1
|
Xue C, Zhang J, Zhang C, Hu Z, Liu H, Mo L, Li M, Lou A, Shen Q, Luo J, Wang S, Quan W. Augmenting antioxidative capacity of myosin and cytoprotective potential of myosin digestion products through the integration of crocin and crocetin: A comprehensive analysis via quantum chemical computing and molecular dynamics. Food Chem 2025; 465:142053. [PMID: 39561599 DOI: 10.1016/j.foodchem.2024.142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
This study explores the binding properties of two important constituents from Crocus sativus L (crocin and crocetin) with myosin, examining their influence on antioxidant capacity in myosin and a grilled meat model. And their impact on cytoprotective potential of myosin digestion products was also assessed in Caco-2 cells. Crocin and crocetin exhibited discernible binding affinity to myosin via static quenching, which induced conformational alterations that bolstered the antioxidant capacity of myosin, preventing peroxidation, which also corroborated in a grilled meat model. Crocin resulted in greater enhancement of antioxidant capacity and binding affinity, as confirmed by quantum chemical calculations. Molecular dynamics simulations revealed the stable binding of crocin to GLU:272, GLU:606, GLN:628, and PHE:417 residues of myosin. In addition, crocin substantially enhanced the protective efficacy of myosin digestion products against H2O2-induced damage in Caco-2 cells by upregulating superoxide dismutase and GSH-Px and simultaneously downregulating reactive oxygen species and malondialdehyde levels.
Collapse
Affiliation(s)
- Chaoyi Xue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chenxia Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhonghao Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huixue Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Shuai Wang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Chen N, Xu X, Yang X, Hu X, Chen F, Zhu Y. Polyphenols as reactive carbonyl substances regulators: A comprehensive review of thermal processing hazards mitigation. Food Res Int 2025; 200:115515. [PMID: 39779146 DOI: 10.1016/j.foodres.2024.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated. The review particularly emphasizes the regulatory effects of polyphenols on the carbonyl pool, highlighting their potential to reduce the levels of RCS and their associated hazards. Furthermore, the dual role of polyphenols in both mitigating and enhancing to the formation of RCS and their associated hazards was discussed. This review offers valuable insights into strategies for inhibiting RCS and their associated hazards.
Collapse
Affiliation(s)
- Nuo Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Zhang C, Zhang J, Huang T, Jiang P, Qie X, Mo L, Li M, Lou A, Shen Q, Luo J, Wang S, XueC Y, Quan W. Inhibitory effects of cold plasma-activated water on the generation of advanced glycation end products and methylimidazoles in cookies and mechanistic evaluation using electron paramagnetic resonance. Food Chem 2024; 461:140763. [PMID: 39146678 DOI: 10.1016/j.foodchem.2024.140763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The inhibitory effects of cold plasma-activated water (PAW) on the formation of AGEs and methylimidazoles in cookies was examined. The results showed that different PAW (parameters: 50 W-50 s, 50 W-100 s, 50 W-150 s, 100 W-50 s, 100 W-100 s, and 100 W-150 s) reduced the contents of AGEs and methylimidazoles, in which the maximum inhibition rates were 47.38% and 40.17% for free and bound AGEs and 44.16% and 40.31% for free and bound methylimidazoles, respectively. Moreover, the mechanisms associated with the elimination of carbonyl intermediates and free radicals was determined by electron paramagnetic resonance (EPR) and high performance liquid chromatography-ultraviolet/visible absorption detector (HPLC-UV/Vis). The results showed the quenching of total free radicals, alkyl free radicals, and HO· by PAW, leading to the suppression of glyoxal and methylglyoxal intermediates. These findings support PAW as a promising agent to enhance the safety of cookies.
