1
|
Yang C, Yan R, He Y, Yang B, Zheng K, Guan Z, Qiao Y, Wang L, Wang J. Ca 2+ induced irregular spherical oat protein-shellac nanoparticles as Pickering emulsions stabilizer to improve emulsion storage stability. Food Chem 2025; 480:143975. [PMID: 40147276 DOI: 10.1016/j.foodchem.2025.143975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Oat protein isolate (OPI) - shellac (S) nanoparticles were prepared to stabilize Pickering emulsion to improve its storage stability. OPI bound approximately twenty-one S molecules mainly through hydrophobic interaction. Then, OPI/S nanoparticles (200-800 nm) were fabricated through Ca2+ cross-linking by changing the mass ratio of OPI and S. Specifically, in OPI/S2:1 (289 nm), S saturated the binding sites of OPI, and Ca2+ shielded the negative charge to tightly cross-link OPI with S. Additionally, OPI/S2:1 stabilized Pickering emulsions exhibited the smallest particle size (18.13 μm and 16.63 μm) and outstanding storage stability without phase separation or significant changes in particle size after being stored at 25 °C for 14 days when the particle concentration was 2.5 % and 3 %. This research established a stable Pickering emulsion system stabilized by OPI/S nanoparticles, which can be used as delivery carriers for nutrients and as substitutes for fats in the future.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Youzifu (Tianjin) Food Technology Co., LTD, Tianjin 300450, China; Weihai Biohigh Biotechnology Co., LTD, Shandong 264200, China
| | - Ruizhe Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yajun He
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bingqiu Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zikuan Guan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yening Qiao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lina Wang
- Weihai Biohigh Biotechnology Co., LTD, Shandong 264200, China
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Shi X, Zhang X, Wang L, Ge Y, Chen G. Comparative study of Idesia polycarpa Maxim cake meal polysaccharides: Conventional versus innovative extraction methods and their impact on structural features, emulsifying, antiglycation, and hypoglycemic properties. Food Chem 2025; 471:142745. [PMID: 39761606 DOI: 10.1016/j.foodchem.2024.142745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 02/12/2025]
Abstract
Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.05 %), increased uronic acid content (39.12 %), and a greater proportion of the rhamnogalacturonan I (RG-I) domain (42.88 %), along with improved homogeneity (Mw/Mn: 2.79) and enhanced functional properties, including improved thermal stability, emulsion ability, and emulsion stability. Compared to IPMPs extracted via conventional methods, emulsions stabilized with IPMP-UT exhibited superior performance across different pH levels and polysaccharide concentrations. At pH 6.0, IPMP-UT emulsion formed thicker interfacial layers and exhibited the strongest storage (G') and loss (G″) module. Bioactivity assays further revealed that IPMP-UT had the most potent in vitro inhibition of α-glucosidase and was the most effective at reducing the formation of fructosamine, α-dicarbonyl compounds, and advanced glycation end products (AGEs). All IPMPs inhibited α-glucosidase through a combined mechanism, primarily reducing fluorescence via static quenching, with IPMP-UT demonstrating the greatest binding affinity. Fluorescence and FT-IR spectroscopy confirmed that IPMPs induced structural rearrangements in the enzyme. In conclusion, the UTPP method emerged as the most promising and environmentally sustainable technique for producing pectic polysaccharides with optimal functional properties from IPM cake meal.
Collapse
Affiliation(s)
- Xin Shi
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Xuemei Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Lisha Wang
- Experimental Center, Guizhou Police College, Guiyang, Guizhou 550005, PR China
| | - Yonghui Ge
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, Guiyang, Guizhou 550005, PR China; Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa, National Forestry and Grassland Administration of the People's Republic of China, Guiyang, Guizhou 550005, PR China.
