) after adding GDAVKNLD. The results of molecular dynamics simulation indicated that five peptides have good ability to bind tightly to TMC4 receptor, thereby stimulating it to exert an active effect. And these peptides interacted with the TMC4 receptor via hydrogen bonding, hydrophobic interactions, and electrostatic interactions. This research lays a theoretical foundation for discovering novel salty/saltiness-enhancing peptides and provides meaningful contributions to efforts in salt reduction.
Collapse
Affiliation(s)
- Ran Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xinrui Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhihao Gong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kezhou Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
25
|
Niu Y, Gu Y, Zhang J, Sun B, Wu L, Mao X, Liu Z, Zhang Y, Li K, Zhang Y. Characteristics of saltiness-enhancing peptides derived from yeast proteins and elucidation of their mechanism of action by molecular docking. Food Chem 2024; 449:139216. [PMID: 38604031 DOI: 10.1016/j.foodchem.2024.139216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
This study aimed to identify saltiness-enhancing peptides from yeast protein and elucidate their mechanisms by molecular docking. Yeast protein hydrolysates with optimal saltiness-enhancing effects were prepared under conditions determined using an orthogonal test. Ten saltiness-enhancing peptide candidates were screened using an integrated virtual screening strategy. Sensory evaluation demonstrated that these peptides exhibited diverse taste characteristics (detection thresholds: 0.13-0.50 mmol/L). Peptides NKF, LGLR, WDL, NMKF, FDSL and FDGK synergistically or additively enhanced the saltiness of a 0.30% NaCl solution. Molecular docking revealed that these peptides predominantly interacted with TMC4 by hydrogen bonding, with hydrophilic amino acids from both peptides and TMC4 playing a pivotal role in their binding. Furthermore, Leu217, Gln377, Glu378, Pro474 and Cys475 were postulated as the key binding sites of TMC4. These findings establish a robust theoretical foundation for salt reduction strategies in food and provide novel insights into the potential applications of yeast proteins.
Collapse
Affiliation(s)
- Yajie Niu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Yuxiang Gu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yan Zhang
- National Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
| | - Ku Li
- National Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
26
|
Chen X, Luo N, Guo C, Luo J, Wei J, Zhang N, Yin X, Feng X, Wang X, Cao J. Current trends and perspectives on salty and salt taste-enhancing peptides: A focus on preparation, evaluation and perception mechanisms of salt taste. Food Res Int 2024; 190:114593. [PMID: 38945609 DOI: 10.1016/j.foodres.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
Long-term excessive intake of sodium negatively impacts human health. Effective strategies to reduce sodium content in foods include the use of salty and salt taste-enhancing peptides, which can reduce sodium intake without compromising the flavor or salt taste. Salty and salt taste-enhancing peptides naturally exist in various foods and predominantly manifest as short-chain peptides consisting of < 10 amino acids. These peptides are primarily produced through chemical or enzymatic hydrolysis methods, purified, and identified using ultrafiltration + gel filtration chromatography + liquid chromatography-tandem mass spectrometry. This study reviews the latest developments in these purification and identification technologies, and discusses methods to evaluate their effectiveness in saltiness perception. Additionally, the study explores four biological channels potentially involved in saltiness perception (epithelial sodium channel, transient receptor potential vanilloid 1, calcium-sensing receptor (CaSR), and transmembrane channel-like 4 (TMC4)), with the latter three primarily functioning under high sodium levels. Among the channels, salty taste-enhancing peptides, such as γ-glutamyl peptides, may co-activate the CaSR channel with calcium ions to participate in saltiness perception. Salty taste-enhancing peptides with negatively charged amino acid side chains or terminal groups may replace chloride ions and activate the TMC4 channel, contributing to saltiness perception. Finally, the study discusses the feasibility of using these peptides from the perspectives of food material constraints, processing adaptability, multifunctional application, and cross-modal interaction while emphasizing the importance of utilizing computational technology. This review provides a reference for advancing the development and application of salty and salt-enhancing peptides as sodium substitutes in low-sodium food formulations.
