1
|
Li L, Liu J, Wang D, Kwok LY, Li B, Guo S, Chen Y. Enhancing storage stability, antihypertensive properties, flavor and functionality of fermented milk through co-fermentation with Lactobacillus helveticus H11 adjunct culture. Food Chem 2025; 470:142574. [PMID: 39764886 DOI: 10.1016/j.foodchem.2024.142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
This study aimed to investigate the effects of fermented milk co-fermented with Lactobacillus (L.) helveticus and commercial starter during storage. Thus, systematic analysis revealed the changes with the determination of physicochemical characteristics, functional properties, and metabolome of fermented milk produced by commercial starter Mild 1.0, L. helveticus H11 (H11), and their combination. Co-fermentation with H11 significantly reduced fermentation time and enhanced pH, titratable acidity, viscosity, water-holding capacity, viable counts of H11, sensory attributes, angiotensin-converting enzyme inhibitory activity, valine-proline-proline and isoleucine-proline-proline levels, and storage stability. Additionally, co-fermentation with H11 enriched seven specific flavor compounds (5-tricosyl-1,3-benzenediol, didodecyl thiobispropanoate, glabrone, tuberoside, isomangiferin, indole-5,6-quinone, and luteone 7-glucoside) and five functional metabolites (indolelactic acid, glycine-histidine, stachyose, riboflavin, and asparagusic acid). These findings established H11 as a valuable adjunct culture for the application of commercial starter to produce functional fermented dairy products.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junxia Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dandan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bohai Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
2
|
Peng J, Jia W, Zhu J. Advanced functional materials as reliable tools for capturing food-derived peptides to optimize the peptidomics pre-treatment enrichment workflow. Compr Rev Food Sci Food Saf 2025; 24:e13395. [PMID: 39042377 DOI: 10.1111/1541-4337.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
Peptidomics strategies with high throughput, sensitivity, and reproducibility are key tools for comprehensively analyzing peptide composition and potential functional activities in foods. Nevertheless, complex signal interference, limited ionization efficiency, and low abundance have impeded food-derived peptides' progress in food detection and analysis. As a result, novel functional materials have been born at the right moment that could eliminate interference and perform efficient enrichment. Of note, few studies have focused on developing peptide enrichment materials for food sample analysis. This work summarizes the development of endogenous peptide, phosphopeptide, and glycopeptide enrichment utilizing materials that have been employed extensively recently: organic framework materials, carbon-based nanomaterials, bio-based materials, magnetic materials, and molecularly imprinted polymers. It focuses on the limitations, potential solutions, and future prospects for application in food peptidomics of various advanced functional materials. The size-exclusion effect of adjustable aperture and the modification of magnetic material enhanced the sensitivity and selectivity of endogenous peptide enrichment and aided in streamlining the enrichment process and cutting down on enrichment time. Not only that, the immobilization of metal ions such as Ti4+ and Nb5+ enhanced the capture of phosphopeptides, and the introduction of hydrophilic groups such as arginine, L-cysteine, and glutathione into bio-based materials effectively optimized the hydrophilic enrichment of glycopeptides. Although a portion of the carefully constructed functional materials currently only exhibit promising applications in the field of peptide enrichment for analytical chemistry, there is reason to believe that they will further advance the field of food peptidomics through improved pre-treatment steps.
Collapse
Affiliation(s)
- Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
4
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Food Res Int 2023; 174:113640. [PMID: 37986483 DOI: 10.1016/j.foodres.2023.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
5
|
dos Santos FR, Leite Junior BRDC, Tribst AAL. Impact of ultrasound and protease addition on the fermentation profile and final characteristics of fermented goat and sheep cheese whey. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2444-2453. [PMID: 37424584 PMCID: PMC10326219 DOI: 10.1007/s13197-023-05767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023]
Abstract
Goat (GCW) and sheep cheese whey (SCW) are cheese by-products that can be fermented to develop a new product. However, the limited nutrient availability for lactic acid bacteria (LAB) growth and the low stability of whey are challenges. This work evaluated the addition of protease and/or ultrasound-assisted fermentation as tools to improve GCW and SCW fermentation and the final quality of the products. Results showed that the US/protease increased by 23-32% pH decline rate (for SCW only) and modified the separation of cream (≤ 60% for GCW) and whey (≤ 80% for both whey sources, with higher values for GCW) during storage, explained by changes in the microstructure protein, fat globules, and their interactions. Furthermore, the whey source/composition (mainly lower fat content in SCW) affected the destabilization rate and the LAB viability loss (1.5-3.0 log CFU/mL), caused by nutrient depletion and low tolerance at pH ~ 4.0. Finally, exploratory results showed that fermentation under sonication (with/without protease) resulted in 24-218% higher antioxidant activity in vitro than unfermented samples. Therefore, fermentation associated with proteases/sonication can be an interesting strategy to modify GWC and SCW, and the final process chosen depends on the desired changes in whey. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05767-3.