| |
Collapse
|
3
|
Zhang M, Chen L, Liu X, Yu Z, Zhou Y, Wang Y. Influence pathways of covalent and non-covalent interactions on the stability of deamidated gliadin-tannic acid-based Pickering emulsions. Int J Biol Macromol 2025; 299:140078. [PMID: 39832589 DOI: 10.1016/j.ijbiomac.2025.140078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This study aimed to elucidate the pathways through which covalent and non-covalent interactions between deamidated gliadin (DG) and tannic acid (TA) on influence the stability of Pickering emulsions. The interactions induced protein unfolding, as evidenced by increased ultraviolet absorption and a red shift in fluorescence emission. DG-TA composite nanoparticles effectively stabilized high internal phase emulsions, whereas DG nanoparticles alone did not. Covalent DG-TA nanoparticle stabilized Pickering emulsions (C-DGTAE) retained a consistent mean droplet size after 30 d of storage. Lipid hydroperoxide and malondialdehyde levels in C-DGTAE and N-DGTAE were reduced by 59.1 %-69.5 % and 38.9 %-44.4 %, respectively. Furthermore, the retention of β-carotene in the emulsions was significantly enhanced. All emulsions exhibited elastic behavior, characterized by higher G' than G″. Notably, N-DGTAE demonstrated the highest apparent viscosity, G' and G″, attributed to the connected nanoparticles around the droplets. Confocal laser scanning microscopy revealed that C-DGTAE droplets possessed the thickest layer, corroborated by the highest interfacial nanoparticle content of 76 % and an interfacial thickness of 441 nm. These findings suggest that covalent interactions enhance the interfacial nanoparticle layer, while non-covalent interactions promote nanoparticle networking, providing valuable insights for optimizing the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Luzhen Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xuanbo Liu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongquan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Li Y, Song Y, Gan N, Chen L, Chen S, He Y, Zeng T, Wang X, Wang W, Wu D. Gliadin/Konjac glucomannan particle-stabilized Pickering emulsion for honokiol encapsulation with enhanced digestion benefits. Int J Biol Macromol 2025; 291:139064. [PMID: 39710026 DOI: 10.1016/j.ijbiomac.2024.139064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Owing to the limited availability of biocompatible, edible and natural emulsifiers, the development of Pickering emulsions applicable to the food industry still confronts challenges. Moreover, Honokiol (HNK), due to its poor stability and susceptibility to oxidation, most of the existing delivery systems are centered on injection administration routes and relatively complex in preparation, posing significant challenges for industrialization. In this research, a Pickering emulsion system stabilized by gliadin and konjac glucomannan composite particles (GKPs) was constructed using the pH cycling method and was employed for the delivery of HNK. Under the conditions of a 1:2 mass ratio of the composite particles at pH 4 and an oil phase fraction of 50 %, the storage stability of HNK was effectively enhanced, attaining a retention rate of 84.88 % ± 0.78 % at 4 °C for 14 days. In simulated in vitro digestion, this emulsion system effectively mitigated the degradation of HNK, achieving a bioavailability of 66.94 % ± 4.05 % and increasing the release of free fatty acids. Pickering emulsions stabilized by GKPs may provide a useful means of delivery of bisphenol lignans.
Collapse
Affiliation(s)
- Yilin Li
- School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Na Gan
- School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Lijuan Chen
- School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China.
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Xinhui Wang
- School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China
| | - Di Wu
- School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
5
|
Tao H, Ding W, Fang MJ, Qian H, Cai WH, Wang HL. Dynamics and Stability Mechanism of Lactoferrin-EPA During Emulsification Process: Insights from Macroscopic and Molecular Perspectives. Foods 2025; 14:82. [PMID: 39796372 PMCID: PMC11719685 DOI: 10.3390/foods14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Although eicosapentaenoic acid (EPA) as a functional fatty acid has shown significant benefits for human health, its susceptibility to oxidation significantly limits its application. In this study, we developed a nanoemulsion of the lactoferrin (LTF)-EPA complex and conducted a thorough investigation of its macro- and molecular properties. By characterizing the emulsion with different LTF concentrations, we found that 1.0% LTF formed the most stable complex with EPA, which benefited the formation and stability of the emulsion against storage and freezing/thawing treatment. As the foundation block of the emulsion structure, the binding mechanism and the entire dynamic reaction process of the complex have been fully revealed through various molecular simulations and theoretical calculations. This study establishes a comprehensive picture of the LTF-EPA complex across multiple length scales, providing new insights for further applications and productions of its emulsion.
