1
|
Li Y, Mei J, Xie J. Effect of air-conditioned packaging combined with temperature fluctuations on the preservation of mandarin fish (Siniperca chuatsi). Food Chem 2025; 480:143893. [PMID: 40112706 DOI: 10.1016/j.foodchem.2025.143893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The objective of this study was to evaluate the impact of diverse packaging techniques on the moisture content, quality, microbiological profile and volatile compounds of mandarin fish (Siniperca chuatsi) fillets. Mandarin fish fillets were packaged in accordance with three distinct conditions: AP (Air packaging), MAP 1 (40 % CO2/45 % N2/15 % O2) and MAP 2 (50 % CO2/35 % N2/15 % O2) and stored at TC (Constant temperature at 4 °C) and TF (Temperature fluctuation at 4 °C and 8 °C), respectively. Results demonstrated that MAP effectively inhibited microbial growth, retarded pH increase, and reduced accumulation of TVB-N, TMA, and MDA. On the 18th day, the constant-temperature MAP 2 group exhibited optimal preservation, with TVB-N (14.70 mg/kg), TMA (2.74 mg/kg), and MDA (38.36 mmol/mg) lower than those in the fluctuating-temperature AP group (TVB-N: 115.07 mg/kg; TMA: 2.81 mg/kg; MDA: 84.39 mmol/mg). It proved that temperature fluctuations accelerated the spoilage process of mandarin fish.
Collapse
Affiliation(s)
- Yanhan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
2
|
Li X, Li T, Zhang J, Ying X, Deng S, Xiao G, Benjakul S, Brennan C, Ma L. Oxidation of aquatic products from the inside out accelerates their deterioration: A case study of sea bass (Lateolabrax japonicus) during storage. Food Chem 2025; 478:143639. [PMID: 40056626 DOI: 10.1016/j.foodchem.2025.143639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Sea bass (Lateolabrax japonicus) is favored by consumers, but the oxidation of visceral lipids during refrigeration has not been studied. This research investigates the effect of visceral lipid oxidation on storage quality. The results show that visceral lipids oxidize first, leading to a 1.72, 2.36, and 2.04-fold increase in malondialdehyde, 4-hydroxy-2-nonenal, and 4-hydroxy-2-hexenal levels, respectively. The total free radicals, alkoxy radicals, and hydrogen radicals increased by 18.13 %, 18.17 %, and 9.87 %, respectively. Visceral lipid oxidation damages myofibrillar proteins, reducing sulfhydryl content by 18.11 %. The viscera also promote protein oxidation, particularly of actin. Volatile component and electronic nose analyses revealed significant odor deterioration due to lipid oxidation and protein degradation. Molecular docking confirms that 4-hydroxy-2-nonenal binds to 15 amino acids in β-actin. Therefore, spoilage occurs from the inside out, and viscera should be removed before freezing.
Collapse
Affiliation(s)
- Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Taiyu Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jixiang Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
3
|
Hu Y, Wang Z, Quan Z, Li J, Liu Z, Guo X, Dong X, Zhou D, Zhu B. Effects of freeze-thaw cycles on texture and protein digestive properties of scallop adductor muscles: Role of protein oxidative changes. Food Chem 2025; 475:143351. [PMID: 39946920 DOI: 10.1016/j.foodchem.2025.143351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Accepted: 02/09/2025] [Indexed: 03/09/2025]
Abstract
This study investigated the effects of freeze-thaw cycles (F-T cycles) on texture and protein digestive properties of scallop adductor muscles and the underlying mechanisms involved. Results showed that F-T cycles significantly increased free radical intensity of scallop adductor muscles and oxidation level of scallop protein. Simultaneously, the protein oxidative degradation occurred, as evidenced by increased levels of TCA-soluble peptides and water-soluble Hyp, which led to myofiber breakage and decreased textural properties. Nile Red staining showed that F-T cycles-induced oxidation promoted protein aggregation, which in turn reduced protein digestibility. Peptidomics analysis further showed that F-T cycles-induced oxidation altered the enzymatic cleavage sites in scallop protein, resulting in an increased abundance of macromolecular peptides (>2500 Da) and decreased release of bioactive peptides. These results highlight the role of protein oxidation in the deterioration of texture and protein digestibility of scallops during frozen storage, providing a basis for improving quality preservation strategies.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zonghan Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengze Quan
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiuping Dong
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Dayong Zhou
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Guangdong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
4
|
Wu X, Feng X, Jiang J, Jiang Q, Ma J, Sun W. Magnetic field-mediated oxidative modification of myoglobin: One effective method for improving the gel properties of myofibrillar protein. Food Chem 2025; 472:142899. [PMID: 39826526 DOI: 10.1016/j.foodchem.2025.142899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
This study employed a magnetic field to investigate the impact of myoglobin (Mb) oxidation (0-20 mmol/L H2O2) on the gel properties of myofibrillar protein (MP). The results indicated that magnetic field could further facilitate the rearrangement of the Mb structure, resulting in the transfer of its internal reactive groups to the external environment. This contributed to hydration and cross-linking between MP. The Raman spectroscopy results demonstrated that the oxidised Mb altered the secondary structure of MP (increased α-helix content and reduced random coil), making its environment more hydrophobic. This significantly diminished gel water mobility (confirmed by low-field Nuclear Magnetic Resonance). While under the magnetic field treatment, the MP gel network was more relatively porous and uniformly flat, and the gel strength was significantly enhanced (P < 0.05). Ultimately, the water holding capacity increased from 62.47 % to 76.42 %. In conclusion, the magnetic field combined with moderately oxidised Mb had a ripple effect, resulting in an improvement in the gel quality of MP.