Collapse
Affiliation(s)
- Xin Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Na Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Junhua Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710000, PR China
| | - Nianwen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Xiaoyu Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xuejiao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China.
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Yunnan International Joint Laboratory of Green Food Processing, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
27
|
Wang H, Chen D, Lu W, Dang Y, Liu Z, Chen G, Wang B, Zhang C, Xiao C. Novel salty peptides derived from bovine bone: Identification, taste characteristic, and salt-enhancing mechanism. Food Chem 2024; 447:139035. [PMID: 38507951 DOI: 10.1016/j.foodchem.2024.139035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Excessive sodium intake is a major contributor to the incidence of cardiovascular diseases. The objective of this study was to prepare, isolate, and characterize peptides from bovine bone protein and investigate the salty/salt-enhancing mechanism of peptides. 1032 peptides were identified in the enzymatic hydrolysates of bovine bone protein and were further screened by the composition of amino acid residues and molecular docking analysis. 5 peptides were finally selected for solid-phase synthesis, and KER showed a better salty taste by sensory verification. Moreover, the synergistic effect of KER in NaCl and MSG solution could enhance the salty intensity by 65.26 %. The binding of KER to the salty receptor (TMC4) was driven by hydrogen bonding and electrostatic interactions with a binding energy of -88.0734 kcal/mol. This work may provide a new approach to efficiently screen salty peptides from natural food materials, which were expected as a taste enhancer used in salt-reducing foods.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Di Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zhenmiao Liu
- Zhejiang Dingwei Food Co. Ltd., Wenzhou 325207, China
| | - Guangyin Chen
- Zhejiang Dingwei Food Co. Ltd., Wenzhou 325207, China
| | - Bin Wang
- Juhui Food Technology Co. Ltd., Chongqing 400713, China
| | - Cen Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chaogeng Xiao
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
28
|
Yang F, Cao R, Fu A, Liu Y, Bi S. Investigation of umami peptides and taste mechanisms in Agrocybe aegerita: based on sensory evaluation and molecular docking techniques. Food Funct 2024; 15:7081-7092. [PMID: 38869011 DOI: 10.1039/d4fo01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In the present study, sensory orientation and instrumental analysis were employed to separate, purify, and identify umami peptides in Agrocybe aegerita hydrolysate. Using UPLC-ESI-Q-TOF MS, 11 potential umami peptides (EY, EG, EV, ENG, PEG, DEL, ECG, DDL, PEEL, EDCS and DGPL) were identified from the screened fractions. Moreover, sensory evaluation and E-tongue results showed that the identified umami peptides had umami attributes, within an umami threshold range of 0.0625-0.25 mg mL-1. In addition, DDL and DEL exhibited the highest umami flavor intensity. Molecular docking analysis further showed that 4 umami peptides (namely, EY, EG, ECG, and DGPL) entered the T1R1 cavity of the umami receptor. Additionally, 4 umami peptides (namely, EV, ENG, DEL, and EDCS) could be embedded in the binding pocket of the T1R3 cavity. Furthermore, 3 umami peptides (PEG, DDL, and PEEL) strongly interacted with T1R1/T1R3. Thus, the findings collectively indicated that the predominant interacting forces between umami peptide and umami receptor are hydrogen bonding and hydrophobic interactions. Finally, it was shown that the primary binding sites of T1R1 were residues Ser109, Gln52 and Ser148, while the primary binding sites of T1R3 were residues Ser172, Arg277 and Ala170. The study identified the umami peptides in A. aegerita for the first time, which provided more information for the umami research of A. aegerita and provided the theoretical basis for the further development and utilization of A. aegerita.