Collapse
Affiliation(s)
- Han Tao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Ding
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meng-Jia Fang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Qian
- Xinjiang Shihezi Garden Dairy Co., Ltd., Shihezi 832199, China
| | - Wan-Hao Cai
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Avadanei M, Brunchi CE. Wheat gliadin/xanthan gum intermolecular complexes: Interaction mechanism and structural characterization. Food Chem 2024; 460:140619. [PMID: 39067426 DOI: 10.1016/j.foodchem.2024.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this study, the interactions between wheat gliadin (GL) and xanthan gum (XG) were investigated to design new systems with potential applications as a gluten-free substitute product. Combining spectral with morphological and molecular docking methods allowed the establishment of the complexation mechanism between globular hydrophobic GL and the hydrophilic XG with an extended and partially disordered backbone. GL maintains intact its hydrophobic core even at high GL/XG ratios and organizes into small aggregate-type assemblies. The stable and uniform complexes have a low GL content, based on intermolecular hydrogen bonds and hydrophobic interactions. The GL/XG combining ratio influences the size, structure and interaction mechanism of the microparticles. The preferred sites of interaction and the binding affinities were determined by molecular docking on GL libraries and XG models. This research may provide significant knowledge for the development of low-GL wheat food products using a dietary fiber polysaccharide as a functional compound.
Collapse
Affiliation(s)
- Mihaela Avadanei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Cristina-Eliza Brunchi
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
7
|
Shen R, Yang X, Liu M, Wang L, Zhang L, Ma X, Zhu X, Tong L. Preparation of bovine serum albumin-arabinoxylan cold-set gels by glucono-δ-lactone and salt ions double induction. Int J Biol Macromol 2024; 277:133596. [PMID: 38960269 DOI: 10.1016/j.ijbiomac.2024.133596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
In order to investigate the effect of glucono-δ-lactone (GDL) and different salt ions (Na+ and Ca2+) induction on the cold-set gels of bovine serum albumin (BSA)-arabinoxylan (AX), the gel properties and structure of BSA-AX cold-set gels were evaluated by analyzing the gel strength, water-holding capacity, thermal properties, and Fourier Transform Infrared (FTIR) spectra. It was shown that the best gel strength (109.15 g) was obtained when the ratio of BSA to AX was 15:1. The addition of 1 % GDL significantly improved the water-holding capacity, gel strength and thermal stability of the cold-set gels (p < 0.05), and the microstructure was smoother. Low concentrations of Na+ (3 mM) and Ca2+ (6 mM) significantly enhanced the hydrophobic interaction and hydrogen bonding between BSA and AX after acid induction, and the Na+-induced formation of a denser microstructure with a higher water-holding capacity (75.51 %). However, the excess salt ions disrupted the stable network structure of the cold-set gels and reduced their thermal stability and crystalline structure. The results of this study contribute to the understanding of the interactions between BSA and AX induced by GDL and salt ions, and provide a basis for designing hydrogels with different properties.
Collapse
Affiliation(s)
- Ruheng Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Mengying Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Liyuan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiaopeng Zhu
- Gansu Wanhe Grass and Livestock Industry Technology Development Co., Ltd., Lanzhou, China
| | - Lin Tong
- Inner Mongolia Horqin Cattle Industry Co., Horqin, China
| |
Collapse
|
8
|
He Y, Wang C, Liu Y, Chen J, Wei Y, Chen G. Pickering emulsions stabilized by cellulose nanofibers with tunable surface properties for thermal energy storage. Int J Biol Macromol 2024; 280:136013. [PMID: 39326606 DOI: 10.1016/j.ijbiomac.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Cellulose nanofibers (CNFs) have been widely used as a renewable emulsifier to stabilize two immiscible liquids due to their intrinsic amphiphilicity and excellent emulsifying ability. However, it remains challenging to fully understand the effects of carboxylate group content and surface charge density on the emulsifying ability of CNFs and the stability of Pickering emulsion. Herein, carboxymethylated CNFs were extracted from bleached kraft pulp using etherification reaction and high-pressure homogenization, allowing for easy surface charge density and size adjustment by changing sodium chloroacetate content and homogenization cycles. The optimizing CNFs possessed a high Zeta potential (-71.2 mV) and a suitable carboxylate group content (1.81 mmol/g), which enabled CNFs to irreversibly adsorb at the hydrophobic paraffin wax (PW) droplet surface and form interfacial steric barriers, providing large electrostatic repulsion between the PW droplets against coalescence. Thus, the CNF-stabilized PW emulsions could be stored for more than 6 months. Moreover, the phase change enthalpy of the freeze-dried emulsion is as high as 193.7 J/g, which provides the emulsion to reversibly store and release heat. This work provides a comprehensive insight into the interfacial stability mechanism of CNFs as stabilizers and facilitates the potential application in thermal energy storage.
