1
|
Ballon A, Queiroz LS, de Lamo-Castellví S, Güell C, Ferrando M, Jacobsen C, Yesiltas B. Physical and oxidative stability of 5 % fish oil-in-water emulsions stabilized with lesser mealworm (Alphitobius diaperinus larva) protein hydrolysates pretreated with ultrasound and pulsed electric fields. Food Chem 2025; 476:143339. [PMID: 39977981 DOI: 10.1016/j.foodchem.2025.143339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Lesser mealworm (Alphitobius diaperinus larva) meal was pretreated with ultrasound (US) or pulsed electric fields (PEF) and hydrolyzed using Alcalase or Trypsin enzymes. The resulting hydrolysates were evaluated for their ability to maintain physical and oxidative stability of 5 % fish oil-in-water emulsions. The effects of the pretreatment on enzymatic hydrolysis were assessed by measuring the degree of hydrolysis (DH), protein yield, and molecular weight distribution. Hydrolysates with 19-28 % DH were produced. Physical stability was evaluated in terms of creaming index, Turbiscan stability index, ζ-potential, and droplet size. Emulsions stabilized with US-pretreated Trypsin hydrolysates presented the smallest droplet sizes (0.626 μm). Primary and volatile secondary oxidation products were measured during storage. However, none of the hydrolysate-stabilized emulsions exhibited greater oxidative stability than sodium caseinate, the reference protein. These results suggest that although US-pretreated Trypsin hydrolysates exhibit potential as emulsifiers, additional antioxidants are needed to effectively control lipid oxidation.
Collapse
Affiliation(s)
- Aurélie Ballon
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Sílvia de Lamo-Castellví
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain; Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, United States
| | - Carme Güell
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Montse Ferrando
- Departament d'Enginyeria Química, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Lee SJ, Im J, Marasinghe SD, Jo E, Bandara MS, Lee Y, Lee J, Park GH, Oh C. Antioxidant and Anti-Inflammatory Activities of Cutlassfish Head Peptone in RAW 264.7 Macrophages. Antioxidants (Basel) 2025; 14:286. [PMID: 40227241 PMCID: PMC11939652 DOI: 10.3390/antiox14030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
The rapid growth of the fisheries industry has resulted in numerous by-products, usually called waste, causing environmental and economic challenges. Recent advances in valorization techniques have highlighted the potential of these by-products as sources of bioactive compounds. This study aimed to investigate the antioxidant and anti-inflammatory activities of cutlassfish (Trichiurus lepturus) head peptone (CP) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. CP exhibited significant antioxidant activity, reducing ABTS and DPPH radical scavenging activity by up to 79.66% and 64.69%, respectively, with a maximum ferric-reducing antioxidant power (FRAP) value of 224.54 μM. CP enhanced macrophage proliferation (33.3%) and significantly mitigated LPS-induced oxidative and inflammatory responses, reducing nitric oxide (NO) production (60%) and reactive oxygen species levels (49.14%). CP suppressed the expression of inflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygen-ase-2, and selectively inhibited the pro-inflammatory cytokines interleukin (IL)-1β and IL-6. Western blot analysis revealed that CP inhibited the phosphorylation of mitogen-activated protein kinases, including ERK, JNK, and p38, highlighting its role in modulating upstream inflammatory signaling pathways. CP exhibited significant antioxidant effects, particularly in scavenging ABTS and DPPH radicals, as well as reducing oxidative stress markers and inflammatory responses in LPS-stimulated macrophages. These findings suggest its potential not only as a therapeutic agent for conditions related to chronic inflammation, such as cardiovascular diseases and arthritis, but also as a functional ingredient in foods and nutraceuticals aimed at alleviating inflammation-related disorders.
Collapse
Affiliation(s)
- Su-Jin Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Jeonghyeon Im
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Svini Dileepa Marasinghe
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Eunyoung Jo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Minthari Sakethanika Bandara
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Youngdeuk Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
| | - Jaewon Lee
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Gun-Hoo Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chulhong Oh
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (S.-J.L.); (J.I.); (S.D.M.); (E.J.); (M.S.B.); (Y.L.); (J.L.)
