1
|
Xi Q, Chen Q, Ahmad W, Pan J, Zhao S, Xia Y, Ouyang Q, Chen Q. Quantitative analysis and visualization of chemical compositions during shrimp flesh deterioration using hyperspectral imaging: A comparative study of machine learning and deep learning models. Food Chem 2025; 481:143997. [PMID: 40174377 DOI: 10.1016/j.foodchem.2025.143997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
The current work explores hyperspectral imaging (HSI) to quantitatively identify changes in TVB-N and K value during shrimp flesh deterioration. The work developed low-level data fusion (LLF) and predictive models using both machine learning methods (PLS) and deep learning methods (CNN, LSTM, CNN-LSTM). Results indicate that deep learning methods show comparable performance due to their superior feature extraction and fitting capabilities, but traditional chemometric methods outperform deep learning models, achieving Rp2 = 0.9431 (TVB-N), and Rp2 = 0.9815 (K value). Subsequently, spatial distribution maps were generated based on the optimal predictive models to visualize the chemical composition changes in shrimp flesh. This approach allows for rapid, non-destructive prediction of spoilage-related changes. This technology can monitor shrimp quality in cold chain logistics, improve inventory management, and ensure seafood quality. Future research should optimize models for varied conditions and explore combining HSI method with other sensor technologies to enhance shrimp quality evaluation comprehensively and accurately.
Collapse
Affiliation(s)
- Qibing Xi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingmin Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Waqas Ahmad
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jing Pan
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Songguang Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Xia
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Wu J, Xia Y, Kang C, Li D, Wei J, Xu Y, Jiao T, Chen X, Chen Q, Chen Q. Application of odor imaging sensor coupled with hyperspectral imaging technology in monitoring the large yellow croaker (Larimichthys crocea) freshness. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125651. [PMID: 39740583 DOI: 10.1016/j.saa.2024.125651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Total volatile base nitrogen (TVB-N) is an important indicator for evaluating the freshness of aquatic products and holds great significance in assessing food safety. Traditional testing methods for TVB-N content use the Kjeldahl method, which has shortcomings like lengthy processes, cumbersome steps, and sample destruction. This study innovatively couples the hyperspectral imaging (HSI) technique with an odor imaging sensor (OIS) to achieve non-destructive prediction of TVB-N content in the large yellow croaker. Gas changes in the fish were captured through OIS. After this, a hyperspectral imager is used to simultaneously characterize the hyperspectral information of the OIS and the fish sample itself. Subsequently, the fish eye and fish body regions were selected as two regions of interest (ROI) to represent the hyperspectral information of the fish sample. Comparing the modeling performance of HSI data from the ROI from the fish eye and body, it was found that the body ROI can better represent the corruption information of the large yellow croaker. Finally, data fusion was applied to analyze the optimization effect of paired fusion of spectral information from different data sources. It was found that the fusion of OIS and the HSI of large yellow croaker body parts can obtain an excellent partial least squares (PLS) model with a prediction set determination coefficient (Rp2) of 0.9506, providing a novel view for seafood safety assessment.
Collapse
Affiliation(s)
- Jian Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu Xia
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Chengcheng Kang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yi Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| |
Collapse
|
3
|
Hu Y, Yu H, Song X, Chen W, Ding L, Chen J, Liu Z, Guo Y, Xu D, Zhu X, Zhou C, Zhang J, Liao B, Zhou J, Li X, Wang Y, He Y. Comprehensive assessment of matcha qualities and visualization of constituents using hyperspectral imaging technology. Food Res Int 2024; 196:115110. [PMID: 39614577 DOI: 10.1016/j.foodres.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Matcha, made from different tea leaves as raw material, exhibits diverse aromas and flavors. Therefore, there is an urgent need for a rapid, non-destructive method to assess the quality of matcha to ensure that these different characteristics are accurately assessed without compromising the integrity of the product. In this study, hyperspectral imaging technology (HSI) combined with machine learning methods enabled the first visual in situ assessment of matcha quality. The physicochemical contents of matcha were determined chemically. Qualitative and quantitative detection models for different types and grades were developed using HSI (containing Vis-NIR and NIR band). The results showed that hyperspectral data in the Vis-NIR were better than in the NIR band. The accuracy of XGBoost in modelling the classification of matcha grades reached 98.10 %. After feature selection using the random forest (RF) method, partial least squares regression (PLSR) was built to predicted the quality of matcha, which showed high prediction accuracy (test set Rp2 > 0.95). The model uses HSI to visually visualize spatial variations in constitutions (catechins, free amino acids, caffeine, soluble proteins, and soluble sugars) to show compositional differences between different types of matcha, providing a rapid non-destructive method for comprehensive assessment of matcha quality.
