1
|
Fu J, Li S, Liu L, Chen L, Zhang D. Immune function in mice enhanced by lamb soup colloidal nanoparticles: Plasma immune, metabolomics, signaling pathways. Food Res Int 2025; 209:116243. [PMID: 40253134 DOI: 10.1016/j.foodres.2025.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Colloidal nanoparticles (CNPs) are the main form of nutrients in soup products. Lamb soup has the efficacy of improving immunity, benefiting qi and tonifying the kidney. However, its immune mechanism remains unclear. In this study, BALB/c mice were constructed in normal control, prevention (P), model, cyclophosphamide immunodeficiency (CTX) and qi deficiency syndrome (QDS) groups. 18 mice were used for 7-d acclimitization and 5-d intraperitoneal injection modeling. After that, 3 mice were put to death to evaluate the modeling, and 15 mice were used for subsequent detection indicators. The less body weight, shorter exhaustion swimming time, lower organ index and lower plasma immunoglobulin content indicated that the CTX and QDS mouse models were successfully established. Results indicated that CNPs contributed to the weight gain as well as repaired the injury of the spleen and thymus in mice. Plasma immunity indices revealed that CNPs increased the immunoglobulin content of mice in the P, CTX, and QDS groups, thereby improving their immunity. Combined with metabolomics and KEGG database, GnRH, cAMP, Neurotrophin and PI3K-Akt signaling pathways were the key signaling pathways of lamb soup CNPs to enhance mice's immunity. This study aimed to provide a theoretical foundation for lamb soup to enhance immune function.
Collapse
Affiliation(s)
- Jianing Fu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
2
|
Fu J, Li S, Xu M, Liu L, Chen L, Zhang D. Absorption and transport mechanism of colloidal nanoparticles (CNPs) in lamb soup based on Caco-2 cell. Food Chem 2025; 463:141196. [PMID: 39260179 DOI: 10.1016/j.foodchem.2024.141196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Soup is an important presence in diet, but its absorption and transport mechanism by the human body remains unclear. In this study, Caco-2 intact cell and monolayer cell models were constructed to simulate small intestine absorption on colloidal nanoparticles (CNPs) isolated from lamb soup. The intracellular localization of CNPs was viewed by laser confocal microscopy (LSCM). CNPs uptake and release pathways were explored by differences in CNPs concentrations in 5 endocytosis inhibitor models and 4 exocytosis inhibitor models. Results indicated that CNPs endocytosis by Caco-2 cells was restrained by Nystatin and Cytochalasin D, with exocytosis being inhibited by Nocodazole and Monensin. Therefore, the major absorption pathways for CNPs were caveolin-dependent endocytosis, macropinocytosis and phagocytosis. The major transport pathways were microtubule-vesicle-mediated protein transport to the membrane and transportation between the Golgi apparatus and membrane. This study may provide theoretical support for the transport mechanism of soup products in the small intestine.
Collapse
Affiliation(s)
- Jianing Fu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Meizhen Xu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
He F, Yu Z, Luo S, Meng X, Wang L, Jin X, Huang Z, Zhang Y, Deng P, Peng WK, Ke L, Wang H, Zhou J, Wall P, Rao P. Why are clams steamed with wine in Mediterranean cuisine? NPJ Sci Food 2024; 8:44. [PMID: 38992032 PMCID: PMC11239664 DOI: 10.1038/s41538-024-00279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Wine is renowned for its rich content of polyphenols, including resveratrol (Res), known for their health promoting properties. Steamed clam with wine, a popular Mediterranean delicacy that highlights the role of wine as a key ingredient. However, despite these benefits, resveratrol's low bioavailability poses challenges. Could the process of steaming together with clam alter the digestive fate of resveratrol from wine? This study explores the potential of proteoglycan-based nanoparticles from freshwater clam (CFNPs) as a delivery vehicle for enhancing the stability and bioavailability of resveratrol, compared with wine and free Res' solution, aiming to elucidate mechanisms facilitating Res' absorption. The results demonstrated that CFNPs can effectively encapsulate Res with an efficiency over 70%, leading to a uniform particle size of 70.5±0.1 nm (PDI < 0.2). Resveratrol loaded in CFNPs (CFNPs-Res) exhibited an improved antioxidant stability under various conditions, retaining over 90% of antioxidant capacity after three-day storage at room temperature. The controlled-release profile of Res loaded in CFNPs fits both first and Higuchi order kinetics and was more desirable than that of wine and the free Res. Examined by the simulated gastrointestinal digestion, CFNPs-Res showed a significantly higher bioaccessibility and antioxidant retention compared to free Res and the wines. The discovery and use of food derived nanoparticles to carry micronutrients and antioxidants could lead to a shift in functional food design and nutritional advice, advocating much more attention on these entities over solely conventional molecules.
Collapse
Affiliation(s)
- Fangzhou He
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Zhaoshuo Yu
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiangyu Meng
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Leying Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xuanlu Jin
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zongke Huang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Zhang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Peishan Deng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Huiqin Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China.
| | - Jianwu Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China
| | - Patrick Wall
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Pingfan Rao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
4
|
Guan H, Tian Y, Feng C, Leng S, Zhao S, Liu D, Diao X. Migration of Nutrient Substances and Characteristic Changes of Chicken White Soup Emulsion from Chicken Skeleton during Cooking. Foods 2024; 13:410. [PMID: 38338545 PMCID: PMC10855391 DOI: 10.3390/foods13030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The protein and fat in chicken skeleton can be emulsified in a boiling state to form milky white chicken soup. White chicken soup has a delicious taste, good nutritional value, a beautiful color, and volatile flavor compounds. However, cooking time significantly impacts the quality of white chicken soup. Herein, we investigated the influence of cooking time (30, 60, 90, 120, 150, 180, and 210 min) on the migration of nutrient substances and characteristics changes in white chicken soup from chicken skeletons. The results showed that nutrients such as total lipids, water-soluble protein, total sugars, solid matter, and oligopeptides in the chicken skeletons' tissue continuously migrated into the soup during the cooking process. The total nutrient content in the chicken soup was highest after cooking for 180 min. Simultaneously, the white chicken soup obtained after cooking for 180 min had low interfacial tension and high whiteness, viscosity, and storage stability. The high stability index was associated with increased ζ potential and decreased particle size. The contact angle analysis results also indicated that the stability of the white chicken soup was improved when the cooking time reached 180 min. This research provides basic information for the production of high-quality white chicken soup.
Collapse
Affiliation(s)
| | | | | | | | | | - Dengyong Liu
- Meat Innovation Center of Liaoning Province, College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (H.G.); (Y.T.); (S.L.); (X.D.)
| | | |
Collapse
|