- University of Science and Technology, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Pacheco AFC, Pacheco FC, Cunha JS, Nalon GA, Gusmão JVF, dos Santos FR, Andressa I, Paiva PHC, Tribst AAL, Leite Junior BRDC. Physicochemical Properties and In Vitro Antioxidant Activity Characterization of Protein Hydrolysates Obtained from Pumpkin Seeds Using Conventional and Ultrasound-Assisted Enzymatic Hydrolysis. Foods 2025; 14:782. [PMID: 40077484 PMCID: PMC11898833 DOI: 10.3390/foods14050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Pumpkin seed proteins (PSPs) are a promising resource for obtaining bioactive peptides but their low solubility hinders enzymatic hydrolysis, reducing yield and bioactivity. In addition, enzymatic processes require specific conditions and long processing times; improving the efficiency of this process is essential to expand its industrial applications. In this context, using a high-frequency, low-intensity ultrasound (US) has proven to be an effective strategy for optimizing the hydrolysis of plant protein. This study evaluated the US-assisted (38 W/L, 40 kHz) and conventional hydrolysis of pumpkin seed proteins (PSPs) for 180 min at 25 °C, 40 °C, and at the optimum temperature condition for each enzyme studied (60 °C for Brauzyn®, 55 °C for Flavourzyme®, and 50 °C for Neutrase®), as well as the impact of this process on the macrostructural and functional characteristics of the hydrolysates obtained. The degree of hydrolysis (DH) was significantly higher in US-assisted reactions, reaching increases of up to 57.7% with Neutrase® at 40 °C. The US also positively influenced the protein solubility of the hydrolysates, especially at pH levels close to the isoelectric point, with improvements of up to 100%, compared to the hydrolysates obtained from the conventional reaction. The antioxidant activity was also enhanced by the US, compared to the conventional reaction, emphasizing the hydrolysates obtained through the action of Flavourzyme®, which showed increases of 52.4% and 42.6% in the scavenging of DPPH and ABTS radicals, respectively. The analysis of the mean particle size revealed significant reductions with the US (<26.2%). Consequently, the polydispersity index (PDI) demonstrated greater uniformity in the particles obtained from the US-assisted reactions (reductions of up to 20.3%). UV-Vis spectroscopy and intrinsic fluorescence also indicated possible alterations in the tertiary structure of the peptides obtained, mainly in US-assisted reactions. Therefore, US-assisted PSP hydrolysis resulted in better enzymatic performance and produced protein hydrolysates with bioactive potential for food applications.
Collapse
Affiliation(s)
- Ana Flávia Coelho Pacheco
- Instituto de Laticínios Cândido Tostes, Empresa Agropecuária de Minas Gerais (EPAMIG), Tenente Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Flaviana Coelho Pacheco
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Jeferson Silva Cunha
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Gabriela Aparecida Nalon
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Jhonathan Valente Ferreira Gusmão
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Fábio Ribeiro dos Santos
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Irene Andressa
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| | - Paulo Henrique Costa Paiva
- Instituto de Laticínios Cândido Tostes, Empresa Agropecuária de Minas Gerais (EPAMIG), Tenente Luiz de Freitas, 116, Juiz de Fora 36045-560, MG, Brazil; (A.F.C.P.); (P.H.C.P.)
| | - Alline Artigiani Lima Tribst
- Núcleo de Estudos e Pesquisas em Alimentação (NEPA), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-852, SP, Brazil;
| | - Bruno Ricardo de Castro Leite Junior
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil; (F.C.P.); (J.S.C.); (G.A.N.); (J.V.F.G.); (F.R.d.S.); (I.A.)
| |
Collapse
|
4
|
Zhang S, Guo J, Suo S, Ju L, Jiang Z, Dong P, Wang Y, Dang Y, Du L. In vitro gastrointestinal digestion simulation screening of novel ACEI peptides from broccoli: mechanism in high glucose-induced VSMCs dysfunction. Front Nutr 2025; 12:1528184. [PMID: 39931369 PMCID: PMC11807808 DOI: 10.3389/fnut.2025.1528184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Many natural angiotensin-converting enzyme inhibitory (ACEI) peptides have been widely studied. However, their stability in vivo is poor in most cases. In this study, peptides were initially digested from broccoli in vitro, and absorption was simulated by Caco2 cells transport and then analyzed by Peptideomics and molecular docking. Subsequently, the mechanisms were verified using a high glucose-induced vascular smooth muscle cells (VSMCs) dysfunction model. Results showed that ACEI activity of broccoli crude peptide increased by 70.73 ± 1.42% after digestion. The enzymatic hydrolysates of crude broccoli peptides before and after digestion were detected by HPLC. The digested crude peptides were highly stable (with a stability level > 90%) in the intestine and possessed a strong absorptive potential. Five peptides with high stability and strong permeability were first identified, including HLEVR, LTEVR, LEHGF, HLVNK, and LLDGR, which exhibited high activity with IC50 values of 3.19 ± 0.23 mM, 17.07 ± 1.37 mM, 0.64 ± 0.02 mM, 0.06 ± 0.01 mM, and 2.81 ± 0.12 mM, respectively. When the VSMCs model was exposed to Ang II, the expressions of PCNA, MMP2, and Bcl2 were increased, while the expression of BAX was inhibited. When the VSMCs was exposed to high glucose (HG), the Ang II concentration significantly increased. This indicates that HG elevated Ang II levels. Finally, five peptides significantly attenuated Ang II-induced VSMCs proliferation and migration by down-regulating AT1R expression and inhibiting ERK and p38 MAPK phosphorylation. Notably, in exploring VSMCs dysfunction on a high glucose-induced model, ACEI peptides resulted in down-regulation of ACE and up-regulation of ACE2 expression. Therefore, it can be further referenced for the functional food against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Shuzhi Zhang