Collapse
Affiliation(s)
- Yan Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Huahao Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinbei Song
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Lejia Ding
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhiyuan Liu
- Faculty of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yihang Guo
- Faculty of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | | | | | | | | | - Binhui Liao
- Liandu Agriculture and Rural Bureau, Lishui, China
| | - Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Lin H, Zhang K, Guo J, Kwadzokpui BA, Adade SYSS, Chen Q. Olfactory analysis of oolong tea sensory quality using composite nano-colorimetric sensor array. Food Res Int 2024; 194:114912. [PMID: 39232533 DOI: 10.1016/j.foodres.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Chinese oolong tea is famous for its rich and diverse aromas, which is an important indicator for sensor quality evaluation. To accurately and rapidly evaluate sensory quality, a novel colorimetric sensor array (CSA) was developed to detect volatile organic compounds (VOCs) in oolong tea. We further explored the binding mechanism between colorimetric dyes that trigger changes in charge transfer and visible color changes. Based on this, we modified and optimized the CSA to improve the sensitivity by 17.1-234.9% and the stability by 8.7-33.3%. The study also assessed the effectiveness of this method by comparing two linear and two non-linear classification models, with the support vector machine (SVM) model achieving the highest accuracy, identifying different flavor intensity and grades with rates of 100% and 95.83%, respectively. These findings sufficiently demonstrated that the novel CSA, integrated with the SVM model, has promising potential for predicting the sensory quality of oolong tea.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Stunt Talent Laboratory, Bamatea Co., Ltd, Quanzhou 362000, PR China.
| | - Kexin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jilong Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Bridget Ama Kwadzokpui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
5
|
Mazur F, Han Z, Tjandra AD, Chandrawati R. Digitalization of Colorimetric Sensor Technologies for Food Safety. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404274. [PMID: 38932639 DOI: 10.1002/adma.202404274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Colorimetric sensors play a crucial role in promoting on-site testing, enabling the detection and/or quantification of various analytes based on changes in color. These sensors offer several advantages, such as simplicity, cost-effectiveness, and visual readouts, making them suitable for a wide range of applications, including food safety and monitoring. A critical component in portable colorimetric sensors involves their integration with color models for effective analysis and interpretation of output signals. The most commonly used models include CIELAB (Commission Internationale de l'Eclairage), RGB (Red, Green, Blue), and HSV (Hue, Saturation, Value). This review outlines the use of color models via digitalization in sensing applications within the food safety and monitoring field. Additionally, challenges, future directions, and considerations are discussed, highlighting a significant gap in integrating a comparative analysis toward determining the color model that results in the highest sensor performance. The aim of this review is to underline the potential of this integration in mitigating the global impact of food spoilage and contamination on health and the economy, proposing a multidisciplinary approach to harness the full capabilities of colorimetric sensors in ensuring food safety.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zifei Han
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Lin Y, Cheng JH, Ma J, Zhou C, Sun DW. Elevating nanomaterial optical sensor arrays through the integration of advanced machine learning techniques for enhancing visual inspection of food quality and safety. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39015031 DOI: 10.1080/10408398.2024.2376113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.
Collapse
Affiliation(s)
- Yuandong Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Chenyue Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Ireland
| |
Collapse
|
7
|
Fakhlaei R, Babadi AA, Sun C, Ariffin NM, Khatib A, Selamat J, Xiaobo Z. Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety. Food Chem 2024; 441:138402. [PMID: 38218155 DOI: 10.1016/j.foodchem.2024.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Safety and quality aspects of food products have always been critical issues for the food production and processing industries. Since conventional quality measurements are laborious, time-consuming, and expensive, it is vital to develop new, fast, non-invasive, cost-effective, and direct techniques to eliminate those challenges. Recently, non-destructive techniques have been applied in the food sector to improve the quality and safety of foodstuffs. The aim of this review is an effort to list non-destructive techniques (X-ray, computer tomography, ultraviolet-visible spectroscopy, hyperspectral imaging, infrared, Raman, terahertz, nuclear magnetic resonance, magnetic resonance imaging, and ultrasound imaging) based on the electromagnetic spectrum and discuss their principle and application in the food sector. This review provides an in-depth assessment of the different non-destructive techniques used for the quality and safety analysis of foodstuffs. We also discussed comprehensively about advantages, disadvantages, challenges, and opportunities for the application of each technique and recommended some solutions and developments for future trends.
