1
|
Joshi A, Kathuria D, Paul M, Singh N. An overview on the potential application of nanotechnology in enhancing the therapeutic efficacy of phytoestrogens. Food Chem 2025; 464:141779. [PMID: 39481307 DOI: 10.1016/j.foodchem.2024.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Phytoestrogens, derived from plants possesses structural similarity with 17 β-estradiol found in mammals. It is abundantly present in soybean along with red clove, alfalfa as well as other legumes, nuts, vegetables and seeds. It is used as hormone replacement therapy and exhibits both anti-estrogenic and estrogenic properties that linked to therapeutic benefits as well as plays active role in sports nutrition. Despite the potential benefits of phytoestrogens, their low solubility, bioavailability, and stability make it challenging to target them effectively. Recent advancements in nanotechnology have paved in facilitating target delivery. Scaling at nano level offered greater surface area, improved solubility, and bioavailability of phytoestrogens which has ultimately reduced the required medication dosage, and enhanced cost-effectiveness, particularly for expensive bioactive substances where precise dosages are recommended. The present article discussed about the potential application of nanotechnology in enhancing therapeutic benefits of phytoestrogens while minimizing their potential side effects.
Collapse
Affiliation(s)
- Aroma Joshi
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Maman Paul
- Department of Physiotherapy, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| |
Collapse
|
2
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
3
|
Tian M, Cheng J, Guo M. Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein. Antioxidants (Basel) 2024; 13:567. [PMID: 38790672 PMCID: PMC11117734 DOI: 10.3390/antiox13050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of -35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0-200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles' resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport.
Collapse
Affiliation(s)
- Mu Tian
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China;
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Liu B, Radiom M, Zhou J, Yan H, Zhang J, Wu D, Sun Q, Xuan Q, Li Y, Mezzenga R. Cation Triggered Self-Assembly of α-Lactalbumin Nanotubes. NANO LETTERS 2024. [PMID: 38598498 DOI: 10.1021/acs.nanolett.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Metal ions play a dual role in biological systems. Although they actively participate in vital life processes, they may contribute to protein aggregation and misfolding and thus contribute to development of diseases and other pathologies. In nanofabrication, metal ions mediate the formation of nanostructures with diverse properties. Here, we investigated the self-assembly of α-lactalbumin into nanotubes induced by coordination with metal ions, screened among the series Mn2+, Co2+, Ni2+, Zn2+, Cd2+, and Au3+. Our results revealed that the affinity of metal ions toward hydrolyzed α-lactalbumin peptides not only impacts the kinetics of nanotube formation but also influences their length and rigidity. These findings expand our understanding of supramolecular assembly processes in protein-based materials and pave the way for designing novel materials such as metallogels in biochip and biosensor applications.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, P. R. China
| | - Milad Radiom
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Huiling Yan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jipeng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Di Wu
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Qiyao Sun
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Qize Xuan
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, 8092 Zürich, Switzerland
- Department of Materials, ETH Zurich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Liu B, Li X, Zhang JP, Li X, Yuan Y, Hou GH, Zhang HJ, Zhang H, Li Y, Mezzenga R. Protein Nanotubes as Advanced Material Platforms and Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307627. [PMID: 37921269 DOI: 10.1002/adma.202307627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Protein nanotubes (PNTs) as state-of-the-art nanocarriers are promising for various potential applications both in the food and pharmaceutical industries. Derived from edible starting sources like α-lactalbumin, lysozyme, and ovalbumin, PNTs bear properties of biocompatibility and biodegradability. Their large specific surface area and hydrophobic core facilitate chemical modification and loading of bioactive substances, respectively. Moreover, their enhanced permeability and penetration ability across biological barriers such as intestinal mucus, extracellular matrix, and thrombus clot, make it promising platforms for health-related applications. Most importantly, their simple preparation processes enable large-scale production, supporting applications in the biomedical and nanotechnological fields. Understanding the self-assembly principles is crucial for controlling their morphology, size, and shape, and thus provides the ground to a multitude of applications. Here, the current state-of-the-art of PNTs including their building materials, physicochemical properties, and self-assembly mechanisms are comprehensively reviewed. The advantages and limitations, as well as challenges and prospects for their successful applications in biomaterial and pharmaceutical sectors are then discussed and highlighted. Potential cytotoxicity of PNTs and the need of regulations as critical factors for enabling in vivo applications are also highlighted. In the end, a brief summary and future prospects for PNTs as advanced platforms and delivery systems are included.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
| | - Xing Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Ji Peng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Xin Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Guo Hua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Juan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hui Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
6
|
Babatunde HA, Collins J, Lukman R, Saxton R, Andersen T, McDougal OM. SVR Chemometrics to Quantify β-Lactoglobulin and α-Lactalbumin in Milk Using MIR. Foods 2024; 13:166. [PMID: 38201194 PMCID: PMC10778881 DOI: 10.3390/foods13010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Protein content variation in milk can impact the quality and consistency of dairy products, necessitating access to in-line real time monitoring. Here, we present a chemometric approach for the qualitative and quantitative monitoring of β-lactoglobulin and α-lactalbumin, using mid-infrared spectroscopy (MIR). In this study, we employed Hotelling T2 and Q-residual for outlier detection, automated preprocessing using nippy, conducted wavenumber selection with genetic algorithms, and evaluated four chemometric models, including partial least squares, support vector regression (SVR), ridge, and logistic regression to accurately predict the concentrations of β-lactoglobulin and α-lactalbumin in milk. For the quantitative analysis of these two whey proteins, SVR performed the best to interpret protein concentration from 197 MIR spectra originating from 42 Cornell University samples of preserved pasteurized modified milk. The R2 values obtained for β-lactoglobulin and α-lactalbumin using leave one out cross-validation (LOOCV) are 92.8% and 92.7%, respectively, which is the highest correlation reported to date. Our approach introduced a combination of preprocessing automation, genetic algorithm-based wavenumber selection, and used Optuna to optimize the framework for tuning hyperparameters of the chemometric models, resulting in the best chemometric analysis of MIR data to quantitate β-lactoglobulin and α-lactalbumin to date.
Collapse
Affiliation(s)
| | - Joseph Collins
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| | - Rianat Lukman
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (R.L.); (R.S.)
| | - Rose Saxton
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (R.L.); (R.S.)
| | | | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (R.L.); (R.S.)
| |
Collapse
|