Collapse
Affiliation(s)
- Yingying He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunyu Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jinxuan Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan Wei
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Khan S, Li M, Cheng M, Shu Y, Liang T, Shah H, Zhu H, Khan S, Zhang Z. Fabrication and characterization of Karaya gum-based films reinforced with bacterial nanocellulose stabilized valerian root extract Pickering emulsion for lamb meat preservation. Int J Biol Macromol 2024; 276:133875. [PMID: 39019366 DOI: 10.1016/j.ijbiomac.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
A novel biodegradable film was fabricated by incorporating bacterial nanocellulose stabilized valerian root extract (VRE) Pickering emulsion into karaya gum with better antioxidant and antibacterial properties for lamb meat preservation. The valerian root extract Pickering emulsion (VPE) exhibited 98 ± 1.84 % encapsulating efficiency and excellent physical stability with an average particle size of 274.6 nm. The incorporation of VPE-5 into the film matrix increased its elongation at break (EAB), and improved water resistance and barrier properties against oxygen, water vapor, and UV light. Moreover, the antioxidant and anti-bacterial properties against S.aerous and E. coli were also improved based on VPE-5 concentration. The SEM images showed a uniform distribution of VPE-5 while FTIR and XRD revealed its compatibility with karaya gum, which improved its thermal stability. The active films showed a significant preservative effect by reducing the pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) value of lamb meat and maintained its texture and color during the storage period of 9 days at 4 °C. These results demonstrated the inclusion of VPE-5 into Karaya gum was a promising technique and offers a great potential application as a bioactive material in food packaging.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Haroon Shah
- Advanced innovation Center for Food Nutrition and human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Hanyu Zhu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Salman Khan
- Lab of brewing microbiology and applied enzymology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, College of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
10
|
Ke J, Wang X, Gao X, Zhou Y, Wei D, Ma Y, Li C, Liu Y, Chen Z. Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum. Foods 2024; 13:2323. [PMID: 39123514 PMCID: PMC11311637 DOI: 10.3390/foods13152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of ball milling on the physicochemical, functional, and emulsification characteristics of Polygonatum sibiricum insoluble dietary fiber (PIDF) were investigated. Through controlling milling time (4, 5, 6, 7, and 8 h), five PIDFs (PIDF-1, PIDF-2, PIDF-3, PIDF-4, and PIDF-5) were obtained. The results showed that ball milling effectively decreased the particle size and increased the zeta-potential of PIDF. Scanning electron microscope results revealed that PIDF-5 has a coarser microstructure. All PIDF samples had similar FTIR and XRD spectra. The functional properties of PIDF were all improved to varying degrees after ball milling. PIDF-3 had the highest water-holding capacity (5.12 g/g), oil-holding capacity (2.83 g/g), water-swelling capacity (3.83 mL/g), total phenol (8.12 mg/g), and total flavonoid (1.91 mg/g). PIDF-4 had the highest ion exchange capacity. Fat and glucose adsorption capacity were enhanced with ball milling time prolongation. PIDF-5 exhibited a contact angle of 88.7° and lower dynamic interfacial tension. Rheological results showed that PIDF-based emulsions had shear thinning and gel-like properties. PE-PIDF-5 emulsion had the smallest particle size and the highest zeta-potential value. PE-PIDF-5 was stable at pH 7 and high temperature. The findings of this study are of great significance to guide the utilization of the by-products of Polygonatum sibiricum.