Collapse
Affiliation(s)
- Rafieh Fakhlaei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Arman Amani Babadi
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunjun Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Naziruddin Mat Ariffin
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Jinap Selamat
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Lin H, Chen Z, Solomon Adade SYS, Yang W, Chen Q. Detection of Maize Mold Based on a Nanocomposite Colorimetric Sensor Array under Different Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11164-11173. [PMID: 38564679 DOI: 10.1021/acs.jafc.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
| | - Zeyu Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
| | | | - Wenjing Yang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, 9 13th Street, Economic and Technological Development Zone, Tianjin 300457, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| |
Collapse
|
9
|
Zhang J, Wu X, He C, Wu B, Zhang S, Sun J. Near-Infrared Spectroscopy Combined with Fuzzy Improved Direct Linear Discriminant Analysis for Nondestructive Discrimination of Chrysanthemum Tea Varieties. Foods 2024; 13:1439. [PMID: 38790739 PMCID: PMC11119828 DOI: 10.3390/foods13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of chrysanthemum tea has a great connection with its variety. Different types of chrysanthemum tea have very different efficacies and functions. Moreover, the discrimination of chrysanthemum tea varieties is a significant issue in the tea industry. Therefore, to correctly and non-destructively categorize chrysanthemum tea samples, this study attempted to design a novel feature extraction method based on the fuzzy set theory and improved direct linear discriminant analysis (IDLDA), called fuzzy IDLDA (FIDLDA), for extracting the discriminant features from the near-infrared (NIR) spectral data of chrysanthemum tea. To start with, a portable NIR spectrometer was used to collect NIR data for five varieties of chrysanthemum tea, totaling 400 samples. Secondly, the raw NIR spectra were processed by four different pretreatment methods to reduce noise and redundant data. Thirdly, NIR data dimensionality reduction was performed by principal component analysis (PCA). Fourthly, feature extraction from the NIR spectra was performed by linear discriminant analysis (LDA), IDLDA, and FIDLDA. Finally, the K-nearest neighbor (KNN) algorithm was applied to evaluate the classification accuracy of the discrimination system. The experimental results show that the discrimination accuracies of LDA, IDLDA, and FIDLDA could reach 87.2%, 94.4%, and 99.2%, respectively. Therefore, the combination of near-infrared spectroscopy and FIDLDA has great application potential and prospects in the field of nondestructive discrimination of chrysanthemum tea varieties.
Collapse
Affiliation(s)
- Jiawei Zhang
- Mengxi Honors College, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (S.Z.)
| | - Xiaohong Wu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (C.H.); (J.S.)
- High-Tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
| | - Chengyu He
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (C.H.); (J.S.)
| | - Bin Wu
- Department of Information Engineering, Chuzhou Polytechnic, Chuzhou 239000, China
| | - Shuyu Zhang
- Mengxi Honors College, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (S.Z.)
| | - Jun Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China; (C.H.); (J.S.)
| |
Collapse
|
10
|
Zhang Y, Zareef M, Rong Y, Lin H, Chen Q, Ouyang Q. Application of colorimetric sensor array coupled with chemometric methods for monitoring the freshness of snakehead fillets. Food Chem 2024; 439:138172. [PMID: 38091785 DOI: 10.1016/j.foodchem.2023.138172] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Total volatile basic nitrogen content (TVB-N) is an important index of freshness for snakehead. This paper attempted the feasibility of determining TVB-N content level in snakehead fillets by a colorimetric sensor array (CSA) composed of twelve porphyrin materials and eight pH indicators. The nine feature variables in RGB, HSV and CIE L*a*b* color spaces were obtained by differentiating the images of the CSA before and after exposure to the headspace-gas of the samples. Competitive adaptive reweighted sampling combined with partial least squares regression (CARS-PLS) was used to build the relationship between the TVB-N content and the feature variables of CSA, and to select meaningful color-sensitive materials. The results showed that CARS-PLS had a correlation coefficient of 0.9325 in the prediction set and selected 13 informative color-sensitive materials. This study demonstrated that the CSA with CARS-PLS algorithm could be used successfully to quantify and monitor the TVB-N in snakehead fillets.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Liu S, Rong Y, Chen Q, Ouyang Q. Colorimetric sensor array combined with chemometric methods for the assessment of aroma produced during the drying of tencha. Food Chem 2024; 432:137190. [PMID: 37633147 DOI: 10.1016/j.foodchem.2023.137190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The aroma produced during drying is an important indicator of tencha and needs to be monitored. This study constructed an olfactory visualization system for assessing tencha aroma using colorimetric sensor array (CSA) combined with chemometric methods. The 16 chemically responsive dyes were selected to obtain aroma information of tencha samples and extracted image data of aroma information by machine vision algorithms. Subsequently, k-nearest neighbor, support vector machine, classification and regression tree, and random forest (RF), four qualitative models were applied to build the mathematical models. The RF model with nine principal components was preferred, with recognition rate of 100.00% and 91.07% for the training and prediction sets, respectively. The experimental results showed that CSA combined with the RF model can be effectively applied to assess tencha aroma. This study provided a scientific and novel method to maintain the stability of tencha quality in the production process.