- School of Phamacy, Hangzhou Medical College, Hangzhou, China
| | - Jingjing Guo
- Luoyang Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shikun Suo
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Li Ju
- School of Phamacy, Hangzhou Medical College, Hangzhou, China
| | - Zhaoqiang Jiang
- School of Phamacy, Hangzhou Medical College, Hangzhou, China
| | - Pingshuan Dong
- Henan Provincial Key Laboratory of Cardiovascular Disease Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanli Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yali Dang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Laijing Du
- Luoyang Key Laboratory of Cardiovascular Science, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Huo J, Cui Z, Zhang R, Ouyang H, Liu X, Wang P, Yu X, Xie T, Gao S, Li S. Study on the effect and mechanism of ultrasonic-assisted enzymolysis on antioxidant peptide activity in walnuts. ULTRASONICS SONOCHEMISTRY 2025; 112:107159. [PMID: 39579584 PMCID: PMC11625241 DOI: 10.1016/j.ultsonch.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Walnut meal is a large quantity and high-quality resource with great exploitation value. Ultrasonic-assisted enzymolysis (UAE) was utilized in the preparation of peptides from walnut meal protein. Results indicated that by optimizing the UAE process with neutral protease, an ultrasound power of 180 W, a 4.3 h duration and an enzyme dosage of 10 KU/g, the walnut peptides exhibited the most potent antioxidant activity. In comparison to the control group, the WPI treated with ultrasound and neutral enzymes in combination (UNWPI) demonstrated a significant enhancement in their DPPH, ABTS, and ·OH scavenging capabilities, with increases of 234.23 %, 240.22 %, and 69.52 %, respectively. By analyzing the structure of walnut antioxidant peptides with or without ultrasound, it was observed that the underlying mechanism for the increased antioxidant activity was that UAE not only formed more small peptides, but also produced more peptides with hydrophobic amino acids at their terminal ends. Subsequently, six peptides were identified and screened from UNWPI, namely IFW, IIPF, IVAF, IIFY, ILAFF, and IFIP, which exhibited high antioxidant activity and could bind to Keap1 protein through hydrogen bonding, π-alkyl interactions, and π-π stacking interactions. The research results provided theoretical basis and technical support for the preparation of walnut antioxidant peptides and the high-value utilization of walnut meal.
Collapse
Affiliation(s)
- Jiaying Huo
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhaowei Cui
- TECHLEX Food Co., Ltd., Mianyang 621100, China
| | - Ruru Zhang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Hui Ouyang
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xiaolong Liu
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ping Wang
- Construction Corps Key Laboratory of Deep Processing on Featured Agricultural Products in South Xinjiang, Tarim University, Alar 843300, China
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | | | - Sihai Gao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
6
|
Song C, Yang Y, Zhao Z, Tan M, Chen Z, Zheng H, Gao J, Lin H, Zhu G, Cao W. Insight into the correlation of taste substances and salty-umami taste from Monetaria moneta hydrolysates prepared using different proteases. Food Chem X 2024; 24:102056. [PMID: 39717406 PMCID: PMC11664293 DOI: 10.1016/j.fochx.2024.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024] Open
Abstract
To prepare dual-functional seasoning ingredients with a salty-umami taste, five proteases were applied to hydrolyze Monetaria moneta proteins, preparing enzymatic hydrolysates. Their taste compounds along with the salty-umami taste, were investigated. The results revealed that enzymatic hydrolysis facilitated the release of taste compounds from M. moneta. The whiteness and < 3 kDa peptides of enzymatic hydrolysates significantly increased. Moreover, flavorzyme and protamex, with high DHs, could thoroughly hydrolyze the proteins, generating the enzymatic hydrolysates abundant in taste compounds (e.g., amino acids, nucleotides) that synergistically provided a strong salty-umami taste. Saltiness and umami posed a strong positive correlation, with a correlation coefficient exceeding 0.90, resulting in the highest levels of equivalent salty intensity (ESI = 80.05 gNaCl/L) and equivalent umami concentration (EUC = 84.56 gMSG/100 g) in the flavorzyme-treated hydrolysate, followed by the protamex-treated hydrolysate. In summary, these findings offer novel insights into preparing dual-functional seasoning ingredients with a salty-umami taste, ideal for use in low-salt food production.