Collapse
Affiliation(s)
- Fan Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rui Cao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Anzhen Fu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Shuang Bi
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
29
|
Chen W, Li W, Wu D, Zhang Z, Li Z, Li L, Wu T, Yang Y. Exploring of multi-functional umami peptides from Stropharia rugosoannulata: Saltiness-enhancing effect and mechanism, antioxidant activity and potential target sites. Food Chem 2024; 439:138138. [PMID: 38134569 DOI: 10.1016/j.foodchem.2023.138138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Umami peptides enhance flavor and offer potential health benefits. We analyzed the taste-value profiles of five novel umami peptides from Stropharia rugosoannulata using E-tongue, exhibiting significant saltiness characteristics. While the peptides PHEMQ and SEPSHF exhibited higher saltiness, their mixture with salt did not enhance saltiness compared to individual peptides. Surprisingly, SGCVNEL, which was initially weak in saltiness, showed remarkably enhanced saltiness when mixed with salt, possibly due to have strong binding with receptors. Molecular docking elucidated the salt-forming mechanism of TMC4, highlighting the P2-domain and hydrogen bonds' role in the composite structure stability. Evaluation of the antioxidant activity evaluation demonstrated dose-dependent effects primarily through free radical scavenging via the single-electron transfer potential mechanism for SGCVNEL, EPLCNQ, and ESCAPQL. Docking experiments with antioxidant targets revealed varied binding stabilities, indicating diverse antioxidant effects of the peptides. These findings provide valuable insights into the exploration and application of versatile bioactive flavor peptides.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, Henan, PR China
| | - Ting Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China.
| |
Collapse
|
30
|
Zhang J, He W, Liang L, Sun B, Zhang Y. Study on the saltiness-enhancing mechanism of chicken-derived umami peptides by sensory evaluation and molecular docking to transmembrane channel-like protein 4 (TMC4). Food Res Int 2024; 182:114139. [PMID: 38519171 DOI: 10.1016/j.foodres.2024.114139] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
The previously obtained chicken-derived umami peptides in the laboratory were evaluated for their saltiness-enhancing effect by sensory evaluation and S-curve, and the results revealed that peptides TPPKID, PKESEKPN, TEDWGR, LPLQDAH, NEFGYSNR, and LPLQD had significant saltiness-enhancing effects. In the binary solution system with salt, the ratio of the experimental detection threshold (129.17 mg/L) to the theoretical detection threshold (274.43 mg/L) of NEFGYSNR was 0.47, which had a synergistic saltiness-enhancing effect with salt. The model of transmembrane channel-like protein 4 (TMC4) channel protein was constructed by homology modeling, which had a 10-fold transmembrane structure and was well evaluated. Molecular docking and frontier molecular orbitals showed that the main active sites of TMC4 were Lys 471, Met 379, Cys 475, Gln 377, and Pro 380, and the main active sites of NEFGYSNR were Tyr, Ser and Asn. This study may provide a theoretical reference for low-sodium diets.
Collapse
Affiliation(s)
- Jingcheng Zhang
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Wei He
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Li Liang
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Baoguo Sun
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Yuyu Zhang
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
31
|
Lao H, Chang J, Zhuang H, Song S, Sun M, Yao L, Wang H, Liu Q, Xiong J, Li P, Yu C, Feng T. Novel kokumi peptides from yeast extract and their taste mechanism via an in silico study. Food Funct 2024; 15:2459-2473. [PMID: 38328886 DOI: 10.1039/d3fo04487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Yeast extract, a widely utilized natural substance in the food industry and biopharmaceutical field, holds significant potential for flavor enhancement. Kokumi peptides within yeast extracts were isolated through ultrafiltration and gel chromatography, followed by identification using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two peptides, IQGFK and EDFFVR, were identified and synthesized using solid-phase methods based on molecular docking outcomes. Sensory evaluations and electronic tongue analyses conducted with chicken broth solutions revealed taste thresholds of 0.12 mmol L-1 for IQGFK and 0.16 mmol L-1 for EDFFVR, respectively, and both peptides exhibited kokumi properties. Additionally, through molecular dynamics simulations, the binding mechanisms between these peptides and the calcium-sensing receptor (CaSR) were explored. The findings indicated stable binding of both peptides to the receptor. IQGFK primarily interacted through electrostatic interactions, with key binding sites including Asp275, Asn102, Pro274, Trp70, Tyr218, and Ser147. EDFFVR mainly engaged via van der Waals energy and polar solvation free energy, with key binding sites being Asp275, Ile416, Pro274, Arg66, Ala298, and Tyr218. This suggests that both peptides can activate the CaSR, thereby inducing kokumi activity. This study provides a theoretical foundation and reference for the screening and identification of kokumi peptides, successfully uncovering two novel kokumi peptides derived from yeast extract.
