1
|
James A, Yao T, Ke H, Wang Y. Microbiota for production of wine with enhanced functional components. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Metagenomic bacterial diversity and metabolomics profiling of Buttafuoco wine production. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Identification and Characterization of Malolactic Bacteria Isolated from the Eastern Foothills of Helan Mountain in China. Foods 2022; 11:foods11162455. [PMID: 36010455 PMCID: PMC9407436 DOI: 10.3390/foods11162455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Malolactic fermentation (MLF) converts malic acid into lactic acid by lactic acid bacteria (LAB). MLF may affect potential wine quality impact as global warming intensifies, and the alcohol in the wine increases, which threatens MLF. Lactiplantibacillus plantarum is considered a new generation of MLF starter because of the ability of high ethanol tolerance and good enological characteristics. In this research, 132 LAB strains were isolated from the eastern foothills of Helan Mountain in Ningxia, China. Twenty-one higher ethanol tolerance isolates were obtained by 15% (v/v) ethanol preliminary screening. They were identified by 16S rRNA sequencing and differentiated by randomly amplified polymorphic DNA (RAPD). Stress factors include ethanol, pH, and SO2, and the combination of stresses was used to screen stress-tolerance strains. β-D-glucosidase activity, MLF performance, and biogenic amine content were tested to evaluate the enological characteristics. GC-MS detected the volatile components of the wine after MLF. The results showed that twenty strains were identified as L. plantarum, and one strain was Lentilactobacillus hilgardii. Especially, the strains of A7, A18, A23, A50, and B28 showed strong resistance to high ethanol, low pH, and high SO2. A7, A50, and B28 showed better β-D-glucosidase activity and thus were inoculated into cabernet sauvignon wines whose ethanol content was 14.75% (v/v) to proceed MLF. A7 finished MLF in 36 d, while the control strains Oenococcus oeni 31-DH and L. plantarum BV-S2 finished MLF in 24 d and 28 d, respectively. Nevertheless, A50 and B28 did not finish MLF in 36 d. The data showed that A7 brought a more volatile aroma than control. Notably, the esters and terpenes in the wine increased. These results demonstrated the potential applicability of L. plantarum A7 as a new MLF starter culture, especially for high-ethanol wines.
Collapse
|
4
|
Jin G, Jiranek V, Hayes AM, Grbin PR. Isolation and Characterization of High-Ethanol-Tolerance Lactic Acid Bacteria from Australian Wine. Foods 2022; 11:foods11091231. [PMID: 35563954 PMCID: PMC9101528 DOI: 10.3390/foods11091231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria are very important in winemaking. In this study, 108 lactic acid bacteria isolates were obtained from high-ethanol-content (~17% (v/v)) Grenache wines during uninoculated malolactic fermentation (MLF). The 16S rRNA and species-specific PCR showed that 104 of these were Oenococcusoeni, three were Lactobacillus hilgardii, and one was Staphylococcus pasteuri. AFLP of HindIII and MseI digests of the genomic DNA of the O. oeni strains was developed for the first time to discriminate the strains. The results showed that the method was a suitable technique for discriminating the O. oeni strains. Based on the cluster analysis, nine O. oeni strains were chosen for inclusion in an ethanol tolerance assay involving monitoring of optical density (ABS600nm) and viable plating. Several O. oeni strains (G63, G46, G71, G39) survived and grew well in MRS-AJ with 17% (v/v) ethanol, while the commercial O. oeni reference strain did not. Strain G63 could also survive and grow for 168 h after inoculation in MRS-AJ medium with 19% (v/v) ethanol. These results suggest that O. oeni G63, G46, G71, and G39 could potentially be used as MLF starters for high-ethanol-content wines. All three L. hilgardii strains could survive and grow in MRS-AJ with 19% (v/v) ethanol, perhaps also indicating their suitability as next-generation MLF starter cultures.
Collapse
Affiliation(s)
- Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, China
- Correspondence: (G.J.); (P.R.G.)
| | - Vladimir Jiranek
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; (V.J.); (A.M.H.)
| | - Aaron Mark Hayes
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; (V.J.); (A.M.H.)
| | - Paul R. Grbin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; (V.J.); (A.M.H.)