Collapse
Affiliation(s)
- Jingxuan Ke
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Xin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.W.); (Z.C.)
| | - Xinyu Gao
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Yuhui Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Daqing Wei
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Yanli Ma
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Cuicui Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Yilin Liu
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China; (J.K.); (X.G.); (Y.Z.); (D.W.); (C.L.); (Y.L.)
| | - Zhizhou Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.W.); (Z.C.)
| |
Collapse
|
11
|
Xu L, Xu Y, Hou S, Zheng X, Cao Q, Chang M, Feng C, Cheng Y, Geng X, Meng J. All-natural polysaccharide and protein complex nanoparticles from Clitocybe squamulosa as unique Pickering stabilizers for oil-in-water emulsions. Int J Biol Macromol 2024; 272:132674. [PMID: 38850815 DOI: 10.1016/j.ijbiomac.2024.132674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to develop novel nanoparticles that can serve as an excellent oil-in-water (O/W) Pickering stabilizer. The polysaccharide-protein complex nanoparticles (PPCNs-20 and PPCNs-40) were prepared at different ultrasonication amplitudes (20 % and 40 %, respectively) from the polysaccharide-protein complexes (PPCs) which were extracted from the residue of Clitocybe squamulose. Compared with PPCs and PPCNs-20, the PPCNs-40 exhibited dispersed blade and rod shape, smaller average size, and larger zeta potential, which indicated significant potential in O/W Pickering emulsion stabilizers. Subsequently, PPCNs-40 stabilized Pickering emulsions were characterized at different concentrations, pHs, and oil phase contents. The average size, micromorphology, rheological properties, and storage stability of the emulsions were improved as the concentration of PPCNs-40, the ratio of the soybean oil phase and pH value increased. Pickering emulsions showed the best stability when the concentration of PPCNs-40 was 3 wt%, and the soybean oil fraction was 30 % under both neutral and alkaline conditions. The emulsions demonstrated shear thinning and gelation behavior. These findings have implications for the use of eco-friendly nanoparticles as stabilizers for Pickering emulsions and provide strategies for increasing the added value of C. squamulosa.
Collapse
Affiliation(s)
- Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaojiao Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qunluo Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
12
|
Chen Y, Chen X, Luo S, Chen T, Ye J, Liu C. Complex bio-nanoparticles assembled by a pH-driven method: environmental stress stability and oil-water interfacial behavior. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1971-1983. [PMID: 37897157 DOI: 10.1002/jsfa.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Yan J, Jia X, Qu Y, Yan W, Li Y, Yin L. Development of sorghum arabinoxylan-soy protein isolate composite nanoparticles for delivery of curcumin: Effect of polysaccharide content on stability and in vitro digestibility. Int J Biol Macromol 2024; 262:129867. [PMID: 38309400 DOI: 10.1016/j.ijbiomac.2024.129867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The purpose of this study was to fabricate composite nanoparticles using soy protein isolate (SPI) and sorghum bran arabinoxylan (AX) for the delivery of curcumin (Cur). The influences of AX concentrations on the physicochemical characteristic, stability and bioaccessibility of curcumin were investigated. The findings showed that the encapsulation efficiency of curcumin obviously increased upon incorporating AX in comparison to SPI-Cur particles. Hydrogen bonds and hydrophobic interactions were the primary driving forces for the formation of SPI-Cur-AX nanoparticles (SCA). SCA nanoparticles with 1.00 % AX exhibited a uniform size with orderly distribution, suggesting its remarkable physical stability due to the strengthened electrostatic repulsion. However, excessive AX led to aggregation of particles, a noticeable increase in size, and subsequently, a reduction in stability. Due to the heightened free radical scavenging capacity of sorghum AX, SCA nanoparticles exhibited superior antioxidant capabilities. Compared to free curcumin, encapsulation within composite particles significantly enhanced the retention rate and bioaccessibility of curcumin. This improvement was attributed to the potent emulsification ability of AX, which coordinated with bile salt to promote the transfer of curcumin into micelles. The research provides an effective strategy for developing food-grade delivery carriers aimed at enhancing dispersibility, stability and bioaccessibility of the fat-soluble bioactives.
Collapse
Affiliation(s)
- Jinxin Yan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuanyuan Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenjia Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuanyuan Li
- The State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, Zhejiang, PR China; Department of Food Science, College of Agriculture and Life Sciences, Cornell University, NY, 14456, USA.