Collapse
Affiliation(s)
- Haofeng Lao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jincui Chang
- D.CO International Food Co., Ltd, Jiaozuo, 454850, People's Republic of China.
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, No. 2080, Nanting Road, Shanghai, 201415, People's Republic of China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Jian Xiong
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Pei Li
- Angel Yeast Co., Ltd, Yichang 443000, People's Republic of China.
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
32
|
Bu Y, Sun C, Guo J, Zhu W, Li J, Li X, Zhang Y. Identification novel salt-enhancing peptides from largemouth bass and exploration their action mechanism with transmembrane channel-like 4 (TMC4) by molecular simulation. Food Chem 2024; 435:137614. [PMID: 37820400 DOI: 10.1016/j.foodchem.2023.137614] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
The purpose of this study was to screen and verify salt-enhancing peptides that can effectively reduce sodium consumption from Largemouth bass myosin through virtual hydrolysis, molecular simulation, and sensory evaluation. The human transmembrane channel-like 4 (TMC4) was constructed using Alphafold2, with 93.3 % of amino acids falling within allowed regions. A total of 19 peptides were predicted through virtual hydrolysis and screening. DAF, QIF, RPAL, and IPVM significantly enhanced the saltiness perception, and QIF exhibited the most pronounced effect in enhancing saltiness (P < 0.05). The residues Ala258, Ser546, Ser603, Phe259, Cys265, Glu539, Lys278 and Ser585 were identified as key binding sites. The TMC4-DAF complex achieved stability after 20, 000 ps, exhibiting an average RMSD value of 0.84 nm. DAF consistently displayed fluctuations at approximately 3.05 nm, and the number of hydrogen bonds varied between 3 and 5. These results suggested that Alphafold2 modelling can be used for predicting salt-enhancing peptides.
Collapse
Affiliation(s)
- Ying Bu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chaonan Sun
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jiaqi Guo
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Wenhui Zhu
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University. National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
33
|
Wang Z, Cheng Y, Muhoza B, Sun M, Feng T, Yao L, Liu Q, Song S. Discovery of peptides with saltiness-enhancing effects in enzymatic hydrolyzed Agaricus bisporus protein and evaluation of their salt-reduction property. Food Res Int 2024; 177:113917. [PMID: 38225152 DOI: 10.1016/j.foodres.2023.113917] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
This study aimed to screen peptides with saltiness-enhancing effects from enzymatic hydrolyzed Agaricus bisporus protein and quantify their salt-reduction. The saltiness evaluation standard curve was first established to evaluate salinity. The peptide fractions (U-1, U-2, and U-3) were obtained from enzymatic hydrolyzed Agaricus bisporus protein by ultrafiltration. Quantitative calculations showed that the U-2 fraction (200-2000 Da) had the strongest saltiness-enhancing effect, and its perceived saltiness in 50 mmol NaCl solution was 60.24 ± 0.10 mmol/L. The peptide sequences were identified by liquid chromatography/mass spectrometry (LC-MS/MS). Results suggested that the potential peptides with saltiness-enhancing effects were umami peptides. Molecular docking with the umami receptor T1R1/T1R3 revealed that the key amino acid residues were Asp82, Glu392, Glu270, and Asp269. Furthermore, peptide YDPNDPEK (976.4138 Da), DDWDEDAPR(1117.4312 Da), and DVPDGPPPE (1058.4668 Da) were synthesized for salt-reduction quantification. 0.4 % peptide YDPNDPEK in NaCl solution was found to have a salt-reduction of 30 %, which provided the basic theory and data for the salt-reduction of peptide in enzymatic hydrolyzed Agaricus bisporus protein.