Collapse
Affiliation(s)
- Chunyong Song
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yaofang Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhihang Zhao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingtang Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Haisheng Lin
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Guoping Zhu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| |
Collapse
|
7
|
Wang D, Su D, Xu H, Chen X, Lv W, Wang Y, Sun X, Guo Y, Ding Y. New insights into the drying technology of Pleurotus eryngii: Effects on protein structure, properties and product flavor analysis. Int J Biol Macromol 2024; 285:138306. [PMID: 39638170 DOI: 10.1016/j.ijbiomac.2024.138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Drying techniques have been widely used in food macromolecule modification, sterilization, and other fields. However, comparisons about the effects of different heat treatments on the structural and functional properties of proteins have yet to be elucidated. In this study, we compared the effects of boiling water, microwave, hot air, and infrared pretreatment on the structural and functional properties of P. eryngii (Pleurotus eryngii) proteins (PEP), with the addition of low-temperature hot air drying (Fresh-H) and vacuum freeze drying (VFD) as controls. The flavor of apricot mushroom products was also analyzed. The results showed that the PEP from boiling water pretreatment combined with hot air drying (BPHD) maintained high surface hydrophobicity, turbidity, particle size, and zeta potential. Microwave pretreatment combined with hot air drying (MPHD) of PEP had higher water and oil-holding properties, crystallinity, hydrolysis, and antioxidant capacity. Meanwhile, both MPHD and infrared pretreatment combined with hot air drying (IPHD) maintained higher emulsification, foaming, and free amino acid content. There were large differences in the types and contents of volatile compounds in P. eryngii with different treatments, providing more options.
Collapse
Affiliation(s)
- Deqing Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Dianbin Su
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Huihui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xiaofeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yukuan Ding
- College of Marine Technology, Ocean University of China, 238 Pine Ridge Road, Qingdao, Shandong 266100, China
| |
Collapse
|
8
|
Ma X, Wang W, Shi H, Kong X, Zhang L. Identification of novel antifreeze peptides from yak skin gelatin ultrasound-assisted enzymatic hydrolysate. ULTRASONICS SONOCHEMISTRY 2024; 111:107102. [PMID: 39433007 PMCID: PMC11533714 DOI: 10.1016/j.ultsonch.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
In this paper, a new type of antifreeze peptide was identified from the ultrasonic-assisted enzymolysis product of yak skin. First, the antifreeze peptides were obtained by ultrasonic-assisted enzymolysis of yak skin gelatin. The obtained peptides with 150 W ultrasound treatment could increase the survival rate of Lactobacillus plantarum from 16 % to 60 % after four freeze-thaw cycles. Then, the component with the highest antifreeze activity in the peptides' ultrafiltration product was analyzed by LC-MS/MS to obtain 961 peptides. After screening of antifreeze activity and physical properties, three antifreeze peptide sequences were obtained (S1: GERGGPGGPGPQ, S2: PGGAEGPGRDAQQP, S3: VAPPGAPKKEH). DSC analysis, Lactobacillus plantarum cryoprotection experiments and molecular docking showed that the S1 sequence had the best antifreeze activity. This study provides a new idea for the high-value utilization of yak by-products and a potential candidate for food antifreeze agents.
