1
|
Liu X, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Bacterial viability retention in probiotic foods: a review. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 40215221 DOI: 10.1080/10408398.2025.2488228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Probiotics offer substantial health benefits, leading to their increased consumption in various food products. The viability of probiotics is a critical factor that influences the nutritional and therapeutic efficacy of these foods. However, as probiotics often lose viability during production and oral administration, effective preservation and encapsulation technologies are needed to overcome this challenge. This review elucidates the diverse sources and incorporation strategies of probiotics, while systematically analyzing the effects of water transformation (ice front velocity, glass transition temperature, and collapse temperature), processing conditions (food matrix, temperature, and dissolved oxygen), and gastrointestinal challenges (gastric fluid, digestive enzymes, and bile salts) on probiotic viability. Effective strategies to strengthen probiotic viability encompass three primary domains: fermentation processes, production techniques, and encapsulation methods. Specifically, these include meticulous fermentation control (nitrogen sources, lipids, and carbon sources), pre-stress treatments (pre-cooling, heat shock, NaCl stress, and acid stress), optimized lyoprotectant selection (carbohydrates, proteins, and polyols), synergistic freeze-drying technologies (infrared technology, spray drying, and microwave), bulk encapsulation approaches (polysaccharide or protein-based microencapsulation), and single-cell encapsulation methods (self-assembly and surface functionalization). Despite these advancements, targeting specific probiotics and food matrices remains challenging, necessitating further research to enhance probiotic viability.
Collapse
Affiliation(s)
- Xuewu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Xiao Y, Huang L, Zhao J, Chen W, Lu W. The gut core microbial species Bifidobacterium longum: Colonization, mechanisms, and health benefits. Microbiol Res 2025; 290:127966. [PMID: 39547052 DOI: 10.1016/j.micres.2024.127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bifidobacterium longum (B. longum) is a species of the core microbiome in the human gut, whose abundance is closely associated with host age and health status. B. longum has been shown to modulate host gut microecology and have the potential to alleviate various diseases. Comprehensive understanding on the colonization mechanism of B. longum and mechanism of the host-B. longum interactions, can provide us possibility to prevent and treat human diseases through B. longum-directed strategies. In this review, we summarized the gut colonization characteristics of B. longum, discussed the diet factors that have ability/potential to enrich indigenous and/or ingested B. longum strains, and reviewed the intervention mechanisms of B. longum in multiple diseases. The key findings are as follows: First, B. longum has specialized colonization mechanisms, like a wide carbohydrate utilization spectrum that allows it to adapt to the host's diet, species-level conserved genes encoding bile salt hydrolase (BSHs), and appropriate bacterial surface structures. Second, dietary intervention (e.g., anthocyanins) could effectively improve the gut colonization of B. longum, demonstrating the feasibility of diet-tuned strain colonization. Finally, we analyzed the skewed abundance of B. longum in different types of diseases and summarized the main mechanisms by which B. longum alleviates digestive (repairing the intestinal mucosal barrier by stimulating Paneth cell activity), immune (up-regulating the regulatory T cell (Treg) populations and maintaining the balance of Th1/Th2), and neurological diseases (regulating the kynurenine pathway and quinolinic acid levels in the brain through the gut-brain axis).
