1
|
Zou X, Xiao Y, Ke L, Nie Y, Xiao J, Yang J, Guo C, Liu X. Sake lees extract obtained using a novel continuous phase-transition extraction method: evaluation of its bioactive composition, anti-aging efficacy and mechanism. Food Funct 2025. [PMID: 40227670 DOI: 10.1039/d5fo00291e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
For the high-value utilization of sake lees (SL), it is essential to explore its potential as a resource for anti-aging bioactives. However, the efficient extraction of SL, the compositional benefits provided, and the resulting anti-aging efficacy in vivo remain to be explored. Thus, a novel continuous phase-transition extraction (CPE) method, an amino acid analyzer, LC-MS, and GC-MS, as well as a classic anti-aging model of Caenorhabditis elegans (C. elegans) were adopted. The results showed that compared to ultrasound-assisted extraction, the total amino acid content of SL extract (SLE) obtained using 80% ethanol in CPE increased by 39.64%, with a notable enhancement in the in vitro scavenging ability of free radicals (p < 0.05). In SLE, the hydrophobic, acidic, and basic amino acids with antioxidant activity accounted for 77.11% of total amino acids. New potential anti-aging compounds were identified, including Lys-Gln, Leu-Arg-Lys, and sphinganine. In particular, 4 mg mL-1 SLE not only promoted a 19.32% increase in the lifespan of C. elegans by enhancing oxidative stress and neuroprotective effects but also ameliorated age-related phenotypes like motoricity and age pigment. Further exploration revealed that the efficacy of SLE is mediated by SKN-1/Nrf2 and HSF-1 pathways, which can be confirmed by the upregulation of key genes, such as skn-1 and hsf-1, especially by inducing a 72.73% increase in nuclear transfer of the transcription factor SKN-1/Nrf2. Taken together, SLE obtained by CPE was abundant in bioactives and contains novel components, thus exerting prominent anti-aging effects in vivo. This study provides a new way to obtain anti-aging active substances efficiently, which is beneficial for application in the fields of health foods and cosmetics.
Collapse
Affiliation(s)
- Xiaojun Zou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan Xiao
- Guangdong Marubi Biotechnology Co., Ltd, China.
| | - Liang Ke
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yanfeng Nie
- Guangdong Marubi Biotechnology Co., Ltd, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | | | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd, China.
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
2
|
Anouar EH. Molecular dynamics, molecular docking, DFT, and ADMET investigations of the Co(II), Cu(II), and Zn(II) chelating on the antioxidant activity and SARS-CoV-2 main protease inhibition of quercetin. J Biomol Struct Dyn 2025; 43:2719-2732. [PMID: 38116766 DOI: 10.1080/07391102.2023.2294372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The natural flavonol quercetin (Q) is found in many vegetables, fruits, and beverages, and it is known as a strong antioxidant. Its metal ion chelation may increase its antioxidant activity. The present study aims to explore the Co(II), Cu(II), and Zn(II) chelating on the antioxidant effectiveness and severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) main protease (Mpro) inhibitory of quercetin using Density-functional theory (DFT), molecular docking, and molecular dynamics simulations (MD). DFT calculations at the B3LYP/LanL2DZ reveal that the high antioxidant activity of the metal-chelated quercetin complexes is mainly returned to their lower ionization potentials (IPs) compared with the one of the free quercetin. Molecular docking of quercetin and its Co(II), Cu(II), and Zn(II) chelates into the active binding sites of peroxiredoxin 5 and SARS-CoV-2 main protease (Mpro) were performed using Lamarckian Genetic Algorithm method. The docked quercetin and its metal chelates fit well into the binding site of the target proteins, and their binding affinity is strongly influenced by the type of the chelated metals Co(II), Cu(II), and Zn(II), and molar ratio metal: ligand, i.e. 1:2 and 2:1. Further, the binding stability of QZn2 and QCu2 in peroxiredoxin 5 and SARS-CoV-2 main protease targets is evaluated using MD simulation conducted for 100 ns simulations at natural room temperature conditions, and the obtained results showed that all chelates remain bound to the ligand binding groove of protein except for 1HD2_QZn2 complex. Finally, the adsorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of quercetin and cobalt(II)-quercetin (QCo2(II)) were investigated.