Collapse
Affiliation(s)
- Xiaoyu Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Xiaolong Feng
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jingjiao Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Qianwen Jiang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China.
| |
Collapse
|
5
|
Li H, Sheng W, Adade SYSS, Nunekpeku X, Chen Q. Investigation of heat-induced pork batter quality detection and change mechanisms using Raman spectroscopy coupled with deep learning algorithms. Food Chem 2024; 461:140798. [PMID: 39173265 DOI: 10.1016/j.foodchem.2024.140798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
Pork batter quality significantly affects its product. Herein, this study explored the use of Raman spectroscopy combined with deep learning algorithms for rapidly detecting pork batter quality and revealing the mechanisms of quality changes during heating. Results showed that heating increased β-sheet content (from 26.38 to 41.42%) and exposed hidden hydrophobic groups, which formed aggregates through chemical bonds. Dominant hydrophobic interactions further cross-linked these aggregates, establishing a more homogeneous and denser network at 80 °C. Subsequently, convolutional neural networks (CNN), long short-term memory neural networks (LSTM), and CNN-LSTM were comparatively used to predict gel strength and whiteness in batters based on the Raman spectrum. Thereinto, CNN-LSTM provided the optimal results for gel strength (Rp = 0.9515, RPD = 3.1513) and whiteness (Rp = 0.9383, RPD = 3.0152). Therefore, this study demonstrated the potential of Raman spectroscopy combined with deep learning algorithms as non-destructive tools for predicting pork batter quality and elucidating quality change mechanisms.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Xorlali Nunekpeku
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
6
|
Wang C, Zhang L, Han L, Yu Q. The mechanism of peanut shell flavonoids inhibiting the oxidation of myofibrillar protein: An elucidation of the antioxidative preservation action of peanut shell flavonoids on chilled pork. Int J Biol Macromol 2024; 283:137900. [PMID: 39581397 DOI: 10.1016/j.ijbiomac.2024.137900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Flavonoids, a significant subclass of polyphenols, possess antioxidant properties and contribute to the preservation of chilled meat. In this paper, a phosphate buffer solution (pH = 6.25, simulated chilled pork) and a Fenton oxidation system (simulated myofibrillar protein oxidation process during storage) were established to explain the antioxidative preservation of chilled pork using peanut shell flavonoids (PSFs). The results indicated that PSFs changed the secondary structure of myofibrillar protein (MP), significantly inhibiting the oxidation of amino acids and the formation of carbonyl groups in MP (P < 0.05). Because PSFs and amino acids in chilled pork were combined to form complex through non-covalent bond in a pH 6.25 environment and covalent bond in a Fenton oxidation system. The antioxidant capacity of the complex was significantly enhanced (P < 0.05). The molecular docking technique predicted the antioxidant binding sites were Cys176, Ala182 and Val 124. This study provides a theoretical foundation for the preservation of chilled pork using PSFs.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
7
|
Chang J, Liu R, Zheng B, Gao X, Li B, Zhang Y, Wang T, Wang H. Amelioration of myofibrillar protein emulsion gel properties by mildly oxidized sunflower oil. Food Chem 2024; 467:142253. [PMID: 39644651 DOI: 10.1016/j.foodchem.2024.142253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Different oxidation states of oil affect the emulsion stablility and gel properties of emulsified meat products. Emulsified chicken gels were prepared using sunflower oil (SFO) with different oxidation levels (0, 20, 40, and 60 min, 120 °C). The pre-oxidation treatment of oils was investigated for emulsification and gelation of myofibrillar protein (MP). The results showed that MP emulsion gels with mildly oxidized (20 min) SFO had higher elastic modulus (G') and more homogeneous water distribution, which were due to increased hydrophobic interactions between MP and lipids, and improved emulsification stability. However, the addition of highly oxidized (60 min) SFO resulted in aggregation of proteins, increased emulsion particle size, significantly reduced hardness and chewiness (P > 0.05), and exhibited large pores in the network microstructure. The results suggested that mildly oxidized SFO has an ameliorating effect on MP emulsion gelation, which facilitates better comprehension of the protein oxidation process in oil-loaded meat systems.