Collapse
Affiliation(s)
- Shuangshuang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
12
|
Rong Y, Riaz T, Lin H, Wang Z, Chen Q, Ouyang Q. Application of visible near-infrared spectroscopy combined with colorimetric sensor array for the aroma quality evaluation in tencha drying process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123385. [PMID: 37714101 DOI: 10.1016/j.saa.2023.123385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The drying process is a critical stage in developing the aroma quality of tencha. In our research, visible near infrared (Vis-NIR) and colorimetric sensor array (Vis-NIR-CSA) were used for evaluating the aroma quality of tencha drying process. Vis-NIR recorded the spectral signal of CSA after the reaction in samples. Subsequently, the aroma quality was predicted by a combination of different data fusion strategies and classification and regression tree (CART) in tencha drying process. The high-level fusion strategy showed the best performance, with calibration and prediction set accuracy of 94.68% and 93.48%, respectively. The results indicated that Vis-NIR-CSA combined with high-level data fusion could be applied satisfactorily in the aroma quality evaluation of tencha. Moreover, pentanal was identified to be highly correlated with aroma quality during tencha drying process, which verified the sensor identification results. This study contributed to controlling good manufacturing practices and designing optimal tencha processing systems.
Collapse
Affiliation(s)
- Yanna Rong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hao Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhen Wang
- National Research and Development Center for Matcha Processing Technology, Jiangsu Xinpin Tea Co., Ltd, Changzhou 213254, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Chen Y, Xie X, Wen Z, Zuo Y, Bai Z, Wu Q. Estimating the sensory-associated metabolites profiling of matcha based on PDO attributes as elucidated by NIRS and MS approaches. Heliyon 2023; 9:e21920. [PMID: 38027626 PMCID: PMC10654251 DOI: 10.1016/j.heliyon.2023.e21920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Matcha has been globally valued by consumers for its distinctive fragrance and flavor since ancient times. Currently, the protected designation of origin (PDO) certified matcha, characterized by unique sensory attributes, has garnered renewed interest from consumers and the industry. Given the challenges associated with assessing sensory perceptions, the origin of PDO-certified matcha samples from Guizhou was determined using NIRS and LC-MS platforms. Notably, the accuracy of our established attribute models, based on informative wavelengths selected by the CARS-PLS method, exceeds 0.9 for five sensory attributes, particularly the particle homogeneity attribute (with a validation correlation coefficient of 0.9668). Moreover, an LC-MS method was utilized to analyze non-target matcha metabolites to identify the primary flavor compounds associated with each flavor attribute and to pinpoint the key constituents responsible for variations in grade and flavor intensity. Additionally, high three-way intercorrelations between descriptive sensory attributes, metabolites, and the selected informative wavelengths were observed through network analysis, with correlation coefficients calculated to quantify these relationships. In this research, the integration of matcha chemical composition and sensory panel data was utilized to develop predictive models for assessing the flavor profile of matcha based on its chemical properties.
Collapse
Affiliation(s)
- Yan Chen
- Guizhou Key Laboratory of Information and Computing Science, Guizhou Normal University, 116 Baoshan North Rd, Guiyang, Guizhou, 550001, China
| | - Xiaoyao Xie
- Guizhou Key Laboratory of Information and Computing Science, Guizhou Normal University, 116 Baoshan North Rd, Guiyang, Guizhou, 550001, China
| | - Zhirui Wen
- Guizhou Key Laboratory of Information and Computing Science, Guizhou Normal University, 116 Baoshan North Rd, Guiyang, Guizhou, 550001, China
| | - Yamin Zuo
- School of Basic Medical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, 30 Renmin South Rd, Shiyan, Hubei, 442000, China
| | - Zhiwen Bai
- The Guizhou Gui Tea (Group) Co. Ltd., Huaxi District, Guiyang, Guizhou, 550001, China
| | - Qing Wu
- Guizhou Key Laboratory of Information and Computing Science, Guizhou Normal University, 116 Baoshan North Rd, Guiyang, Guizhou, 550001, China
- Guizhou Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd, Guiyang, Guizhou, 550001, China
- Innovation Laboratory, The Third Experiment Middle School in Guiyang, Guiyang, Guizhou, 550001, China
| |
Collapse
|