Collapse
Affiliation(s)
- Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wenxing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, PR China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, PR China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
9
|
Qi X, Lv X, Pan W, Shen M, Chen Y, Yu Q, Xie J. Antioxidant amyloid fibril derived from rice protein hydrolysate as stabilizer towards preparing high-stable emulsion. Food Chem 2024; 460:140745. [PMID: 39126945 DOI: 10.1016/j.foodchem.2024.140745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
An antioxidant amyloid fibril was prepared as an emulsifier by fibrillating limited enzymatic hydrolysis-modified rice protein (HRP). The purpose of this study was to investigate the feasibility of using fibrillated HRP to stabilize oil-in-water emulsion. A free radical scavenging assay revealed that the antioxidant activity of fibrillated HRP was 2.09 times higher than that of native rice protein. Fibrillated HRP demonstrated a marked reduction in interfacial tension, increased surface hydrophobicity and contact angle (> 80°), and rapid adsorption to the interface, with 35.34 ± 2.43% interfacial adsorbed protein content. The fibrillated HRP barriers resisted environment stresses such as NaCl, pH variations, long-term storage, while reducing lipid oxidation degree. Additionally, fibrillated HRP-based emulsion was more effective in protecting β-carotene from degradation compared to other samples. These findings provide theoretical support for the development of rice protein-based antioxidant emulsifiers and modification of emulsifying properties of plant proteins.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyu Lv
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wentao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Kaushik N, Falch E, Slizyte R, Kumari A, Khushboo, Hjellnes V, Sharma A, Rajauria G. Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chem 2024; 459:140244. [PMID: 38991448 DOI: 10.1016/j.foodchem.2024.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Protein-rich fish processing by-products, often called rest raw materials (RRM), account for approximately 60% of the total fish biomass. However, a considerable amount of these RRM is utilized for low-value products such as fish meal and silage. A promising and valuable approach for maximizing the utilization of RRM involves the extraction of bioactive fish protein hydrolysate (FPH). This review assesses and compares different hydrolyzation methods to produce FPH. Furthermore, the review highlights the purification strategy, nutritional compositions, and bioactive properties of FPH. Finally, it concludes by outlining the application of FPH in food products together with various safety and regulatory issues related to the commercialization of FPH as a protein ingredient in food. This review paves the way for future applications by highlighting efficient biotechnological methods for valorizing RRM into FPH and addressing safety concerns, enabling the widespread utilization of FPH as a valuable and sustainable source of protein.
Collapse
Affiliation(s)
- Nutan Kaushik
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India.
| | - Eva Falch
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Asha Kumari
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Khushboo
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Veronica Hjellnes
- NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abhishek Sharma
- Amity Food and Agricultural Foundation, Amity University Noida, Uttar Pradesh, India
| | - Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; SUSFERM Centre for Sustainable Fermentation and Bioprocessing Systems for Food and the Bioeconomy, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Wang Y, Ma CM, Yang Y, Wang B, Liu XF, Wang Y, Bian X, Zhang G, Zhang N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res Int 2024; 195:114991. [PMID: 39277253 DOI: 10.1016/j.foodres.2024.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.
Collapse
Affiliation(s)
- Yuan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Chun-Min Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Fei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
12
|
Byeon H, Shabaz M, Ramesh JVN, Dutta AK, Vijay R, Soni M, Patni JC, Rusho MA, Singh PP. Feature fusion-based food protein subcellular prediction for drug composition. Food Chem 2024; 454:139747. [PMID: 38797095 DOI: 10.1016/j.foodchem.2024.139747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
The structure and function of dietary proteins, as well as their subcellular prediction, are critical for designing and developing new drug compositions and understanding the pathophysiology of certain diseases. As a remedy, we provide a subcellular localization method based on feature fusion and clustering for dietary proteins. Additionally, an enhanced PseAAC (Pseudo-amino acid composition) method is suggested, which builds upon the conventional PseAAC. The study initially builds a novel model of representing the food protein sequence by integrating autocorrelation, chi density, and improved PseAAC to better convey information about the food protein sequence. After that, the dimensionality of the fused feature vectors is reduced by using principal component analysis. With prediction accuracies of 99.24% in the Gram-positive dataset and 95.33% in the Gram-negative dataset, respectively, the experimental findings demonstrate the practicability and efficacy of the proposed approach. This paper is basically exploring pseudo-amino acid composition of not any clinical aspect but exploring a pharmaceutical aspect for drug repositioning.
Collapse
Affiliation(s)
- Haewon Byeon
- Department of AI and Software, Inje University, Gimhae 50834, Republic of Korea; Inje University Medical Big Data Research Center, Gimhae 50834, Republic of Korea
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology, Jammu, J&K, India.
| | - Janjhyam Venkata Naga Ramesh
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur Dist., Andhra Pradesh 522302, India
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia.