Collapse
Affiliation(s)
- Jinyang Chang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - BeiBei Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xinzhu Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Baorui Li
- Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Shandong Engineering Research Center of Food for Special Medical Purpose, Jinan 256600, PR China
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
8
|
Zhang D, Wu ZC, Xu JB, Huang NX, Tang Y, Su C, Tang J, Li HJ. Effect of Different Addition Amounts of Capsaicin on the Structure, Oxidation Sites, and Gel Properties of Myofibrillar Proteins under Oxidative Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39565642 DOI: 10.1021/acs.jafc.4c06603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This study aimed to explore the mechanism influencing different addition amounts of capsaicin on the gel characteristics and microstructure of myofibrillar protein (MP) gels under conditions induced by hydroxyl free radicals (•OH). Results indicate that adding capsaicin can improve the gelling characteristics of the MPs. With an increased amount of capsaicin added, the oxidation of MPs by •OH decreased, and the number of oxidation sites decreased. Peptides located around residues 651-851 in the head domain SH1 and S2 subunits of the myosin heavy chain were susceptible to oxidation. Capsaicin primarily interacted with amino acids in SH1 (residues 1-151 and 601-651), reducing the effect of •OH on MPs and consequently decreasing the occurrence of MP aggregation. Capsaicin protected the structure and oxidation sites of MPs under oxidative conditions, ensuring the formation of an MP gel with uniformly dense pores during heating, thereby improving the texture characteristics and water-holding capacity of the gel.
Collapse
Affiliation(s)
- Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Zhi-Cheng Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jing-Bing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Nan-Xi Huang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Chang Su
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hong-Jun Li
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Yao W, Zhao Z, Zhang J, Kong B, Sun F, Liu Q, Cao C. Revealing the deterioration mechanism in gelling properties of pork myofibrillar protein gel induced by high-temperature treatments: Perspective on the protein aggregation and conformation. Meat Sci 2024; 217:109595. [PMID: 39004037 DOI: 10.1016/j.meatsci.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.
Collapse
Affiliation(s)
- Wenjing Yao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingming Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin, Heilongjiang 150028, China.
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Zheng B, Liu R, Chang J, Ren Z, An Y, Wang T, Zhang Y, Wang H. Effects of moderately oxidized lard on myofibrillar protein emulsion gels: Gel-forming properties, water distribution, and digestibility. Int J Biol Macromol 2024; 282:136944. [PMID: 39486735 DOI: 10.1016/j.ijbiomac.2024.136944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Emulsion gels were prepared by adding lard with different degrees of oxidation (0, 1, 2, 3, 4, and 5 h, 110 °C) to porcine myofibrillar proteins (MP). The findings demonstrated that changes in sulfhydryl content and carbonyl content reflected that oxidized lard induced the oxidation of MP. Compared with the control (CON), moderately oxidized lard (2 h) led to the unfolding of the protein structure, increased β-sheet content, and exposed hydrophobic groups. These modifications facilitated interactions between the protein and lard at the interface, enhancing the emulsifying properties of MPs. Furthermore, the moderate oxidation of lard (2 h) enhanced the organization of the gel structure and improved the gel performance of MPs, resulting in uniform water distribution. In contrast, the hardness and springiness of MP gel treated with excessively oxidized lard (5 h) were significantly reduced (p < 0.05). The microstructure of MP gel also exhibited irregular aggregation, resulting in a decline in protein digestibility. In addition, lard oxidation (2 h) had a positive effect on maintaining gel stability during storage.