Collapse
Affiliation(s)
- Zhangjingyi Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yunpeng Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Linyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
34
|
Ren H, Zhou J, Fu H, Feng Q, Wang J, Li C, Xia G, Shang W, He Y. Identification and virtual screening of novel salty peptides from hydrolysate of tilapia by-product by batch molecular docking. Front Nutr 2024; 10:1343209. [PMID: 38260067 PMCID: PMC10800615 DOI: 10.3389/fnut.2023.1343209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Tilapia produces a large number of by-products during processing, which contain potentially flavorful peptides. Methods The application of PyRx software enabled batch molecular docking andscreening of 16 potential salty peptides from 189 peptides identified in the enzymaticdigestion of tilapia by-products. Results According to sensory analysis, all 16 peptides werepredominantly salty with a threshold of 0.256 - 0.379 mmol/L with some sournessand astringency, among which HLDDALR had the highest salty intensity, followedby VIEPLDIGDDKVR, FPGIPDHL, and DFKSPDDPSRH. I addition, moleculardocking results showed these four core peptides with high salt intensity bound to thesalt receptor TRPV1 mainly via van der Waals interactions, hydrogen bonds, andhydrophobic forces; Arg491, Tyr487, VAL441, and Asp708 were the key sites for thebinding of salty peptides to TRPV1. Therefore, the application of batch moleculardocking using PyRx is effective and economical for the virtual screening of saltypeptides.
Collapse
Affiliation(s)
- Hongjun Ren
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jingxuan Zhou
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Huixian Fu
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jionghao Wang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| |
Collapse
|
35
|
Şen Yılmaz EB. Utilization of Yeast Extract as a Flavor Enhancer and Masking Agent in Sodium-Reduced Marinated Shrimp. Molecules 2023; 29:182. [PMID: 38202767 PMCID: PMC10780424 DOI: 10.3390/molecules29010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Deepwater pink shrimp (Parapenaus longirostris) has a significantly high catch yield and is a highly important food source for human nutrition in terms of its nutritional value. The reduction of salt content in seafood products while preserving taste poses a significant challenge. The aim of this study is to reduce the NaCl ratio used in the shrimp marination process by substituting it with KCl and masking the resulting bitterness from KCl using natural flavor enhancers, such as yeast extracts. The marinated shrimp were prepared using 50% KCl instead of 50% NaCl. In order to mask the bitter taste caused by KCl and enhance the flavor, two different types of yeast extracts obtained from Saccharomyces cerevisiae were utilized in the formulation. Nutritional composition, Na and K contents, amino acid composition, color measurement, bacteriological quality, pH changes, and sensory evaluations were conducted to assess the impact of salt reduction and yeast extracts on the sensory, chemical, and physical attributes of the products. L-glutamic acid, L-alanine, L-aspartic acid, L-leucine, L-valine, and L-lysine were found to be higher in samples with Levex Terra yeast extract. Despite a 50% reduction in NaCl content, the addition of yeast extract led to an increase in the umami taste due to the elevation of amino acids present. Yeast extracts can offer a promising solution for enhancing the sensory qualities of seafood products with reduced salt content by conducting more detailed sensory development examinations.