| | - Richa Vijay
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Mukesh Soni
- Dr. D. Y. Patil Vidyapeeth, Pune, Dr. D. Y. Patil School of Science & Technology, Tathawade, Pune, India
| | | | - Maher Ali Rusho
- Department of Lockheed Martin Engineering Management, University of Colorado, Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
13
|
Hu Y, Badar IH, Liu Y, Zhu Y, Yang L, Kong B, Xu B. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides: A review. Food Chem 2024; 453:139664. [PMID: 38761739 DOI: 10.1016/j.foodchem.2024.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yuan Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Linwei Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, Jiangsu 210041, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
14
|
Ng WJ, Wong FC, Abd Manan F, Chow YL, Ooi AL, Ong MK, Zhang X, Chai TT. Antioxidant Peptides and Protein Hydrolysates from Tilapia: Cellular and In Vivo Evidences for Human Health Benefits. Foods 2024; 13:2945. [PMID: 39335873 PMCID: PMC11431209 DOI: 10.3390/foods13182945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Antioxidant peptides derived from aquatic organisms have attracted tremendous research interest due to their potential applications in human health. Tilapia is one of the most widely farmed aquaculture species globally. The current understanding of tilapia-derived antioxidant peptides is gradually expanding. This review discusses the current knowledge of peptides and protein hydrolysates derived from tilapia muscle, skin, and scales, whose antioxidant capacity has been validated in various cellular and in vivo models. To date, at least 16 peptides and several hydrolysates have been identified from tilapia that protect human and non-human cell models against oxidative injury. Tilapia hydrolysates and peptide mixtures have also shown protective effects in animal models of oxidative stress-associated diseases and exercise-induced oxidative injury and fatigue. The key mechanisms of tilapia hydrolysates and peptide mixtures involve enhancing antioxidant enzyme activities and suppressing radical production. Notably, such hydrolysates also exerted additional in vivo functions, such as anti-inflammatory, anti-diabetic, wound healing, and antiaging properties. Taken together, tilapia-derived antioxidant peptides and hydrolysates represent a valuable source of functional ingredients for applications in functional food, dietary supplements, and therapeutic applications. Continued research into their health benefits is warranted in the future.
Collapse
Affiliation(s)
- Wen-Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Yit-Lai Chow
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ai-Lin Ooi
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Mei-Kying Ong
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China;
- Era Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518115, China
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| |
Collapse
|
15
|
Zhu J, Liu D, Lu F, Liu X, Wang Y, Ma H. A novel approach to produce soy protein isolate: Direct enzymatic hydrolysis of high-temperature soybean meal using proteinase produced by microbial solid-state fermentation. Int J Biol Macromol 2024:135598. [PMID: 39276878 DOI: 10.1016/j.ijbiomac.2024.135598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
This study proposed a novel extraction method for soy protein isolate, which involved solid-state fermentation of high-temperature soybean meal. The proteinases secreted by microorganisms acted on the high-temperature soybean meal, making the SPI easier to extract. The study concludes that Bacillus amyloliquefaciens subsp. plantarum CICC 10265 could be used for solid-state fermentation of soybean meal, and the fermentation effect was good, with a yield of 41.91 % for SPI. Compared to the direct extraction of SPI from high-temperature soybean meal, the yield had increased by 130.19 %. Meanwhile, we also conducted research on the losses during the SPI extraction process. Through experiments, the study identified the patterns of protease activity changes and microbial colony growth during solid-state fermentation of soybean meal by Bacillus amyloliquefaciens subsp. plantarum CICC 10265. It was concluded that extracting SPI after 8 h of fermentation is more suitable. The experimental results indicated that the total amino acid content of SPI extracted from fermented soybean meal was 2.1 % higher compared to SPI extracted from low-temperature soybean meal. The extracted SPI also met the microbial standards.
Collapse
Affiliation(s)
- Junsong Zhu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Feng Lu
- Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Xiaoshuang Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yucheng Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
16
|
Sęczyk Ł, Jariene E, Sugier D, Kołodziej B. Effects of the dose of administration, co-antioxidants, food matrix, and digestion-related factors on the in vitro bioaccessibility of rosmarinic acid - A model study. Food Chem 2024; 449:139201. [PMID: 38599104 DOI: 10.1016/j.foodchem.2024.139201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
This study aimed to determine the effect of the administration dose, combinations with co-antioxidants (vitamin C, caffeic acid, chlorogenic acid, catechin, rutin), and different food matrices (cooked and lyophilized hen eggs, chicken breast, soybean seeds, potatoes) on the potential bioaccessibility of rosmarinic acid (RA) in simulated digestion conditions, depending on the digestion stage (gastric and intestinal) and the contribution of physicochemical and biochemical digestion factors. The in vitro bioaccessibility of RA depended on the digestion stage and conditions. The physicochemical factors were mainly responsible for the bioaccessibility of RA applied alone. The higher RA doses improved its bioaccessibility, especially at the intestinal stage of digestion. Furthermore, the addition of vitamin C and protein-rich food matrices resulted in enhanced intestinal bioaccessibility of RA. In the future, the knowledge of factors influencing the bioaccessibility of RA can help enhance its favorable biological effects and therapeutic potential.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Elvyra Jariene
- Department of Plant Biology and Food Sciences, Agriculture Academy, Vytautas Magnus University, Donelaicio St. 58, Kaunas 44248, Lithuania.