Collapse
Affiliation(s)
- Beibei Zheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Jinyang Chang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Zhiyang Ren
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Yafeng An
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Ye Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China.
| |
Collapse
|
11
|
Yao W, Hao X, Hu Z, Lian Z, Cao Y, Liu R, Niu X, Xu J, Zhu Q. Mitigation of malondialdehyde-induced protein lipoxidation by epicatechin in whey protein isolate. Food Chem 2024; 456:139954. [PMID: 38852459 DOI: 10.1016/j.foodchem.2024.139954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/12/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
Malondialdehyde (MDA) can induce lipoxidation in whey protein isolate (WPI). The physicochemical changes in this reaction with or without the presence of a phenolic compound epicatechin (EC) were characterized in this study. Results suggested the content of MDA was significantly reduced during co-incubation of MDA and EC. The addition of EC dose-dependently alleviated MDA-induced protein carbonylation, Schiff base formation and loss of tryptophan fluorescence. The interruption of MDA-binding to WPI was directly visualized by immunoblotting analysis. Observation of the surface microstructure of WPI showed that MDA-induced protein aggregation was partially restored by EC. Meanwhile, EC was found to promote loss of both protein sulfhydryls and surface hydrophobicity due to possible phenol-protein interactions. These observations suggested the potential of EC in the relief of MDA-mediated protein lipoxidation.
Collapse
Affiliation(s)
- Wenhua Yao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xingya Hao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhangjie Hu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenghao Lian
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Cao
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rong Liu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoying Niu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- Jiaxing Key Laboratory for Research and Application of Green and Low-carbon Advanced Materials, School of Advanced Materials & Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, China.
| | - Qin Zhu
- Key Laboratory for Quality and Safety of Agricultural Products of Hangzhou City, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
12
|
Cheng Q, Liu C, Zhao J, Qin J, Wang Y. Hydroxyl radical-induced oxidation boosts the gelation of ginkgo seed protein in the presence of hyaluronic acid. Int J Biol Macromol 2024; 282:136960. [PMID: 39490847 DOI: 10.1016/j.ijbiomac.2024.136960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Hydroxyl radical-induced oxidation can modify gelling properties of food proteins. In this study, a hydroxyl radical generating system (HRGS), consisting of 0.1 mM Fe3+, 0.1 mM ascorbic acid, and 1, 10, or 20 mM H2O2, was used to oxidize ginkgo seed protein isolate (GSPI) for 4 h at ambient temperature in the presence of 0.3 % (w/v) hyaluronic acid (HA) to enhance its gelation properties. HRGS treatment led to increased protein hydrophobicity, reduced sulfhydryl content, and disulfide bond-mediated protein crosslinking. Moreover, the secondary structure of GSPI varied with H2O2 concentrations. Moderate oxidation (approximately 10 mM H2O2) promoted GSPI aggregation and improved mechanical strength, rheological properties, water holding capacity, and whiteness of GSPI gels. However, excessive oxidation disrupted hydrogen bonding, generated excessive disulfide bonds, hindered active group interaction, inhibited gel network formation, and reduced gel strength. Hence, hydroxyl radical-induced oxidation holds potential for enhancing GSPI gelation within specific concentration ranges. This study suggests that controlled oxidation could be a novel approach for developing protein-based gel products.
Collapse
Affiliation(s)
- Qiao Cheng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jiawei Qin
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Zhang L, Yang D, Luo R, Luo Y, Hou Y. Research Progress on the Mechanism of the Impact of Myofibrillar Protein Oxidation on the Flavor of Meat Products. Foods 2024; 13:3268. [PMID: 39456330 PMCID: PMC11506927 DOI: 10.3390/foods13203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Myofibrillar proteins primarily consist of myosin, actin, myogenin, and actomyosin. These proteins form complex networks within muscle fibers and are crucial to the physical and chemical properties of meat. Additionally, myofibrillar proteins serve as significant substrates for the adsorption of volatile flavor compounds, including aldehydes, alcohols, ketones, and sulfur and nitrogen compounds, which contribute to the overall flavor profile of meat products. A series of chemical reactions occur during the processing, storage, and transportation of meat products. Oxidation is one of the most significant reactions. Oxidative modification can alter the physical and chemical properties of proteins, ultimately impacting the sensory quality of meat products, including flavor, taste, and color. In recent years, considerable attention has been focused on the effects of protein oxidation on meat quality and its regulation. This study investigates the impact of myofibrillar protein oxidation on the sensory attributes of meat products by analyzing the oxidation processes and the factors that initiate myofibrillar protein oxidation. Additionally, it explores the control of myofibrillar protein oxidation and its implications on the sensory properties of meat products, providing theoretical insights relevant to meat processing methods and quality control procedures.