- Correspondence: (G.J.); (P.R.G.)
| |
Collapse
|
5
|
Rivas GA, Valdés La Hens D, Delfederico L, Olguin N, Bravo-Ferrada BM, Tymczyszyn EE, Semorile L, Brizuela NS. Molecular tools for the analysis of the microbiota involved in malolactic fermentation: from microbial diversity to selection of lactic acid bacteria of enological interest. World J Microbiol Biotechnol 2022; 38:19. [PMID: 34989896 DOI: 10.1007/s11274-021-03205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Winemaking is a complex process involving two successive fermentations: alcoholic fermentation, by yeasts, and malolactic fermentation (MLF), by lactic acid bacteria (LAB). During MLF, LAB can contribute positively to wine flavor through decarboxylation of malic acid with acidity reduction and other numerous enzymatic reactions. However, some microorganisms can have a negative impact on the quality of the wine through processes such as biogenic amine production. For these reasons, monitoring the bacterial community profiles during MLF can predict and control the quality of the final product. In addition, the selection of LAB from a wine-producing area is necessary for the formulation of native malolactic starter cultures well adapted to local winemaking practices and able to enhance the regional wine typicality. In this sense, molecular biology techniques are fundamental tools to decipher the native microbiome involved in MLF and to select bacterial strains with potential to function as starter cultures, given their enological and technological characteristics. In this context, this work reviews the different molecular tools (both culture-dependent and -independent) that can be applied to the study of MLF, either in bacterial isolates or in the microbial community of wine, and of its dynamics during the process.
Collapse
Affiliation(s)
- Gabriel Alejandro Rivas
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Danay Valdés La Hens
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Lucrecia Delfederico
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Nair Olguin
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Bárbara Mercedes Bravo-Ferrada
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Emma Elizabeth Tymczyszyn
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Liliana Semorile
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Natalia Soledad Brizuela
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Hu K, Zhao H, Kang X, Ge X, Zheng M, Hu Z, Tao Y. Fruity aroma modifications in Merlot wines during simultaneous alcoholic and malolactic fermentations through mixed culture of S. cerevisiae, P. fermentans, and L. brevis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Rodríguez-Sánchez S, Fernández-Pacheco P, Seseña S, Pintado C, Palop ML. Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Characterization of natural Oenococcus oeni strains for Montepulciano d’Abruzzo organic wine production. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03466-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
López-Seijas J, García-Fraga B, da Silva AF, Zas-García X, Lois LC, Gago-Martínez A, Leão-Martins JM, Sieiro C. Evaluation of Malolactic Bacteria Associated with Wines from Albariño Variety as Potential Starters: Screening for Quality and Safety. Foods 2020; 9:foods9010099. [PMID: 31963478 PMCID: PMC7022644 DOI: 10.3390/foods9010099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The biodiversity of lactic acid bacteria in musts and wines of Albariño variety has been studied. The identification of species was addressed through a combination of biochemical and genetic methods (API® 50 CHL test, 16S rDNA and recA gene sequences, Amplified Ribosomal DNA Restriction Analysis -ARDRA- and 16S-26S intergenic region analysis). The results grouped the isolates into six species predominating those of the genus Lactobacillus and showing a typical biogeographical distribution. Among sixteen strains evaluated, eight of them showed malolactic activity. The study of the presence of genes hdc, odc, and tdc, along with the LC/MS-MS analysis of biogenic amines in wine, showed five strains lacking aminogenic ability. The absence of the pad gene in the above-mentioned strains discards its ability to produce volatile phenols that may adversely affect the aroma. Finally, all malolactic strains showed β-glucosidase activity so that they could contribute to enhance and differentiate the aromatic profile of Albariño wines.