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Lijuan Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Khan S, Li M, Cheng M, Shu Y, Liang T, Shah H, Zhu H, Khan S, Zhang Z. Fabrication and characterization of Karaya gum-based films reinforced with bacterial nanocellulose stabilized valerian root extract Pickering emulsion for lamb meat preservation. Int J Biol Macromol 2024; 276:133875. [PMID: 39019366 DOI: 10.1016/j.ijbiomac.2024.133875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
A novel biodegradable film was fabricated by incorporating bacterial nanocellulose stabilized valerian root extract (VRE) Pickering emulsion into karaya gum with better antioxidant and antibacterial properties for lamb meat preservation. The valerian root extract Pickering emulsion (VPE) exhibited 98 ± 1.84 % encapsulating efficiency and excellent physical stability with an average particle size of 274.6 nm. The incorporation of VPE-5 into the film matrix increased its elongation at break (EAB), and improved water resistance and barrier properties against oxygen, water vapor, and UV light. Moreover, the antioxidant and anti-bacterial properties against S.aerous and E. coli were also improved based on VPE-5 concentration. The SEM images showed a uniform distribution of VPE-5 while FTIR and XRD revealed its compatibility with karaya gum, which improved its thermal stability. The active films showed a significant preservative effect by reducing the pH, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) value of lamb meat and maintained its texture and color during the storage period of 9 days at 4 °C. These results demonstrated the inclusion of VPE-5 into Karaya gum was a promising technique and offers a great potential application as a bioactive material in food packaging.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Haroon Shah
- Advanced innovation Center for Food Nutrition and human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Hanyu Zhu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Salman Khan
- Lab of brewing microbiology and applied enzymology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, College of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
4
|
Li H, Gao K, Guo H, Li R, Li G. Advancements in Gellan Gum-Based Films and Coatings for Active and Intelligent Packaging. Polymers (Basel) 2024; 16:2402. [PMID: 39274035 PMCID: PMC11397091 DOI: 10.3390/polym16172402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Gellan gum (GG) is a natural polysaccharide with a wide range of industrial applications. This review aims to investigate the potential of GG-based films and coatings to act as environmentally friendly substitutes for traditional petrochemical plastics in food packaging. GG-based films and coatings exhibit versatile properties that can be tailored through the incorporation of various substances, such as plant extracts, microorganisms, and nanoparticles. These functional additives enhance properties like the light barrier, antioxidant activity, and antimicrobial capabilities, all of which are essential for extending the shelf-life of perishable food items. The ability to control the release of active compounds, along with the adaptability of GG-based films and coatings to different food products, highlights their effectiveness in preserving quality and inhibiting microbial growth. Furthermore, GG-based composites that incorporate natural pigments can serve as visual indicators for monitoring food freshness. Overall, GG-based composites present a promising avenue for the development of sustainable and innovative food packaging solutions.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Wu Y, Zhang J, Hu X, Huang X, Zhang X, Zou X, Shi J. Preparation of edible antibacterial films based on corn starch /carbon nanodots for bioactive food packaging. Food Chem 2024; 444:138467. [PMID: 38309078 DOI: 10.1016/j.foodchem.2024.138467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Packaging plays an important role in protecting food from environmental impacts. However, traditional petroleum-based packaging has difficulty in meeting the antimicrobial and antioxidant requirements of prepared foods. This study introduced carbon dots (CDs), prepared by using carrot as a precursor, into corn starch (CS) to construct a bio-friendly composite film with high freshness retention properties. The scavenging of DPPH radicals reached 92.77 % at a CDs concentration of 512 µg/mL, and the antimicrobial activity of CS/5% CDs against Escherichia coli and Staphylococcus aureus was increased to 99.9 %. Notably, the homogeneous doping of CDs creates a dense surface and high carbon content inside the film, which promotes the elasticity and thermal stability of the composite film. Finally, we encapsulated deep-fried meatballs in CS-CDs films. The results showed that the CS-CDs films effectively protected the quality of deep-fried meatballs, and have excellent potential for application in food preservation.
Collapse
Affiliation(s)
- Yuqing Wu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Huang H, Yan W, Tan S, Zhao Y, Dong H, Liao W, Shi P, Yang X, He Q. Frontier in gellan gum-based microcapsules obtained by emulsification: Core-shell structure, interaction mechanism, intervention strategies. Int J Biol Macromol 2024; 272:132697. [PMID: 38843607 DOI: 10.1016/j.ijbiomac.2024.132697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
As a translucent functional gel with biodegradability, non-toxicity and acid resistance, gellan gum has been widely used in probiotic packaging, drug delivery, wound dressing, metal ion adsorption and other fields in recent years. Because of its remarkable gelation characteristics, gellan gum is suitable as the shell material of microcapsules to encapsulate functional substances, by which the functional components can improve stability and achieve delayed release. In recent years, many academically or commercially reliable products have rapidly emerged, but there is still a lack of relevant reports on in-depth research and systematic summaries regarding the process of microcapsule formation and its corresponding mechanisms. To address this challenge, this review focuses on the formation process and applications of gellan gum-based microcapsules, and details the commonly used preparation methods in microcapsule production. Additionally, it explores the impact of factors such as ion types, ion strength, temperature, pH, and others present in the solution on the performance of the microcapsules. On this basis, it summarizes and analyzes the prospects of gellan gum-based microcapsule products. The comprehensive insights from this review are expected to provide inspiration and design ideas for researchers.