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
14
|
Liu L, Yang H, Coldea TE, Zhao H. Improving the emulsifying capacity of brewers' spent grain arabinoxylan by carboxymethylation. Int J Biol Macromol 2024; 258:128967. [PMID: 38151090 DOI: 10.1016/j.ijbiomac.2023.128967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Arabinoxylan derived from brewers' spent grain was carboxymethylated, and the emulsifying capacity of carboxymethylated arabinoxylans (CMAX) with different degrees of substitution (DS) was investigated. Results showed that carboxymethylation greatly enhanced the emulsifying capacity and emulsion stability of CMAX compared to the initial arabinoxylan. CMAX developed decreased ζ-potential, higher hydrophilicity, and improved interfacial adsorption capacity. Consequently, the denser and stronger interface on the oil droplet was formed, and the stabilizing mechanism was altered. Moreover, CMAX with lower DS could effectively stabilize emulsions during storage at a concentration of 0.5 % and pH between 6 and 7. Higher DS, however, led to poorer emulsion stability and greater flocculation as a result of the fragile interface formed by excess intermolecular ionic force. The research found CMAX potential in emulsion stabilizing and further applications in food processing.
Collapse
Affiliation(s)
- Liwei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania; Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
15
|
Cai Y, Huang L, Zhou F, Zhao Q, Zhao M, Van der Meeren P. Characteristics of insoluble soybean fiber (ISF) concentrated emulsions: Effects of pretreatment on ISF and freeze-thaw stability of emulsions. Food Chem 2023; 427:136738. [PMID: 37392634 DOI: 10.1016/j.foodchem.2023.136738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
The properties of emulsions could be affected by the interactions between the components and network stabilization effect, which are commonly adjusted by changes in pH, ionic strength and temperature. In this work, insoluble soybean fiber (ISF) obtained via homogenization after alkaline treatment was pretreated firstly and then resultant emulsions were freeze-thawed. Heating pretreatment reduced droplet size, enhanced viscosity and viscoelasticity as well as subsequent stability of ISF concentrated emulsions, while both acidic pretreatment and salinized pretreatment decreased the viscosity and weakened the stability. Furthermore, ISF emulsions exhibited a good freeze-thaw performance which was further improved by secondary emulsification. Heating promoted the swelling of ISF and strengthened the gel-like structure of emulsions while salinization and acidization weakened the electrostatic interactions and caused the destabilization. These results indicated that pretreatment of ISF significantly influenced the concentrated emulsion properties, providing guidance for the fabrication of concentrated emulsions and related food with designed characteristics.
Collapse
Affiliation(s)
- Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Particle & Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Paul Van der Meeren
- Particle & Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Zhao P, Yan X, Cheng M, Wang Y, Wang Y, Wang K, Wang X, Wang J. Effect of Pickering emulsion on the physical properties, microstructure and bioactivity of corn starch/cassia gum composite films. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Xi X, Wei Z, Xu Y, Xue C. Clove Essential Oil Pickering Emulsions Stabilized with Lactoferrin/Fucoidan Complexes: Stability and Rheological Properties. Polymers (Basel) 2023; 15:polym15081820. [PMID: 37111967 PMCID: PMC10143265 DOI: 10.3390/polym15081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Although studies have shown that lactoferrin (LF) and fucoidan (FD) can be used to stabilize Pickering emulsions, there have been no studies on the stabilization of Pickering emulsions via the use of LF-FD complexes. In this study, different LF-FD complexes were obtained by adjusting the pH and heating the LF and FD mixture while using different mass ratios, and the properties of the LF-FD complexes were investigated. The results showed that the optimal conditions for preparing the LF-FD complexes were a mass ratio of 1:1 (LF to FD) and a pH of 3.2. Under these conditions, the LF-FD complexes not only had a uniform particle size of 133.27 ± 1.45 nm but also had good thermal stability (the thermal denaturation temperature was 110.3 °C) and wettability (the air-water contact angle was 63.9 ± 1.90°). The concentration of the LF-FD complexes and the ratio of the oil phase influenced the stability and rheological properties of the Pickering emulsion such that both can be adjusted to prepare a Pickering emulsion with good performance. This indicates that LF-FD complexes represent promising applications for Pickering emulsions with adjustable properties.
Collapse
Affiliation(s)
- Xiaohong Xi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yanan Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|