Collapse
Affiliation(s)
- Jacobo López-Seijas
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
| | - Belén García-Fraga
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
| | - Abigail F. da Silva
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
| | - Xavier Zas-García
- Department of Research & Development of Cellar “Condes de Albarei”, Lugar A Bouza 1, 36639 Cambados, Spain; (X.Z.-G.); (L.C.L.)
| | - Lucía C. Lois
- Department of Research & Development of Cellar “Condes de Albarei”, Lugar A Bouza 1, 36639 Cambados, Spain; (X.Z.-G.); (L.C.L.)
| | - Ana Gago-Martínez
- Department of Analytical and Food Chemistry, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (A.G.-M.); (J.M.L.-M.)
| | - José Manuel Leão-Martins
- Department of Analytical and Food Chemistry, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (A.G.-M.); (J.M.L.-M.)
| | - Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas–Marcosende, 36310 Vigo, Spain; (J.L.-S.); (B.G.-F.); (A.F.d.S.)
- Correspondence:
| |
Collapse
|
10
|
MOTA RVD, RAMOS CL, PEREGRINO I, HASSIMOTTO NMA, PURGATTO E, SOUZA CRD, DIAS DR, REGINA MDA. Identification of the potential inhibitors of malolactic fermentation in wines. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.16517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Evidence of the genetic diversity and clonal population structure of Oenococcus oeni strains isolated from different wine-making regions of China. J Microbiol 2018; 56:556-564. [PMID: 30047084 DOI: 10.1007/s12275-018-7568-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/19/2023]
Abstract
Studies of the genetic diversity and population structure of Oenococcus oeni (O. oeni) strains from China are lacking compared to other countries and regions. In this study, amplified fragment length polymorphism (AFLP) and multilocus sequence typing (MLST) methods were used to investigate the genetic diversity and regional evolutionary patterns of 38 O. oeni strains isolated from different wine-making regions in China. The results indicated that AFLP was markedly more efficient than MLST for typing O. oeni strains. AFLP distinguished 37 DNA patterns compared to 7 sequence types identified using MLST, corresponding to discriminatory indices of 0.999 and 0.602, respectively. The AFLP results revealed a high level of genetic diversity among the O. oeni strains from different regions of China, since two subpopulations and an intraspecific homology higher than 60% were observed. Phylogenetic analysis of the O. oeni strains using the MLST method also identified two major phylogroups, which were differentiated into two distinct clonal complexes by minimum spanning tree analysis. Neither intragenic nor intergenic recombination verified the existence of the clonal population structure of the O. oeni strains.
Collapse
|
12
|
Succi M, Pannella G, Tremonte P, Tipaldi L, Coppola R, Iorizzo M, Lombardi SJ, Sorrentino E. Sub-optimal pH Preadaptation Improves the Survival of Lactobacillus plantarum Strains and the Malic Acid Consumption in Wine-Like Medium. Front Microbiol 2017; 8:470. [PMID: 28382030 PMCID: PMC5360758 DOI: 10.3389/fmicb.2017.00470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Forty-two oenological strains of Lb. plantarum were assessed for their response to ethanol and pH values generally encountered in wines. Strains showed a higher variability in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10 or 14%). The study allowed to individuate the highest ethanol concentration (8%) and the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth rate (μmax) resulted significantly reduced by these conditions. Two strains (GT1 and LT11) preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or 3.0 showed only for GT1 a sensitive μmax increment when it was cultivated in MRS at pH 3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer's solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The impact of the physiologic state (exponential phase vs stationary phase) on the survival was also evaluated. Preadapted cells showed the same behavior of non-preadapted cells only when cultures were recovered in the stationary phase. Mathematical functions were individuated for the description of the survival of GT1 and LT11 in MRS at 14% ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC. Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant values of microbial counts after incubation for 15 days at 20°C. In addition, after 15 days the L-malic acid resulted completely degraded and the pH value increased of about 0.3 units.
Collapse
Affiliation(s)
- Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Luca Tipaldi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise Campobasso, Italy
| |
Collapse
|
13
|
Li Y, Ma Y, Huang K, Zhang H. Identification and Localization of β-D-Glucosidase from Two Typical Oenococcus oeni Strains. Pol J Microbiol 2016; 65:209-213. [PMID: 30015445 DOI: 10.5604/17331331.1204481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2015] [Indexed: 11/13/2022] Open
Abstract
β-D-glucosidase (βG) gene from Oenococcus oeni SD-2a and 31MBR was cloned, sequenced and analyzed, also intracellular βG of the two strains was further localized. The results showed that βG gene of the two strains was in high homology (> 99%) to reported βG gene, con-firming both strains possess βG activity at the molecular level. Intracellular βG of SD-2a is a mainly soluble protein, existing mostly in the cytoplasm and to some extent in the periplasm. While for 31MBR, intracellular βG is mainly insoluble protein existing in the cytoplasmic membrane. This study provides basic information for further study of the metabolic mechanism of βG from O. oeni SD-2a and 31MBR.