Collapse
Affiliation(s)
- Huihua Huang
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Wenjing Yan
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuliang Tan
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yihui Zhao
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenzhen Liao
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Pengwei Shi
- Emergency Department, Nanfang Hospital, Southern Medical University, Guangzhou 510640, China
| | - Xingfen Yang
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health/Food Safety and Health Research Center/BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China; South China Hospital, Shenzhen University, Shenzhen 518116, China.
| |
Collapse
|
7
|
Li M, Yang Z, Zhai X, Li Z, Huang X, Shi J, Zou X, Lv G. Incorporation of Lactococcus lactis and Chia Mucilage for Improving the Physical and Biological Properties of Gelatin-Based Coating: Application for Strawberry Preservation. Foods 2024; 13:1102. [PMID: 38611406 PMCID: PMC11011328 DOI: 10.3390/foods13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, a gelatin/chia mucilage (GN/CM) composite coating material doped with Lactococcus lactis (LS) was developed for strawberry preservation applications. The results of the scanning electron microscope and Fourier transform infrared spectroscopy stated that the enhanced molecular interaction between the CM and GN matrix strengthened the density and compactness of the GN film. Antifungal results indicated that the addition of LS significantly (p < 0.05) improved the ability of the GN coating to inhibit the growth of Botrytis cinerea (inhibition percentage = 62.0 ± 4.6%). Adding CM significantly (p < 0.05) decreased the water vapour permeability and oxygen permeability of the GN coating by 32.7 ± 4.0% and 15.76 ± 1.89%, respectively. In addition, the incorporated CM also significantly (p < 0.05) improved the LS viability and elongation at break of the film by 13.11 ± 2.05% and 42.58 ± 1.21%, respectively. The GN/CM/LS composite coating material also exhibited an excellent washability. The results of this study indicated that the developed GN/CM/LS coating could be used as a novel active material for strawberry preservation.
Collapse
Affiliation(s)
- Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| | - Xiaobo Zou
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.L.); (Z.Y.); (X.Z.); (Z.L.); (X.H.); (G.L.)
| |
Collapse
|
8
|
Yang Z, Li M, Li Y, Huang X, Li Z, Zhai X, Shi J, Zou X, Xiao J, Sun Y, Povey M, Gong Y, Holmes M. Sodium alginate/guar gum based nanocomposite film incorporating β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion for mushroom preservation. Food Chem 2024; 437:137891. [PMID: 37922795 DOI: 10.1016/j.foodchem.2023.137891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The poor biological, mechanical and water-resistance properties of sodium alginate/guar gum film (SG) limit its application in food preservation. To overcome this disadvantage, we added β-Cyclodextrin/persimmon pectin-stabilized baobab seed oil Pickering emulsion (BOPE) to enhance the mechanical and water resistance properties of SG film, and added green synthesized silver nanoparticles (AgNPS) and Lycium ruthenicum extract (LA) to improve the biological properties of the film. The properties of BOPE was optimized using Box-Behnken design (BBD). Scanning electron microscope and Fourier transform infrared results revealed the change of structure and molecular interaction in the SG film after the addition of AgNPS, LA, and optimized BOPE. The 2.0%BOPE-loaded film containing AgNPS/LA with the enhanced mechanical, barrier, BO retention, and biological properties not only improved the preservation effect on mushroom (A. bisporus), but also maintained structural stability. Thus, the 2.0%BOPE-loaded SG/LA/AgNPS film has considerable potential in active packaging applications.
Collapse
Affiliation(s)
- Zhikun Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mingrui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaodong Zhai
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jianbo Xiao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Megan Povey
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
9
|
Sadeghi A, Ebrahimi M, Assadpour E, Jafari SM. Recent advances in probiotic breads; a market trend in the functional bakery products. Crit Rev Food Sci Nutr 2023; 64:13163-13174. [PMID: 37889505 DOI: 10.1080/10408398.2023.2261056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Although bread is the main consumed staple food worldwide containing essential micro- and macronutrients, incorporation of probiotics (PRO) into this nondairy product has been less documented. Due to the mechanical and thermal stresses during bread-making process, production of PRO bread (PRO-BR) is dependent on development of emerging strategies like edible coating, encapsulation, three-dimensional printing, and application of thermophilic PRO strains. In the present study, novel technological and formulation aspects of PRO-BR, as well as critical conditions for obtaining products with guaranteed PRO potential have been reviewed. The biological functionality of these products, their scale up, marketing and commercial success factors are also highlighted. Production of functional PRO-BR containing bioactive compounds, phytochemicals and prebiotic components as an emerging field also affects dough rheology and textural features, sensory attributes and shelf-life of the final product. Recent data has revealed the effect of PRO on acrylamide content and staling rate of the produced bread. Furthermore, there are clinical evidences confirming the effects of PRO and synbiotic breads on reduction of triacylglycerol, low-density lipoprotein, insulin level and malondialdehyde, along with the increase of nitric oxide in the patients with type II diabetes.
Collapse
Affiliation(s)
- Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Ebrahimi
- Food, Drug & Natural Products Health Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|