Collapse
|
36
|
Zhang Y, Yao Y, Zhou T, Zhang F, Xia X, Yu J, Song S, Hayat K, Zhang X, Ho CT. Light-Colored Maillard Peptides: Formation from Reduced Fluorescent Precursors of Browning and Enhancement of Saltiness Perception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20251-20259. [PMID: 38060299 DOI: 10.1021/acs.jafc.3c07476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The browning formation and taste enhancement of peptides derived from soybean, peanut, and corn were studied in the light-colored Maillard reaction compared with the deep-colored reaction. The fluorescent compounds, as the browning precursors, were accumulated during the early Maillard reaction of peptides and subsequently degraded into dark substances, which resulted in a higher browning degree of deep-colored Maillard peptides (MPs), especially for the MPs derived from corn peptide. However, the addition of l-cysteine in light-colored Maillard reaction reduced the formation of deoxyosones and short-chain reactive α-dicarbonyls, thereby weakening the generation of fluorescent compounds and inhibited the browning of MPs. Synchronously, the peptides were thermally degraded into small peptides and amino acids, which were consumed less during light-colored thermal reaction due to its shorter reaction time at high temperature compared with deep-colored ones, thus contributing to a stronger saltiness perception of light-colored MPs than deep-colored MPs. Besides, the Maillard reaction products derived from soybean and peanut peptides possessed an obvious "kokumi" taste, making them suitable for enhancing the soup flavors.
Collapse
Affiliation(s)
- Yanqun Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Yishun Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Tong Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui Qiang Wang Flavouring Food Co., Ltd., Anhui Province Key Laboratory of Functional Compound Seasoning, No. 1 Shengli Road, Jieshou 236500, Anhui, P.R. China
| | - Xue Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
37
|
Wang H, Wang W, Zhang S, Hu Z, Yao R, Hadiatullah H, Li P, Zhao G. Identification of novel umami peptides from yeast extract and the mechanism against T1R1/T1R3. Food Chem 2023; 429:136807. [PMID: 37450993 DOI: 10.1016/j.foodchem.2023.136807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Yeast extract was separated by using ultrafiltration, gel filtration chromatography, and preparative high-performance liquid chromatography for analyzing the umami mechanism. 13 kinds of umami peptides were screened out from 73 kinds of peptides which were identified in yeast extract using nanoscale ultra-performance liquid chromatography-tandem mass spectrometry and virtual screening. The umami peptides were found to have a threshold range of 0.07-0.61 mM. DWTDDVEAR exhibited a strong umami taste with a pronounced enhancement effect for monosodium glutamate. Molecular docking studies revealed that specific amino acid residues in the T1R1 subunit, including Arg316, Ser401, and Asp315, played a critical role in the umami perception with these peptides. Overall, the study highlights the potential of natural flavor enhancers and provides insights into the mechanism of umami taste perception.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjun Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuyu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhenhao Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruohan Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pei Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang 443003, Hubei, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
38
|
Song C, Wang Z, Li H, Cao W, Chen Z, Zheng H, Gao J, Lin H, Zhu G. Recent advances in taste transduction mechanism, analysis methods and strategies employed to improve the taste of taste peptides. Crit Rev Food Sci Nutr 2023; 65:695-714. [PMID: 37966171 DOI: 10.1080/10408398.2023.2280246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Taste peptides are oligopeptides that enhance both aroma and taste of food, and they are classified into five categories based on their taste characteristics: salty, sour, umami, sweet, bitter, and kokumi peptide. Recently, taste peptides have attracted the attention of several fields of research in food science and commercial applications. However, research on taste receptors of taste peptides and their taste transduction mechanisms are not clearly understood and we present a comprehensive review about these topics here. This review covers the aspects of taste peptides perceived by their receptors in taste cells, the proposed