Collapse
Affiliation(s)
- Yahui Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Kaihong Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hongzhi Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Chuah LO, Shamila-Syuhada AK, Liong MT, Rosma A, Thong KL, Rusul G. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak. Food Microbiol 2016; 58:95-104. [PMID: 27217364 DOI: 10.1016/j.fm.2016.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 01/20/2023]
Abstract
This study aims to determine physio-chemical properties of tempoyak, characterise the various indigenous species of lactic acid bacteria (LAB) present at different stages of fermentation and also to determine the survival of selected foodborne pathogens in tempoyak. The predominant microorganisms present in tempoyak were LAB (8.88-10.42 log CFU/g). Fructobacillus durionis and Lactobacillus plantarum were the dominant members of LAB. Other LAB species detected for the first time in tempoyak were a fructophilic strain of Lactobacillus fructivorans, Leuconostoc dextranicum, Lactobacillus collinoides and Lactobacillus paracasei. Heterofermentative Leuconostoc mesenteroides and F. durionis were predominant in the initial stage of fermentation, and as fermentation proceeded, F. durionis remained predominant, but towards the end of fermentation, homofermentative Lb. plantarum became the predominant species. Lactic, acetic and propionic acids were present in concentrations ranging from 0.30 to 9.65, 0.51 to 7.14 and 3.90 to 7.31 mg/g, respectively. Genotyping showed a high degree of diversity among F. durionis and Lb. plantarum isolates, suggesting different sources of LAB. All tested Lb. plantarum and F. durionis (except for one isolate) isolates were multidrug resistant. Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were not detected. However, survival study showed that these pathogens could survive up to 8-12 days. The results aiming at improving the quality and safety of tempoyak.
Collapse
Affiliation(s)
- Li-Oon Chuah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Min Tze Liong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ahmad Rosma
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gulam Rusul
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
15
|
Vigentini I, Praz A, Domeneghetti D, Zenato S, Picozzi C, Barmaz A, Foschino R. Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains. J Appl Microbiol 2016; 120:934-45. [PMID: 26820246 DOI: 10.1111/jam.13080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
Affiliation(s)
- I. Vigentini
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| | - A. Praz
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| | | | - S. Zenato
- Institut Agricole Régional of Aosta; Aosta Italy
| | - C. Picozzi
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| | - A. Barmaz
- Institut Agricole Régional of Aosta; Aosta Italy
| | - R. Foschino
- Department of Food, Environmental and Nutrition Sciences; Università degli studi di Milano; Milan Italy
| |
Collapse
|
16
|
Li S, Nie Y, Ding Y, Zhao J, Tang X. Effects of Pure and Mixed Koji Cultures with S
accharomyces cerevisiae
on Apple Homogenate Cider Fermentation. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shuying Li
- Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Institute of Agro-Products Processing Science and Technology; No. 2 Yuan Ming Yuan West Road Beijing 100193 China
| | - Ying Nie
- Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Institute of Agro-Products Processing Science and Technology; No. 2 Yuan Ming Yuan West Road Beijing 100193 China
| | - Yang Ding
- Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Institute of Agro-Products Processing Science and Technology; No. 2 Yuan Ming Yuan West Road Beijing 100193 China
| | - Jinhong Zhao
- Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Institute of Agro-Products Processing Science and Technology; No. 2 Yuan Ming Yuan West Road Beijing 100193 China
| | - Xuanming Tang
- Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Institute of Agro-Products Processing Science and Technology; No. 2 Yuan Ming Yuan West Road Beijing 100193 China
| |
Collapse
|
17
|
The rapid identification of lactic acid bacteria present in Chilean winemaking processes using culture-independent analysis. ANN MICROBIOL 2014; 64:1857-1859. [PMID: 25419200 PMCID: PMC4234820 DOI: 10.1007/s13213-014-0810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/09/2014] [Indexed: 12/20/2022] Open
Abstract
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of 16S ribosomal RNA (rRNA) genes was developed to identify lactic acid bacteria (LAB) that are commonly present in winemaking processes (Oenococcus, Pediococcus, Lactobacillus, and Leuconostoc). This culture-independent approach revealed the presence of Oenococcus in the spontaneous malolactic fermentation in industrial Chilean wines.