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland.
| |
Collapse
|
17
|
Jiang C, Meng A, Shi X, Fu Z, Wang Y, Zhou J, Zhang X, Liu C. Preparation of antioxidant peptides from yak skin gelatin and their protective effect on myocardial ischemia reperfusion injury. Food Funct 2024; 15:7961-7973. [PMID: 38982985 DOI: 10.1039/d4fo00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We herein report a study on the antioxidant peptides that show potential in alleviating myocardial ischemia reperfusion injury (MI/RI). Yak skin gelatin fraction Ac (YSG-Ac), obtained through ultrafiltration and gel filtration with Sephadex G-15, exhibits a favorable nutrient composition, high foaming capacity and stability, and resistance against gastrointestinal digestion. LC-MS/MS analysis reveals that YSG-Ac contains 26 peptide segments with sequence lengths of 8 to 12 amino acids. Online screening suggests that the antioxidant capacity of YSG-Ac is mainly attributed to the presence of hydrophobic and antioxidant amino acids. In vitro, our results demonstrate the MI/RI protective effects of YSG-Ac by effectively repairing H2O2-induced oxidative damage in H9c2 cells, which is achieved by inhibiting malondialdehyde (MDA) levels, and increasing glutathione peroxidase (GSH-pX) and superoxide dismutase (SOD) activity. In vivo, our results further confirm the effectiveness of YSG-Ac in narrowing the area of myocardial infarction, decreasing MDA levels, increasing SOD activity, and reducing the content of lactate dehydrogenase (LDH) in a mouse MI/RI model. Molecular docking analysis indicates that PGADGQPGAK with xanthine dehydrogenase (XDH) and GAAGPTGPIGS with tumor necrosis factor-alpha (TNF-α) exhibit strong bonding capability, and other related targets also show certain binding ability toward YSG-Ac. This suggests that YSG-Ac can regulate MI/RI through multiple targets and pathways. Overall, our findings highlight the potential of YSG-Ac as a functional food ingredient with antioxidant and MI/RI protective characteristics.
Collapse
Affiliation(s)
- Chongning Jiang
- School of Pharmacy, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China.
| | - Aiguo Meng
- Affiliated Hospital, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China
| | - Xiaoyu Shi
- School of Pharmacy, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China.
| | - Zhiping Fu
- School of Pharmacy, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China.
| | - Yali Wang
- School of Pharmacy, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China.
| | - Jingjing Zhou
- School of Pharmacy, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China.
| | - Xiaowei Zhang
- Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang City, 050000, Hebei Province, China
| | - Chunyan Liu
- School of Pharmacy, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New Town, Tangshan, 063210 Hebei Province, China.
| |
Collapse
|
18
|
Lawrence BD, Infanger DW. Effect of silk fibroin protein hydrolysis on biochemistry, gelation kinetics, and NF-kB bioactivity in vitro. Int J Biol Macromol 2024; 272:132702. [PMID: 38810851 DOI: 10.1016/j.ijbiomac.2024.132702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/14/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Fibroin is a structural protein derived from silk cocoons, which may be used in a variety of biomedical applications due to its high biocompatibility and controllable material properties. Conversely, fibroin solution is inherently unstable in solution, which limits its potential utility. Fibroin hydrolysates possess enhanced aqueous solubility and stability, with known anti-inflammatory bioactivity. Here, silk-derived protein (SDP) was produced through controlled time, temperature, and pressure conditions to generate a novel and reproducible hydrolysate population. Both regenerated fibroin and SDP solution stability were characterized for MWD, amino acid content, solubility, viscosity, surface interaction, secondary structure formation, and in vitro assessment of NF-kB pathway activity. Mechanistic studies indicate that hydrolysis processing is required to enhance material stability by abolishing fibroin's ability to self-associate. In vitro assays using HCLE cells indicate SDP has dose dependent potency for inhibiting NF-kB driven gene expression of TNF-α and MMP-9. Collectively, the results support SDP's use as an anti-inflammatory wetting agent compatible with a wide range of both biomedical and industrial applications. Furthermore, the conditions used to generate SDP hydrolysates are readily accessible, produce a highly consistent material from batch-to-batch, and permit widespread investigation of this novel population for these purposes.