transduction pathway, as well as structural features of taste peptides. Apart from traditional methods, molecular docking, peptidomic analysis, cell and animal models and taste bud biosensors can be used to explore the taste mechanism of taste peptides. Furthermore, synergistic effect, Maillard reaction, structural modifications and changing external environment are employed to improve the taste of taste peptides. Consequently, we discussed the current challenges and future trends in taste peptide research. Based on the summarized developments, taste peptides derived from food proteins potentially appear to be important taste substances. Their applications meet the principles of "safe, nutritious and sustainable" in food development.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhijun Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hanqi Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China
| |
Collapse
|
39
|
Zhang J, Liang L, Shan Y, Zhou X, Sun B, Liu Y, Zhang Y. Antihypertensive Effect, ACE Inhibitory Activity, and Stability of Umami Peptides from Yeast Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37812565 DOI: 10.1021/acs.jafc.3c04819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bioactive peptides from foods have garnered considerable attention as viable supplements for hypertensive patients. Herein, the antihypertensive effect and mechanism of umami peptides from yeast extract were investigated based on the pharmacophore model, simulated digestion, spontaneously hypertensive rat (SHR) model, and molecular docking. Notably, umami peptide LLLLPKP exhibited favorable angiotensin I-converting enzyme (ACE) inhibitory activity (IC50 = 10.22 μM) in vitro and regulated blood pressure in the SHR model with excellent durability. Remarkably, LLLLPKP showed the highest Fitvalue (4.022) of the pharmacophore model, indicating its similar pharmacological effects as ACE inhibitors. During the simulated gastrointestinal digestion, the ACE inhibition rate of LLLLPKP was merely reduced by 5.89%, but it was enzymatically cleaved into 14 peptide segments. The C-terminal sequence comprising L (4), P (5), K (6), and P (7) exhibited robust stability and a notable presence within the peptide segments postdigestion. Meanwhile, according to molecular docking, these four residues within LLLLPKP were responsible for all interactions with key sites within active pockets S1 and S2 and the active pocket of Zn2+. In light of these findings, LLLLPKP is a highly promising antihypertensive peptide. Developing this umami peptide with antihypertensive effects holds substantial importance for the long-term treatment of hypertension.
Collapse
Affiliation(s)
- Jincheng Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yimeng Shan
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
40
|
Chen R, Liu XC, Xiang J, Sun W, Tomasevic I. Prospects and challenges for the application of salty and saltiness-enhancing peptides in low-sodium meat products. Meat Sci 2023; 204:109261. [PMID: 37384955 DOI: 10.1016/j.meatsci.2023.109261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
A long-term high-sodium diet has been reported to increase the incidence of cardiovascular diseases and other diseases, including osteoporosis, gastric cancer, stomach cancer, and kidney stones. Meat products contain high NaCl content and contribute to approximately 20% of the total sodium intake, so reducing its sodium content has always been the critical focus of industries and researchers. Salty and saltiness-enhancing peptides (SSEP) are a potential salt substitute that exhibits a salt taste or saltiness-enhancing activity. The partial replacement of NaCl by SSEP in low-sodium meat products has been a technological challenge. This review discussed the salt taste transduction mechanism of SSEP. The current studies about preparing SSEP based on different protein sources were summarized. Further, the effects of SSEP combined with other chloride salts, such as KCl and CaCl2, on the sensory properties of meat products were summarized. Finally, the challenges associated with applying the peptide to low-sodium meat products were discussed, focusing on the efficient preparation method and the effect of meat product processing methods and matrices on the efficacy of SSEP.
Collapse
Affiliation(s)
- Ruixia Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao-Chen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junyi Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Qingyuan Food Inspection Center, Qingyuan 511538, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, Quakenbrueck 49610, Germany.