Collapse
Affiliation(s)
- Fabio Ribeiro dos Santos
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), University Campus, Viçosa, MG 36570-900 Brazil
- Center for Food Studies and Research (NEPA), University of Campinas (UNICAMP), Albert Einstein, 291, Campinas, SP 13083-852 Brazil
| | | | - Alline Artigiani Lima Tribst
- Center for Food Studies and Research (NEPA), University of Campinas (UNICAMP), Albert Einstein, 291, Campinas, SP 13083-852 Brazil
| |
Collapse
|
6
|
Dalabasmaz S, de la Torre EP, Gensberger-Reigl S, Pischetsrieder M, Rodríguez-Ortega MJ. Identification of Potential Bioactive Peptides in Sheep Milk Kefir through Peptidomic Analysis at Different Fermentation Times. Foods 2023; 12:2974. [PMID: 37569243 PMCID: PMC10418486 DOI: 10.3390/foods12152974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Sheep farming is an important socioeconomic activity in most Mediterranean countries, particularly Spain, where it contributes added value to rural areas. Sheep milk is used in Spain mainly for making cheese, but it can be used also for making other dairy products, such as the lactic-alcoholic fermentation product known as kefir. Dairy products have health benefits because, among other reasons, they contain molecules with biological activity. In this work, we performed a proteomics strategy to identify the peptidome, i.e., the set of peptides contained in sheep milk kefir fermented for four different periods of time, aiming to understand changes in the pattern of digestion of milk proteins, as well as to identify potential bioactive peptides. In total, we identified 1942 peptides coming from 11 different proteins, and found that the unique peptides differed qualitatively among samples and their numbers increased along the fermentation time. These changes were supported by the increase in ethanol, lactic acid, and D-galactose concentrations, as well as proteolytic activity, as the fermentation progressed. By searching in databases, we found that 78 of the identified peptides, all belonging to caseins, had potential biological activity. Of these, 62 were not previously found in any milk kefir from other animal species. This is the first peptidomic study of sheep milk kefir comprising time-course comparison.
Collapse
Affiliation(s)
- Sevim Dalabasmaz
- Food Chemistry, Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; (S.D.); (S.G.-R.); (M.P.)
| | - Esther Prados de la Torre
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain;
| | - Sabrina Gensberger-Reigl
- Food Chemistry, Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; (S.D.); (S.G.-R.); (M.P.)
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; (S.D.); (S.G.-R.); (M.P.)
- FAU NeW—Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Manuel J. Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain;
| |
Collapse
|
7
|
Du A, Jia W. New insights into the bioaccessibility and metabolic fates of short-chain bioactive peptides in goat milk using the INFOGEST static digestion model and an improved data acquisition strategy. Food Res Int 2023; 169:112948. [PMID: 37254372 DOI: 10.1016/j.foodres.2023.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The metabolic fates of potentially bioactive short-chain peptides (SCPs; amino acid numbers between 2 and 4) in gastrointestinal digestion have received little attention due to their low concentration and broad suppression during high resolution mass spectrometry (HRMS) analysis. A tailored workflow integrating mesoporous magnetic solid phase extraction and a novel ion transmission strategy (data-dependent acquisition combined with both an inclusion list and an exclusion list followed by a data-independent acquisition) was used to profile the composition of SCPs during in vitro simulated digestion (LOQ 0.02 to 0.1 μg L-1). A total of 47 dipeptides, 59 tripeptides, and 21 tetrapeptides were identified and quantified from 0.01 to 27.84 mg L-1 (RSD ≤ 9.1%) based on parallel reaction monitoring and an internal standard method. The structural properties of stable SCPs resistant to intestinal digestion were determined by analysis of variance (p < 0.05), with a Pro residue at the C-terminal or penultimate position, a slightly greater negative charge at pH 7.0, and fewer C-terminal aliphatic and polar amino acids. SCPs' metabolic fates varied during digestion, but the overall trend of content change for either total or individual SCP increased as the digestion proceeded, and they were further assessed by a database-driven bioactivity search, which matched a wide variety of bioactivities with the predominance of dipeptidyl peptidase (DPP) IV and angiotensin-converting enzyme (ACE) inhibitors. This study facilitated the understanding of bioaccessibility of the food-derived SCPs and provided essential guidelines for the properties of conserved structure in vivo.