Collapse
Affiliation(s)
- Chenxia Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tiantian Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pin Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xuejiao Qie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Lan Mo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shuai Wang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yi XueC
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Zhang Y, Chen Y, Liu H, Sun B. Advances of nanoparticle derived from food in the control of α-dicarbonyl compounds-A review. Food Chem 2024; 444:138660. [PMID: 38330613 DOI: 10.1016/j.foodchem.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
5
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Pan H, Chen J, Zeng M. Research progress on generation, detection and inhibition of multiple hazards - acrylamide, 5-hydroxymethylfurfural, advanced glycation end products, methylimidazole - in baked goods. Food Chem 2024; 431:137152. [PMID: 37603996 DOI: 10.1016/j.foodchem.2023.137152] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
While baking produces attractive flavors for foods, it also generates various endogenous by-products, including acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), advanced glycation end products (AGEs) and methylimidazole (MI). This review briefly presents the recent studies on the above hazards, and research progress on the formation and control of the above substances in detail. There have been more detailed studies on a single category of hazards. However, few studies and reports have considered the integrated prevention and control of multiple hazards, which is related to the difficulty of analyzing the reaction mechanisms of multiple hazards at multiple scales and under multiple phases in complex food matrices. In this regard, the sample pretreatment methods are a crucial step in achieving simultaneous detection. The coordinated implementation of various methods, including reducing precursor levels, modifying baking conditions and equipment, and incorporating exogenous additives, is necessary to achieve a synchronized reduction in multiple hazardous substances.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Shen X, Liu X, Wang X, Xue C, Chai Z, Zeng M, Chen J. Effect of Angelica dahurica, Angelica dahurica polysaccharides, and imperatorin on free and bound heterocyclic amine generation in roasted beef patties and release profiles of bound heterocyclic amines during in vitro digestion. Food Res Int 2024; 175:113639. [PMID: 38129016 DOI: 10.1016/j.foodres.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
This study explored the suppressive activity of Angelica dahurica (AD), AD polysaccharides, and imperatorin on free and bound heterocyclic amine (HA) formation in roast beef patties and release profiles of bound HAs during in vitro digestion. The suppressive effects and potential mechanisms associated with free radical quenching were explored using UPLC-MS/MS, multivariate statistical analysis, and electron paramagnetic resonance (EPR). AD (0.5%, 1.0%, and 1.5%) and imperatorin (0.005%, 0.010%, and 0.015%) showed a dose-dependent inhibition for both free and bound HAs, with AD polysaccharides showing a slight inhibitory capacity. The maximum inhibition of free and bound HAs was 36.31% (1.5% AD) and 35.68% (0.015% imperatorin). The EPR results demonstrated that alkyl radicals and 1O2 were the pivotal free radicals for HAs. Furthermore, AD and imperatorin dose-dependently decreased the level of these radicals. Intriguingly, after in vitro digestion, only AD polysaccharides significantly inhibited the release of bound HAs, with imperatorin even facilitating the release process. In this study, the capacity of the AD polysaccharide to suppress the release of bound HAs and the ability of AD and imperatorin to inhibit free and bound HAs in beef patties were identified for the first time.
Collapse
Affiliation(s)
- Xing Shen
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiuxiu Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuemei Wang
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830052, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Zhongping Chai
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Wang Q, Chang H, Deng P, He Z, Chen Q, Wang Z, Qin F, Oz F, Oz E, Chen J, Zeng M. Investigation on the simultaneous inhibition of advanced glycation end products, 4-methylimidazole and hydroxymethylfurfural in thermal reaction meat flavorings by liquiritigenin, liquiritin and glycyrrhizic acid and possible pathways. Food Res Int 2023; 173:113414. [PMID: 37803746 DOI: 10.1016/j.foodres.2023.113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
The inhibitory effects of liquiritigenin, liquiritin and glycyrrhizic acid against the hazards during the preparation of thermal reaction beef flavoring were investigated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Liquiritigenin(1.5 mM) inhibited Nε-carboxymethyl-L-lysine and Nε-carboxyethyl-L-lysine by up to 38.69 % and 61.27 %, respectively; 1.5 mM liquiritin inhibited 4-methylimidazole by up to 48.28 %; and 1.5 mM liquiritigenin and 1.0 mM liquiritin inhibited hydroxymethylfurfural by up to 61.20 % and 59.31 %, respectively. The results of the model system showed that the inhibitory effect of the 3 inhibitors could be extended to other thermal reaction flavoring systems. The 3 inhibitors can effectively block key intermediates in beef flavoring, and liquiritigenin can inhibit up to 22.97 % of glyoxal and 22.89 % of methylglyoxal. In addition, liquiritigenin and liquiritin can directly eliminate up to 25.87 % and 21.01 % of methylglyoxal by addition and other means. Free radicals in the simultaneous formation model system were measured using electron spin resonance (ESR), and the results showed that liquiritigenin, liquiritin and glycyrrhizic acid could scavenge free radicals in the system in a dose-dependent manner, with scavenging rates of up to 44.88-57.09 %. Therefore, the inhibitory effects of the 3 inhibitors can be attributed to the intermediate blocking and free radical scavenging pathways.