Collapse
Affiliation(s)
- Lingping Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Dongsong Yang
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
- Department of Health and Wellness Service Industry, Guangzhou Light Industry Technician College, Guangzhou 510220, China
| | - Ruiming Luo
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yulong Luo
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yanru Hou
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
14
|
Gao R, Liu L, Monto AR, Su K, Zhang H, Shi T, Xiong Z, Xu G, Luo Y, Bao Y, Yuan L. Metabolomic profile of muscles from tilapia cultured in recirculating aquaculture systems and traditional aquaculture in ponds and protein stability during freeze-thaw cycles. Food Chem 2024; 451:139325. [PMID: 38657519 DOI: 10.1016/j.foodchem.2024.139325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Muscle protein stability during freeze-thaw (F-T) cycles was investigated with tilapia cultured in recirculating aquaculture systems (RAS) and traditional aquaculture in ponds (TAP). This study found that fatty acids (eg., palmitic acid) were enriched in TAP, while antioxidants (eg., glutathione) were enriched in RAS. Generally, proteins in the RAS group exhibited greater stability against denaturation during the F-T cycle, suggested by a less decrease in haem protein content (77% in RAS and 86% in TAP) and a less increase in surface hydrophobicity of sarcoplasmic protein (63% in RAS and 101% in TAP). There was no significant difference in oxidative stability of myofibrillar protein between the two groups. This study provides a theoretical guide for the quality control of tilapia cultured in RAS during frozen storage.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kai Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Gangchun Xu
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu 214081, China
| | - Yongju Luo
- Guangxi Institute of Aquatic Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Farming, Nanning, Guangxi 530021, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
15
|
Wang Y, Zhao Y, He Y, Ao C, Jiang Y, Tian Y, Zhao H, Lu H. Effect of three unsaturated fatty acids on the protein oxidation and structure of myofibrillar proteins from rainbow trout (Oncorhynchus mykiss). Food Chem 2024; 451:139403. [PMID: 38653104 DOI: 10.1016/j.foodchem.2024.139403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
In this study, the impact of three unsaturated fatty acids (Oleic acid: OA, Eicosapentaenoic acid: EPA, Docosahexaenoic acid: DHA) on the oxidation and structure of rainbow trout myofibrillar protein (MP) was explored. The findings revealed a notable increase in carbonyl content (P < 0.05) and a significant decrease in total sulfhydryl content (P < 0.05) of MP with the concentration increase of the three unsaturated fatty acids. Endogenous fluorescence spectroscopy and surface hydrophobicity analyses showed that unsaturated fatty acids can cause unfolding and exposure of hydrophobic groups in MP. In addition, SDS-PAGE showed that disulfide bonds were associated with MP cross-linking and aggregate size induced by unsaturated fatty acids. Overall, three unsaturated fatty acid treatments facilitated the oxidation of myofibrillar proteins, and the extent of protein oxidation was closely associated with the concentration of unsaturated fatty acids.
Collapse
Affiliation(s)
- Youjun Wang
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Yangmeijin Zhao
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Yuxuan He
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Chengxiang Ao
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China
| | - Yusheng Jiang
- Key Laboratory of Dalian Shrimp and Crab Breeding and Healthy Aquaculture, Heishijiao Street, Dalian 116023, China
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Zhao
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Lu
- College of Food Science and Engineering, Dalian Ocean University, Heishijiao Street, Dalian 116023, China; Collaborative Innovation Center of Seafood Deep Processing, Qinggongyuan Street, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
16
|
Cheng YC, Jin DL, Yu WT, Tan BY, Fu JJ, Chen YW. Impact of thermal ultrasound on enzyme inactivation and flavor improvement of sea cucumber hydrolysates. Food Chem 2024; 449:139302. [PMID: 38608610 DOI: 10.1016/j.foodchem.2024.139302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.