Collapse
Affiliation(s)
- Brian D Lawrence
- Silk Technologies Limited, Minneapolis, MN 55402, United States.
| | | |
Collapse
|
19
|
Zvereva EA, Hendrickson OD, Dzantiev BB, Zherdev AV. Comparison of competitive and sandwich immunochromatographic analysis in the authentication of chicken in meat products. Anal Biochem 2024; 689:115484. [PMID: 38382834 DOI: 10.1016/j.ab.2024.115484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Cheap chicken meat is often used as an undeclared substitute in meat products. In this study, two formats of the immunochromatographic assay (ICA) of immunoglobulins of class Y (IgY) as a biomarker for chicken authentication were developed. In both competitive ICA (cICA) and sandwich ICA (sICA), gold nanoparticles (GNP) were conjugated with anti-species antibodies. A simple procedure of sample preparation, which took only 30 min, was proposed. Test systems demonstrated high sensitivity and rapidity: visual limits of detection of IgY and assay durations were 12/14 ng/mL and 10/15 min for cICA and sICA, respectively. The absence of cross-reactivity with the mammalian species confirmed the high specificity of the test systems. Good applicability of the assays was confirmed for the detection of chicken in raw meat mixtures: as low as 3% and 0.2% (w/w) of chicken could be revealed in beef and pork by cICA and sICA, respectively. The influence of heat processing of meat-based products on immune recognition and, consequently, the analytical performance of the test systems was revealed. It was shown that sICA is preferable for the detection of IgY even in thermally processed meat. The proposed ICAs can be recommended for rapid on-site control of meat products' composition.
Collapse
Affiliation(s)
- Elena A Zvereva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Olga D Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, 119071, Moscow, Russia.
| |
Collapse
|
20
|
Yang F, Chen W, Dabbour M, Kumah Mintah B, Xu H, Pan J, Dai C, Ma H, He R. Preparation of housefly (Musca domestica) larvae protein hydrolysates: Influence of dual-sweeping-frequency ultrasound-assisted enzymatic hydrolysis on yield, antioxidative activity, functional and structural attributes. Food Chem 2024; 440:138253. [PMID: 38150897 DOI: 10.1016/j.foodchem.2023.138253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Dual-sweeping-frequency ultrasound (DSFU) was utilized in the preparation of polypeptides from housefly (Musca domestica) larvae protein (HLP). Results indicated that ultrasonication (20 ± 2/28 ± 2 kHz, 42 W/L, 25 min) significantly increased peptide yield and DPPH scavenging capacity by 8.25 % and 14.83 %, respectively. Solubility, foaming and emulsification properties of polypeptides were improved by 19.89 %, 33.33 % and 38.74 % over the control; along with notable reduction in particle size and increase in zeta potential. Tertiary structural changes of the sonicated hydrolysates were illustrated by UV and fluorescence spectra. FTIR showed that ultrasonication increased α-helix, β-turn, and random coil by 38.23 %, 46.35 % and 16.36 %, respectively, but decreased β-sheet by 48.03 %, indicating partial unfolding in HLP hydrolysate conformation and reduction in intermolecular interactions. The research results demonstrated that dual-sweeping-frequency ultrasonication has a great prospect in industry application for the purpose of improving enzymolysis efficiency and product quality for housefly larvae protein hydrolysates production.
Collapse
Affiliation(s)
- Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-Processing Technology and Food Bio-Sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
21
|
Fan G, Li Y, Ye Q, Niu Q, Zhao X, Chen L, Gu Q, Zhang Y, Wei X, Wu S, Wu Q, Wu Y. Animal-derived free hydrolysate in animal cell culture: Current research and application advances. J Tissue Eng 2024; 15:20417314241300388. [PMID: 39649943 PMCID: PMC11624555 DOI: 10.1177/20417314241300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal bovine serum (FBS) plays a crucial role in the composition of animal cell culture medium. However, conventional serum-based medium face numerous challenges. The use of animal-derived free hydrolysate (ADFH) has garnered significant attention in research and applications as a viable alternative to FBS-containing medium in animal cell culture. This article provides a comprehensive overview of the effects, mechanisms of action, and applications of ADFH in animal cell culture. ADFH serves as an effective substitute for FBS-containing medium, enhancing various cellular processes, including cell proliferation, viability, protein synthesis, production, survival, and stability. Several mechanisms of action for ADFH have been elucidated through scientific investigations, such as nutrient provision, activation of signaling pathways, regulation of protein synthesis and folding, protection against oxidative damage and apoptosis, as well as cell cycle regulation. Researches and applications of ADFH represent a promising approach to overcoming the limitations of FBS-containing medium and advancing the field of animal cell culture. This review provides a theoretical foundation for promoting the development of sustainable and alternative hydrolysates, as well as the continued progress of animal cell culture.
Collapse
Affiliation(s)
- Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- Guangdong Kehuan Biological Science and Technology Co. Ltd., Guangzhou, Guangdong, China
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|