1
|
Liang L, Yang R, Wu J, Qin Y, Jiang Y, Zhao S, Ye F. Analyte-Induced Specific Regulation of Light-Responsive COF-Cu Nanozyme Activity for Ultrafast Thiram Colorimetric Sensing. Anal Chem 2024; 96:18545-18554. [PMID: 39496189 DOI: 10.1021/acs.analchem.4c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
A light-responsive covalent-organic framework (COF) nanozyme, which integrates the advantages of the COF structure and light-stimulated nanozyme catalysis, is a class of sensing star materials with wide application prospects. However, the sensing methods based on light-responsive COF nanozymes are relatively single at present. Therefore, it is necessary to develop new sensing strategies to broaden its application in chemical sensing and achieve highly efficient detection. Here, a Cu2+-modified COF composite material (TpDA-Cu) was rationally designed. The addition of Cu significantly inhibits the excellent light-responsive nanozyme activity of TpDA itself. However, because of the restoration of the enzyme activity by thiram (Tr) and the oxidase mimic activity of the newly formed Cu/Tr complex, TpDA-Cu/Tr exhibits stronger light-responsive nanozyme activity. Enzyme kinetic data show that compared with TpDA, TpDA-Cu/Tr has a larger Vmax value, which can achieve efficient catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In addition, the strong coordination effect of Tr and TpDA-Cu also plays a key role in achieving ultrafast, sensitive, and selective colorimetric detection of Tr. This work develops a dual activity regulation strategy of light-responsive COF nanozymes based on analyte induction and provides a new perspective for the application of light-responsive COF nanozymes in the field of sensing.
Collapse
Affiliation(s)
- Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Ruitao Yang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory of Efficient Utilization of Special Resources in Southeast Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuting Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
2
|
Han S, Xu L, Fang Y, Dong S. A two-dimensional coordination polymer with high laccase-like activity for sensitive colorimetric detection of thiram. Chem Commun (Camb) 2024; 60:12738-12741. [PMID: 39397734 DOI: 10.1039/d4cc04305g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In contrast to natural enzymes, nanozymes show promising advantages of low cost and high stability for analytical applications. The simple mix of L-phenylalanine (F) and Cu2+ produces two-dimensional nanosheets of a coordination polymer with a high surface area ratio and rich exposed active sites as a novel catalyst. As the mimetic of natural laccase, this nanozyme (F-Cu) can catalyze the oxidative coupling reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) to produce a distinct red product, thus establishing an intuitive and simple method for the detection of thiram. In the range of 0-7.5 μM, the absorbance intensity was linearly related to the concentration of thiram, and the detection limit was 0.0845 μM. The F-Cu nanozyme was successfully applied to the colorimetric detection of thiram in real samples.
Collapse
Affiliation(s)
- Songxue Han
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shaojun Dong
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Wang C, Zhu Z, Huang X, Wang X, Zhang L, Peng Y, Wan R, Han L, Li L, Qin X, Li H, Chen J. Recent Advances in Developing Optical and Electrochemical Sensors for Monitoring Thiram and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23024-23038. [PMID: 39396199 DOI: 10.1021/acs.jafc.4c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Thiram, as one widely used dithiocarbamate pesticide, has been considered seriously detrimental to food safety and human health because of poor efficiency, nonstandard/superfluous usage, and lack of a targeting effect. Developing high-performance sensors for thirams is strongly needed. With the rapid development of chemistry, biology, and materials science, many sensors have been constructed for thiram with high sensitivity and selectivity. Regarding the energy form of the signal, recognition mode, and detection principle, recent advances in the design and construction of optical and electrochemical sensors for thiram are summarized in this review, including colorimetric, luminescent, chemiluminescent, and electrochemical sensors. The advantages and disadvantages of the sensors for thiram including sensitivity, ability to avoid interference, recognition mechanism, signal output mode, and practicability are clarified in detail. Furthermore, the challenges faced, effective restrictions, and next direction of development are proposed for achieving more sensitive and selective analysis of thiram with less interference. We desire that this review will supply a solid theoretical basis and inspiration to generate innovative thinking for achieving new progress on thiram assays and the commercialization of the developed sensors in the future.