Collapse
Affiliation(s)
- An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Mudgil P, Gan CY, Affan Baig M, Hamdi M, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. In-depth peptidomic profile and molecular simulation studies on ACE-inhibitory peptides derived from probiotic fermented milk of different farm animals. Food Res Int 2023; 168:112706. [PMID: 37120189 DOI: 10.1016/j.foodres.2023.112706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Investigations into ACE inhibitory properties of probiotic fermented bovine, camel, goat, and sheep milk were performed and studied for two weeks of refrigerated storage. Results from the degree of proteolysis suggested higher susceptibility of goat milk proteins, followed by sheep and camel milk proteins, to the probiotic-mediated proteolysis. ACE-inhibitory properties displayed continuous decline in ACE-IC50 values for two weeks of refrigerated storage. Overall, goat milk fermented with Pediococcus pentosaceus caused maximum ACE inhibition (IC50: 262.7 µg/mL protein equivalent), followed by camel milk (IC50: 290.9 µg/mL protein equivalent). Studies related to peptide identification and in silico analysis using HPEPDOCK score revealed presence of 11, 13, 9 and 9 peptides in fermented bovine, goat, sheep, and camel milk, respectively, with potent antihypertensive potential. The results obtained suggest that the goat and camel milk proteins demonstrated higher potential for generating antihypertensive peptides via fermentation when compared to bovine and sheep milk.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Mohd Affan Baig
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
9
|
Zhang R, Jia W. Brown goat yogurt: Metabolomics, peptidomics, and sensory changes during production. J Dairy Sci 2023; 106:1712-1733. [PMID: 36586795 DOI: 10.3168/jds.2022-22654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/02/2022] [Indexed: 12/30/2022]
Abstract
Brown goat milk products have gained popularity for their unique taste and flavor. The emergence of chain-reversal phenomenon makes the design and development of goat milk products gradually tend to a consumer-oriented model. However, the precise mechanism of how browning and fermentation process causes characteristics is not clear. In an effort to understand how the treatments potentially lead to certain metabolite profile changes in goat milk, comprehensive, quantitative metabolomics and peptidomics analysis of goat milk samples after browning and fermentation were undertaken. An intelligent hybrid z-score standardization-principal components algorithm-multimodal denoizing autoencoder was used for feature fusion and hidden layer fusion in high-dimensional variable space. The fermentation process significantly improved the flavor of brown goat yogurt through the tricarboxylic acid-urea-glycolysis composite pathway. Bitter peptides HPFLEWAR, PPGLPDKY, and PPPPPKK have strong interactions with both putative dipeptidyl peptidase IV and angiotensin-converting enzyme, proving that brown goat yogurt can be considered as effective provider of potential putative dipeptidyl peptidase IV and angiotensin-converting enzyme inhibitors. The level of health-promoting bioactive components and sensory contributed to consumer selection. The proposed multimodal data integrative analysis platform was applicable to explain the effect of the dynamic changes of metabolites and peptides on consumer preferences.
Collapse
Affiliation(s)
- R Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - W Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
11
|
Goat milk-derived short chain peptides: Peptide LPYV as species-specific characteristic and their versatility bioactivities by MOF@Fe 3O 4@GO mesoporous magnetic-based peptidomics. Food Res Int 2023; 164:112442. [PMID: 36738007 DOI: 10.1016/j.foodres.2022.112442] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Goat milk as an ideal substitute for human milk has not been sufficiently explored. An in-situ synthesized MOF@Fe3O4@GO was demonstrated as a magnetic mesoporous adsorbent for efficiently enriching short chain peptides (SCPs) in milk compared with the routine solid phase extraction approach with graphite carbon black or C18 as the packing material in terms of the number of enriched SCPs and data stability. A total of 61 and 126 SCPs were identified and quantified in bovine milk (0.09-89.34 μg L-1) and goat milk (10.5-1267.06 μg L-1), respectively, and peptide LPYV can be used as a potential marker for adulteration of goat milk. Relative high expression of chymotrypsin and pepsin by EnzymePredictor analysis could partially elaborate the reason of the abundance of SCPs in goat milk. Compared with bovine milk, further bioinformatics analysis indicated that goat milk could own higher nutritional value because of relative higher concentrations (>1 mg/L) of SCPs (LLV, FL, LVYP) with confirmed bioactivities including angiotensin-converting enzyme (ACE) inhibitor, antioxidant, dipeptidylpeptidase (DPP) III and DPP IV inhibitor, etc. Overall, this study opened a novel avenue for understanding versatility benefit of dairy products from a perspective of SCPs by using a developed MOF@Fe3O4@GO mesoporous magnetic-based peptidomics.