Collapse
Affiliation(s)
- El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
3
|
Wang W, Liu K, Liu C, Yang B, Dong H, Liao W, Yang X, He Q. A modern scientific perspective on the flavor and functional properties of diverse teas in traditional cuisine "tea-flavored fish": From macroscopic quality to microscopic variations. Food Chem X 2025; 25:102122. [PMID: 39830003 PMCID: PMC11741052 DOI: 10.1016/j.fochx.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The historical appreciation of tea dates back to ancient times, while technological limitations have long hindered in-depth exploration of its flavor complexity and functional attributes. This study investigated the effects of various teas on a traditional delicacy, "tea-flavored fish", using teas processed via traditional methods. Analysis of functional components revealed that processing and fermentation reduced catechin levels (186.3 mg/g to 58.8 mg/g) while increasing theaflavins (16.6 mg/g to 39.6 mg/g), leading to decreased antioxidant and antimicrobial activities. Tea flavored fish was prepared following traditional techniques. The results indicated that the teas preserved their sensory qualities such as texture and color, inhibited metabolic activity and microbial growth, delayed lipid oxidation and protein degradation, and inhibited biogenic amine accumulation. Furthermore, minor compositional variations were observed in the final product. These findings offer novel insights into the application of modern scientific concepts to elucidate the principles underlying traditional craftsmanship.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510006, China
| | - Kun Liu
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chunlong Liu
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bei Yang
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Wenzhen Liao
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xingfen Yang
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
4
|
Findik BT, Yildiz H, Akdeniz M, Yener I, Yilmaz MA, Cakir O, Ertas A. Phytochemical profile, enzyme inhibition, antioxidant, and antibacterial activity of Rosa pimpinellifolia L.: A comprehensive study to investigate the bioactivity of different parts (whole fruit, pulp, and seed part) of the fruit. Food Chem 2024; 455:139921. [PMID: 38843718 DOI: 10.1016/j.foodchem.2024.139921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 μg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 μg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 μg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.
Collapse
Affiliation(s)
- Bahar Tuba Findik
- Nevsehir Hacı Bektas Veli University, Faculty of Arts and Sciences, Department of Chemistry, 50300 Nevsehir, Turkiye.
| | - Hilal Yildiz
- Nevsehir Hacı Bektas Veli University, Faculty of Engineering and Architecture, Department of Food Engineering, 50300 Nevsehir, Turkiye.
| | - Mehmet Akdeniz
- The Council of Forensic Medicine, Diyarbakir Group Chairmanship, 21280 Diyarbakir, Turkiye
| | - Ismail Yener
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye.
| | - Mustafa Abdullah Yilmaz
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| | - Ozlem Cakir
- Bayburt University, Faculty of Engineering, Department of Food Engineering, 69000 Bayburt, Turkiye.
| | - Abdulselam Ertas
- Dicle University, Faculty of Pharmacy, Department of Analytical Chemistry, 21280 Diyarbakir, Turkiye
| |
Collapse
|
5
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
6
|
Lu X, Qian S, Wu X, Lan T, Zhang H, Liu J. Research progress of protein complex systems and their application in food: A review. Int J Biol Macromol 2024; 265:130987. [PMID: 38508559 DOI: 10.1016/j.ijbiomac.2024.130987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Among the common natural biomolecules, the excellent properties of proteins have attracted extensive attention from researchers for functional applications, however, in native form proteins have many limitations in the performance of their functional attribute. However, with the deepening of research, it has been found that the combination of natural active substances such as polyphenols, polysaccharides, etc. with protein molecules will make the composite system have stronger functional properties, while the utilization of pH-driven method, ultrasonic treatment, heat treatment, etc. not only provides a guarantee for the overall protein-based composite system, but also gives more possibilities to the protein-composite system. Protein composite systems are emerging in the fields of novel active packaging, functional factor delivery systems and gel systems with high medical value. The products of these protein composite systems usually have high functional properties, mainly due to the interaction of the remaining natural active substances with protein molecules, which can be broadly categorized into covalent interactions and non-covalent interactions, and which, despite the differences in these interactions, together constitute the cornerstone for the stability of protein composite systems and for in-depth research.