| |
Collapse
|
41
|
Xia X, Song S, Zhou T, Zhang H, Cui H, Zhang F, Hayat K, Zhang X, Ho CT. Preparation of Saltiness-Enhancing Enzymatic Hydrolyzed Pea Protein and Identification of the Functional Small Peptides of Salt Reduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8140-8149. [PMID: 37202341 DOI: 10.1021/acs.jafc.3c02046] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
According to the correlation of saltiness determined by electronic tongue and perceived NaCl concentration, favorable enzymatic hydrolysis parameters were achieved to prepare the saltiness enhancing mixture peptides from pea protein. Six peptide fractions (F1, F2, F3, F4, F5, and F6) were isolated using Sephadex G-10 gel filtration. Among them, fraction F4 (0.1%) exhibited the highest saltiness (5.90 ± 0.03). The amino acid sequences of five main peptides identified by time-of-flight mass spectrometry were Tyr-Trp (367.40 Da), Gly-Glu-His-Glu (470.43 Da), Glu-Arg-Phe-Gly-Pro (604.65 Da), Gly-Ala-Gly-Lys (331.37 Da), and Pro-Gly-Ala-Gly-Asn (414.41 Da). Tyr-Trp (0.01%) in 0.4% NaCl solution had a 20% saltiness-enhancement compared with 0.4% NaCl solution. More salivary aldosterone was secreted after tasting hydrolysate or Tyr-Trp solutions via enzyme-linked immunosorbent assay, reflecting the improvement of human sensitivity to saltiness. Thereby, the saltiness-enhancing effect was confirmed for the small peptides from hydrolyzed pea protein and the main contributor was further identified.
Collapse
Affiliation(s)
- Xue Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 200235, P. R. China
| | - Tong Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Han Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Heping Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Foxin Zhang
- Anhui Qiang Wang Flavouring Food Co., Ltd., No. 1 Shengli Road, Jieshou, Fuyang, 236500 Anhui, P. R. China
| | - Khizar Hayat
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, United States
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
42
|
Pancreatic lipase inhibitory effects of peptides derived from sesame proteins: In silico and in vitro analyses. Int J Biol Macromol 2022; 222:1531-1537. [DOI: 10.1016/j.ijbiomac.2022.09.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
43
|
Shan Y, Pu D, Zhang J, Zhang L, Huang Y, Li P, Xiong J, Li K, Zhang Y. Decoding of the Saltiness Enhancement Taste Peptides from the Yeast Extract and Molecular Docking to the Taste Receptor T1R1/T1R3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14898-14906. [PMID: 36325587 DOI: 10.1021/acs.jafc.2c06237] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of saltiness or saltiness enhancement peptides is important to decrease the dietary risk factor of high sodium. Taste peptides in the yeast extract were separated by ultrafiltration and subsequently identified by UPLC-Q-TOF-MS/MS. The 377 identified peptides were placed into the umami receptor T1R1/T1R3. The results showed that eight taste peptides with higher binding energies were screened by molecular virtual docking, and the results revealed that Asp218, Ser276, and Asn150 of T1R1 play key roles in umami docking of peptides. The taste characteristic description and saltiness enhancement effect results suggested that PKLLLLPKP (sourness and umami, 0.18 mM), GGISTGNLN (sourness, 0.59 mM), LVKGGLIP (umami, 0.28 mM), and SSAVK (umami, 0.35 mM) had higher saltiness enhancement effects. The sigmoid curve analysis further confirmed that the taste detection threshold of the GGISTGNLN in the peptide and salt model (157.47 mg/L) was lower than 320.99 mg/L and exhibited a synergistic effect on saltiness perception, whereas SSAVK, PKLLLLPKP, and LVKGGLIP exhibited additive effects on the saltiness perception. This work also corroborated previous research, which indicated that the sourness and umami taste attributes could enhance the saltiness perception.
Collapse
Affiliation(s)
- Yimeng Shan
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Dandan Pu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Jingcheng Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Lili Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Yan Huang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| | - Pei Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang443003, Hubei, China
| | - Jian Xiong
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang443003, Hubei, China
| | - Ku Li
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co. Ltd., Yichang443003, Hubei, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing100048, China
| |
Collapse
|
44
|
Xie X, Dang Y, Pan Supervise D, Sun Supervise Y, Zhou Supervise C, He Supervise J, Gao X. The Enhancement and Mechanism of the Perception of Saltiness by Umami Peptide from Ruditapes Philippinarum and Ham. Food Chem 2022; 405:134886. [DOI: 10.1016/j.foodchem.2022.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|