Collapse
Affiliation(s)
- Yi-Chao Cheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Dan-Li Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Tao Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Bo-Yang Tan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
17
|
Lan M, Li T, Li L, Wang S, Chen J, Yang T, Li Z, Yang Y, Zhang X, Li B. Ultrasonic treatment treated sea bass myofibrillar proteins in low-salt solution: Emphasizing the changes on conformation structure, oxidation sites, and emulsifying properties. Food Chem 2024; 435:137564. [PMID: 37776650 DOI: 10.1016/j.foodchem.2023.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
The physiochemical properties, structure characteristics, oxidation, and emulsifying properties of myofibrillar proteins (MPs) in low salt solution after treated by the ultrasound were investigated. The solubility, mean diameters, sulfhydryl content, and carbonyl contents of MPs after ultrasonic treatment increased, while the turbidity decreased. The surface hydrophobicity of MPs with 200 W-600 W treatment increased, but decreased at 800 W treatment. The circular dichroism analysis revealed that α-helix content increased, while β-sheet and random coil content decreased after ultrasonic treatment. Fluorescence spectroscopy indicated the fluorescence intensities of MPs were increased after ultrasonic treatment. SDS-PAGE results showed more protein polymers due to myosin heavy chain (MHC) aggregation via disulfide bonds. Based on LC-MS/MS result, the myosin heavy chain was susceptible to oxidation, with monooxidation being the main oxidative modification. Finally, the emulsions stabilized by ultrasonically treated MPs, especially those treated at 800 W, exhibited decreased particle size, improved uniformity, and enhanced stability.
Collapse
Affiliation(s)
- Meijuan Lan
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tongshuai Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Tangyu Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiru Li
- Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, China
| | - Yipeng Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
18
|
Zhang Q, Fu B, Chen Q, Lu J, Zhu Z, Yan C, Guan F, Wang P, Fu L, Yu P. Biosynthesis of the phycocyanin β-subunit in Escherichia coli BL21 and its antioxidant activity and application in the preservation of fresh-cut apples. Int J Biol Macromol 2024; 258:128951. [PMID: 38143054 DOI: 10.1016/j.ijbiomac.2023.128951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
In this study, the biosynthesis of phycocyanin β-subunit (CpcB) in Escherichia coli BL21 was investigated, and its antioxidant activity and application in anti-browning of fresh-cut apples was explored. Four genes (cpcB, cpeS, hox1 and pcyA) involved in the biosynthesis of CpcB were cloned and transformed into E. coli BL21 by constructing recombinant plasmid pETDuet-5. The positive transformant was screened by ampicillin resistance. The analysis of SDS-PAGE and zinc fluorescence spectrum showed that CpcB was successfully expressed in E. coli BL21 with a molecular weight of 21 kDa. The purified CpcB had a maximum absorption peak at 615 nm, and its maximum florescence emission wavelength was 640 nm. It exhibited a stronger ability to scavenge four free radicals than Vc. The color change in fresh-cut apples was obviously delayed by the CpcB treatment. These results suggest that CpcB may be used as a potential anti-browning agent for food preservation.
Collapse
Affiliation(s)
- Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China; College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province 323000, People's Republic of China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Chuyang Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Fuyao Guan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Peize Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Linglin Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province 310035, People's Republic of China.
| |
Collapse
|
19
|
Geng L, Liu K, Zhang H. Lipid oxidation in foods and its implications on proteins. Front Nutr 2023; 10:1192199. [PMID: 37396138 PMCID: PMC10307983 DOI: 10.3389/fnut.2023.1192199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Lipids in foods are sensitive to various environmental conditions. Under light or high temperatures, free radicals could be formed due to lipid oxidation, leading to the formation of unstable food system. Proteins are sensitive to free radicals, which could cause protein oxidation and aggregation. Protein aggregation significantly affects protein physicochemical characteristics and biological functions, such as digestibility, foaming characteristics, and bioavailability, further reducing the edible and storage quality of food. This review provided an overview of lipid oxidation in foods; its implications on protein oxidation; and the assessment methods of lipid oxidation, protein oxidation, and protein aggregation. Protein functions before and after aggregation in foods were compared, and a discussion for future research on lipid or protein oxidation in foods was presented.
Collapse
Affiliation(s)
- Lianxin Geng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- School of Food and Reserves Storage, Henan University of Technology, Zhengzhou, China
| | - Huiyan Zhang
- Zhengzhou Ruipu Biological Engineering Co., Ltd, Zhengzhou, China
| |
Collapse
|
20
|
QI X, YIN M, QIAO Z, LI Z, YU Z, CHEN M, XIAO T, WANG X. Freezing and frozen storage of aquatic products: mechanism and regulation of protein oxidation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.91822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Xinjuan QI
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| | | | - Zenghui QIAO
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| | | | - Zheng YU
- Shanghai Ocean University, China
| | - Min CHEN
- Shanghai Ocean University, China
| | | | - Xichang WANG
- Shanghai Ocean University, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, China
| |
Collapse
|