Collapse
Affiliation(s)
- Xiangning Lu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xinhui Wu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Grządka E, Bastrzyk A, Orzeł J, Oszczak-Nowińska A, Fliszkiewicz B, Siemieniuk M, Sobczyński K, Spławski O, Gołębiowska K, Ronda O, Cieślik BM. Do You Know What You Drink? Comparative Research on the Contents of Radioisotopes and Heavy Metals in Different Types of Tea from Various Parts of the World. Foods 2024; 13:742. [PMID: 38472854 DOI: 10.3390/foods13050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to assess the potential health risks of radioactive elements and heavy metals ingested through the consumption of various types of tea imported to the Polish market (black, green, red, oolong and white). The concentrations [Bq/kg] of radionuclides (40K, 137Cs, 226Ra, 210Pb and 228Th) in tea leaves before and after brewing were measured using γ-ray spectrometry with high-purity germanium (HPGe). The concentrations [mg/kg] of the studied elements (Fe, Cr, Cu, Mo, Al, Mn, Ni, P, V, Cd and Pb) were determined using a microwave-induced plasma optical emission spectrometer (MIP-OES). The results presented here will help to expand the database of heavy metals and radioactivity in teas. With regard to the potential health risk, the percentage of leaching of individual elements in different types of tea infusions was determined, and the assessment of the consumption risk was estimated. Since the calculated exposure factors, namely the HQ (Hazard Quotient) and THQ (Target Hazard Quotient), do not exceed critical levels, teas can still be considered health-beneficial products (most of the radionuclides as well as elements remain in the leaves (65-80%) after brewing).
Collapse
Affiliation(s)
- Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Anna Bastrzyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, C. K. Norwida 4/6 Sq., 50-373 Wroclaw, Poland
| | - Jolanta Orzeł
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Agata Oszczak-Nowińska
- Institute of Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa, Poland
| | - Bartłomiej Fliszkiewicz
- Institute of Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa, Poland
| | - Mateusz Siemieniuk
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Krzysztof Sobczyński
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Olgierd Spławski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Katarzyna Gołębiowska
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Oskar Ronda
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Bartłomiej Michał Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| |
Collapse
|
8
|
Álvarez SA, Rocha-Guzmán NE, Sánchez-Burgos JA, Gallegos-Infante JA, Moreno-Jiménez MR, González-Laredo RF, Solís-González S. Analysis of Antioxidant Constituents of Filtering Infusions from Oak ( Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) and Yerbaniz ( Tagetes lucida (Sweet) Voss) as Monoamine Oxidase Inhibitors. Molecules 2023; 28:5167. [PMID: 37446829 DOI: 10.3390/molecules28135167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The antioxidant constituents of ancestral products with ethnobotanical backgrounds are candidates for the study of filtering infusions to aid in pharmacotherapies focused on the treatment of depression and anxiety. Monoamine oxidase A (MAO-A) is an enzyme that regulates the metabolic breakdown of serotonin and noradrenaline in the nervous system. The goal of this study was to evaluate in vitro and in silico the effect of antioxidant constituents of filtering infusions from yerbaniz (Tagetes lucida (Sweet) Voss) and oak (Quercus sideroxyla Bonpl. and Quercus eduardii Trel.) as monoamine oxidase inhibitors. Materials were dried, ground, and mixed according to a simplex-centroid mixture design for obtaining infusions. Differential analysis of the phenolic constituent's ratio in the different infusions indicates that among the main compounds contributing to MAO-A inhibition are the gallic, chlorogenic, quinic, and shikimic acids, quercetin glucuronide and some glycosylated derivatives of ellagic acid and ellagic acid methyl ether. Infusions of Q. sideroxyla Bonpl. leaves, because of their content (99.45 ± 5.17 µg/mg) and synergy between these constituents for MAO-A inhibition (52.82 ± 3.20%), have the potential to treat depression and anxiety. Therefore, future studies with pharmacological approaches are needed to validate them as therapeutic agents with applications in mental health care.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Jorge Alberto Sánchez-Burgos
- Postgraduate Program in Food Sciences, TecNM/Instituto Tecnológico de Tepic, Avenida Tecnológico, Número 2595, Colonia Lagos del Country, Tepic 63175, Nayarit, Mexico
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Dgo., Mexico
| | - Santiago Solís-González
- TecNM/I.T. El Salto, Calle Tecnológico # 101, Col. La Forestal, El Salto 34942, P.N. Durango, Mexico
| |
Collapse
|