Collapse
Affiliation(s)
- Chenfei Wang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Zihan Zhu
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinda Huang
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Li Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Yue Peng
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Rongyan Wan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Lirong Han
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Linsen Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Xinhong Qin
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
| | - Haiyin Li
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| | - Jianling Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002 Hebei, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 Hebei, China
| |
Collapse
|
4
|
Mohammed Ameen SS, Omer KM. Recent Advances of Bimetallic-Metal Organic Frameworks: Preparation, Properties, and Fluorescence-Based Biochemical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31895-31921. [PMID: 38869081 DOI: 10.1021/acsami.4c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bimetallic-metal organic frameworks (BiM-MOFs) or bimetallic organic frameworks represent an innovative and promising class of porous materials, distinguished from traditional monometallic MOFs by their incorporation of two metal ions alongside organic linkers. BiM-MOFs, with their unique crystal structure, physicochemical properties, and composition, demonstrate distinct advantages in the realm of biochemical sensing applications, displaying improvements in optical properties, stability, selectivity, and sensitivity. This comprehensive review explores into recent advancements in leveraging BiM-MOFs for fluorescence-based biochemical sensing, providing insights into their design, synthesis, and practical applications in both chemical and biological sensing. Emphasizing fluorescence emission as a transduction mechanism, the review aims to guide researchers in maximizing the potential of BiM-MOFs across a broader spectrum of investigations. Furthermore, it explores prospective research directions and addresses challenges, offering valuable perspectives on the evolving landscape of fluorescence-based probes rooted in BiM-MOFs.
Collapse
Affiliation(s)
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qlisan Street, Sulaymaniyah, 46002 Kurdistan Region, Iraq
| |
Collapse
|
5
|
Yeh YH, Lin YS, Chiu TC, Hu CC. A Ratiometric Fluorescent Sensor for Penicillin G Based on Color-Tunable Gold-Silver Nanoclusters. ACS OMEGA 2024; 9:10621-10627. [PMID: 38463298 PMCID: PMC10918794 DOI: 10.1021/acsomega.3c09010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Excessive administration of penicillin G and improper disposal of its residues pose a serious risk to human health; therefore, the development of convenient methods for monitoring penicillin G levels in products is essential. Herein, novel gold-silver nanoclusters (AuAgNCs) were synthesized using chicken egg white and 6-aza-2-thiothymine as dual ligands with strong yellow fluorescence at 509 and 689 nm for the highly selective detection of penicillin G. The AuAgNCs were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectrophotometry, and fluorescence spectrophotometry. Under optimum conditions, the fluorescence intensity decreased linearly with the concentration of penicillin G from 0.2 to 6 μM, with a low detection limit of 18 nM. Real sample analyses indicated that a sensor developed using the AuAgNCs could detect penicillin G in urine and water samples within 10 min, with the recoveries ranging from 99.7 to 104.0%. The particle size of the AuAgNCs increased from 1.80 to 9.06 nm in the presence of penicillin G. We believe the aggregation-induced quenching of the fluorescence of the AuAgNCs was the main mechanism for the detection of penicillin G. These results demonstrate the ability of our sensor for monitoring penicillin G levels in environmental and clinic samples.
Collapse
Affiliation(s)
- Yu-Hung Yeh
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| | - Yu-Shen Lin
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| |
Collapse
|
6
|
Wang P, Bai S, Chen C, You Y, Xiao J, Guo X, Wang L. A new ratiometric fluorescence nanosensor based on NaYF 4:3%Er@NaYF 4 upconversion nanoparticles for sensitive determination of Rose Bengal in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123242. [PMID: 37591018 DOI: 10.1016/j.saa.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Rose Bengal (RB) is used as a sensitizer in ambient water due to its property of catalyzing the production of singlet oxygen (1O2). However, this property also brings phototoxicity and carcinogenicity. The NaYF4:3%Er@NaYF4 core-shell upconversion nanoparticles (UCNPs) with higher upconversion efficiency was synthesized to detect RB in ambient water. Due to fluorescence resonance energy transfer (FRET) between RB and UCNPs, the upconversion fluorescence at 538 nm emitted by UCNPs was quenched by the RB, while the emission at 566 nm of RB raised. In the best conditions, the ratiometric emission intensity F566/F538 was positively proportional to RB concentration and the linear range was 0.04-15.0 μg·mL-1 (R2 = 0.996). The detection limit (S/N = 3) of RB was 2.46 ng·mL-1. The recoveries ranged from 99.0% to 105.6% (relative standard deviation 0.97-3.24%, n = 3) in tap water and 100.3%-104.9% (relative standard deviation 0.66-1.94%, n = 3) in lake water. This proposed method exhibits lower detection limit and larger linear, which possesses practical application value to the detection of RB in water.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chen Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Junhui Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, People's Republic of China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|