Collapse
Affiliation(s)
- Qifan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Haolong Chang
- School of Food and Pharmacy, Shanghai Zhongqiao Vocational And Technical University, Shanghai 201514, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkiye
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkiye
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Chen J, Zeng M, Pan H. Isotope dilution-HPLC-MS/MS to investigate the production patterns and possible pathways of free and protein-bound AGEs and 4-MI in cookies. Food Res Int 2023; 173:113477. [PMID: 37803800 DOI: 10.1016/j.foodres.2023.113477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
A qualitative and quantitative method for detecting free and protein-bound advanced glycation end products (AGEs) and 4-methylimidazole (4-MI) was established using isotope dilution-HPLC-MS/MS, and successfully applied in cookies and model systems. The effects of different temperatures (160-220 °C) on the formation of free and protein-bound AGEs and 4-MI in cookies were discussed, and the possible model systems (Maillard reaction pathway 1 using wheat gluten protein + glucose + sucrose; direct addition pathway 1 using wheat gluten protein + CML/CEL/4-MI) of protein-bound AGEs and 4-MI were verified. The results showed that the contents of protein-bound CML, CEL, and 4-MI were higher than free content with a tendency of increasing first and subsequently decreasing with temperature, reaching a maximum at 200 °C in cookies. In the model systems, the levels of protein-bound CML, CEL, and 4-MI are higher than those of free CML, CEL, and 4-MI. The protein-bound CML, CEL, and 4-MI accounted for 90.73, 87.64, and 97.56% of the total amount in the model system 1, while accounting for 68.19, 59.00, and 50.96% in the model system 2, respectively. In comparison, protein-bound CML, CEL, and 4-MI could be easily generated directly by Maillard reaction.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Long M, Li D, Li H, Wang L, Zhao Q, Wen Q, Song F. Synthesis of a ternary Bi 2O 3/CQDs/rGO photocatalyst to active peroxymonosulfate for the removal of tetracycline hydrochloride. Phys Chem Chem Phys 2022; 24:29547-29556. [PMID: 36448481 DOI: 10.1039/d2cp04434j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, the ternary Bi2O3/CQDs/rGO photocatalyst was synthesized by a solvothermal method. The as-fabricated Bi2O3/CQDs/rGO composites showed stronger visible-light response and higher photocatalytic activity. In order to further enhance the degradation efficiency of tetracycline hydrochloride, Bi2O3/CQDs/rGO was used to activate peroxymonosulfate under visible-light irradiation. The degradation efficiency increased sevenfold, indicating that the synergistic effect of photocatalysis and peroxymonosulfate activated by photogenerated electrons could clearly increase the degradation efficiency of tetracycline hydrochloride. In addition, the photocatalytic mechanism was further proposed and verified by radical quenching experiments and electron paramagnetic resonance analysis. Thus, this study provides a new idea for the photocatalytic application of Bi2O3/CQDs/rGO and a contribution to the degradation of antibiotics to avoid polluting the water environment.
Collapse
Affiliation(s)
- Mingyang Long
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Di Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Hongmiao Li
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Li Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qianqian Zhao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qi Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Fang Song
- Instrument Analysis Center, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|