Collapse
|
18
|
Pérez-Martín F, Seseña S, Palop ML. Inventory of lactic acid bacteria populations in red wine varieties from Appellation of Origin Méntrida. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Pérez-Martín F, Seseña S, Fernández-González M, Arévalo M, Palop ML. Microbial communities in air and wine of a winery at two consecutive vintages. Int J Food Microbiol 2014; 190:44-53. [DOI: 10.1016/j.ijfoodmicro.2014.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/04/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
20
|
Fahimi N, Brandam C, Taillandier P. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni. World J Microbiol Biotechnol 2014; 30:3163-72. [PMID: 25248866 DOI: 10.1007/s11274-014-1743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains.
Collapse
Affiliation(s)
- N Fahimi
- Laboratoire de Génie Chimique, Université de Toulouse, INPT, UPS, 4, Allée Emile Monso, BP 83234, 31432, Toulouse Cedex 4, France,
| | | | | |
Collapse
|
21
|
Mutation and selection of Oenococcus oeni for controlling wine malolactic fermentation. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
González-Arenzana L, López R, Portu J, Santamaría P, Garde-Cerdán T, López-Alfaro I. Molecular analysis of Oenococcus oeni and the relationships among and between commercial and autochthonous strains. J Biosci Bioeng 2014; 118:272-6. [DOI: 10.1016/j.jbiosc.2014.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
23
|
Testa B, Lombardi SJ, Tremonte P, Succi M, Tipaldi L, Pannella G, Sorrentino E, Iorizzo M, Coppola R. Biodiversity of Lactobacillus plantarum from traditional Italian wines. World J Microbiol Biotechnol 2014; 30:2299-305. [PMID: 24817564 PMCID: PMC4072923 DOI: 10.1007/s11274-014-1654-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/15/2014] [Indexed: 11/27/2022]
Abstract
In this study, 23 samples of traditional wines produced in Southern Italy were subjected to microbiological analyses with the aim to identify and biotype the predominant species of lactic acid bacilli. For this purpose, a multiple approach, consisting in the application of both phenotypic (API 50CHL test) and biomolecular methods (polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing) was used. The results showed that Lactobacillus plantarum was the predominant species, whereas Lb. brevis was detected in lower amount. In detail, out of 80 isolates 58 were ascribable to Lb. plantarum and 22 to Lb. brevis. Randomly amplified polymorphic DNA-polymerase chain reaction was used to highlight intraspecific variability among Lb. plantarum strains. Interestingly, the cluster analysis evidenced a relationship between different biotypes of Lb. plantarum and their origin, in terms of wine variety. Data acquired in this work show the possibility to obtain several malolactic fermentation starter cultures, composed by different Lb. plantarum biotypes, for their proper use in winemaking processes which are distinctive for each wine.
Collapse
Affiliation(s)
- Bruno Testa
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Luca Tipaldi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Gianfranco Pannella
- School of Agricultural, Forest and Environmental Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy
| |
Collapse
|
24
|
Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider. J Ind Microbiol Biotechnol 2014; 41:853-67. [DOI: 10.1007/s10295-014-1402-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Abstract
Given the lack of research in the traditional cider making field when compared to the efforts devoted to winemaking, this work focused on the effects of controlled inoculation of the malolactic fermentation (MLF) on the sensory properties of cider. MLF develops spontaneously in cider making at industrial level. In this work, industrial cider samples were inoculated with selected indigenous Oenococcus oeni strains and the benefits on the aroma and flavour in cider production compared to non-inoculated ciders were evaluated. Randomly amplified polymorphic DNA PCR was used to monitor strain colonization ability, outnumbering the indigenous microbiota, after completion of the alcoholic fermentation at industrial scale (20,000 l). Aroma-active compounds of experimentally inoculated ciders were analysed by HPLC and GC–MS, and sensory profiles were determined by fractioning aroma extracts using reversed-phase HPLC. Principal component analysis allowed the identification of relationships and differences among ciders with or without inoculation, including several highly appreciated commercial ones obtained under spontaneous conditions. Under controlled inoculation conditions, not only could MLF be shortened by half but, interestingly, enhancement of aroma complexity and flavour resulted in ciders enriched with a higher fruity note. In addition, important aromatic groups analysed here had not been previously described, thus affording deeper knowledge on aroma characterization of apple cider.