Collapse
|
12
|
Mohan B, Singh G, Pombeiro AJL, Solovev AA, Sharma PK, Chen Q. Metal-organic frameworks (MOFs) for milk safety and contaminants monitoring. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Ma J, Miao Y, Li J, Ma Y, Wu M, Wang W, Xu C, Jiang Z, Hou J. Incorporation of Blue Honeysuckle Juice into Fermented Goat Milk: Physicochemical, Sensory and Antioxidant Characteristics and In Vitro Gastrointestinal Digestion. Foods 2022; 11:foods11193065. [PMID: 36230140 PMCID: PMC9562031 DOI: 10.3390/foods11193065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of fruit juice may improve the physicochemical and functional characteristics of dairy products. The study evaluated the effect of 1−6% (v/v) blue honeysuckle juice (BHJ) on the physicochemical, sensory and antioxidant characteristics of fermented goat milk (FGM) during 21 days of refrigerated storage and in vitro gastrointestinal digestion. The incorporation of BHJ significantly increased (p < 0.05) the water-holding capacity, viscosity, redness (a*) value, total phenolic content (TPC) and ferric ion-reducing antioxidant power during storage. Additionally, BHJ affected the microstructure and sensory score of the samples. FGM treated with 4% (v/v) BHJ exhibited the highest overall acceptability. The supplementation of BHJ diminished the goaty flavor and promoted in vitro protein digestion. Furthermore, the TPC was enhanced in addition to the antioxidant activity of FGM containing BHJ throughout the in vitro digestion. Therefore, FGM supplemented with BHJ serves as a novel and attractive goat dairy product.
Collapse
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Yusi Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhe Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengguo Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
- Correspondence: ; Tel.: +86-451-55190710
| |
Collapse
|
15
|
Fan Z, Jia W, Du A, Xia Z, Kang J, Xue L, Sun Y, Shi L. Discovery of Se-containing flavone in Se-enriched green tea and the potential application value in the immune regulation. Food Chem 2022; 394:133468. [PMID: 35716501 DOI: 10.1016/j.foodchem.2022.133468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Selenium (Se)-enriched green tea has been recognized as a possible source of supplemental Se, while the structural and physiological activities of Se-containing flavone are still unclear. In this study, a Se-containing flavone was isolated from Se-enriched green tea by high-speed counter-current chromatography (HSCCC) and characterized through UHPLC-Q-Orbitrap, FT-IR and NMR. Results proved that HSeO3- can be combined with the alcohol hydroxyl of 2-phenylchromone in flavone and the content of Se-containing flavone in tea was 15690.4 μg L-1. Additionally, Se-containing flavone can effectively inhibit the production of nitric oxide (NO), and downregulate expression of TNF-α and IL-6. Compared with regular flavone extracted from green tea (43.24 pg mL-1), release of IL-10 was higher in Se-containing flavone group (53.37 pg mL-1), indicating that Se-containing flavone played an important role in the process of severe inflammatory injury. The results indicated that Se-containing flavone was an attractive natural ingredient for developing novel functional foods.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Jie Kang
- Shaanxi Testing Inst Product Qual Supervis, Xian 710048, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yujiao Sun
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Abstract
Bioactive peptides with high potency against numerous human disorders have been regarded as a promising therapy in disease control. These peptides could be released from various dietary protein sources through hydrolysis processing using physical conditions, chemical agents, microbial fermentation, or enzymatic digestions. Considering the diversity of the original proteins and the complexity of the multiple structural peptides that existed in the hydrolysis mixture, the screening of bioactive peptides will be a challenge task. Well-organized and well-designed methods are necessarily required to enhance the efficiency of studying the potential peptides. This article, hence, provides an overview of bioactive peptides with an emphasis on the current strategy used for screening and characterization methods. Moreover, the understanding of the biological activities of peptides, mechanism inhibitions, and the interaction of the complex of peptide–enzyme is commonly evaluated using specific in vitro assays and molecular docking analysis.
Collapse
|