Collapse
|
25
|
A comparative study of different PCR-based DNA fingerprinting techniques for typing of lactic acid bacteria. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2197-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
González-Arenzana L, López R, Santamaría P, López-Alfaro I. Dynamics of lactic acid bacteria populations in Rioja wines by PCR-DGGE, comparison with culture-dependent methods. Appl Microbiol Biotechnol 2013; 97:6931-41. [DOI: 10.1007/s00253-013-4974-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/24/2022]
|
27
|
González-Arenzana L, Santamaría P, López R, López-Alfaro I. Indigenous lactic acid bacteria communities in alcoholic and malolactic fermentations of Tempranillo wines elaborated in ten wineries of La Rioja (Spain). Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Establishment of a viable cell detection system for microorganisms in wine based on ethidium monoazide and quantitative PCR. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.02.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Mesas J, Rodríguez M, Alegre M. Basic characterization and partial purification of β-glucosidase from cell-free extracts of Oenococcus oeni ST81. Lett Appl Microbiol 2012; 55:247-55. [DOI: 10.1111/j.1472-765x.2012.03285.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kačániová M, Hleba L, Pochop J, Kádasi-Horáková M, Fikselová M, Rovná K. Determination of wine microbiota using classical method, polymerase chain method and Step One Real-Time PCR during fermentation process. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:571-578. [PMID: 22494381 DOI: 10.1080/03601234.2012.665750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of our study was the identification of grape, must and wine microbiota during the fermentation process using a classical microbiological method and Real-Time PCR. The changes in different groups of microorganisms were monitored in total counts of bacteria, lactobacilli and yeasts. Microbiological parameters were observed during the current collection and processing of grapes in 2009. Samples were taken during the fermentation process in wine enterprises and a private vineyard. During this period 30 samples of wine among Müller Thurgau, Cabernet Sauvignon, Chardonnay, Tramin and Red Bio-wine were examined. Samples were collected from stages of grape-must unfiltered, grape-must filtered, the beginning of fermentation, fermentation, late fermentation and young wine. The highest total counts of bacteria ranged from 0.00 to 176 ± 15 CFU.mL(-1) in the wine of Müller Thurgau, the highest number of yeast ranged from 0.00 to 150 ± 9 CFU.mL(-1) in the wine of Müller Thurgau and the number of Lactobacillus spp. ranged from 0.00 to 92 ± 5 CFU.mL(-1) in the sample of Cabernet Sauvignon wine. The presence and sensitivity of Gram-positive and Gram-negative bacterial species Enterococcus faecium, Lactobacillus acidophilus, Lactobacillus crispatus and Lactobacillus salivarius were detected using Real-Time PCR (RTQ PCR). Susceptibility of Enterococcus faecium varied in different isolates from 1 to 10(6) CFU.mL(-1), the sensitivity of the species Lactobacillus acidophilus in different isolates of the wine samples ranged from 1 to 10(5) CFU.mL(-1). We also monitored representation of species Lactobacillus crispatus, which were captured by RTQ PCR sensitivity and ranged from 1 to 10(5) CFU.mL(-1). Identification of the species Lactobacillus salivarius in each of isolates by RTQ PCR method showed the presence of these bacteria in the range of 1 to 10(4) CFU.mL(-1).
Collapse
Affiliation(s)
- Miroslava Kačániová
- Department of Microbiology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
31
|
González-Arenzana L, López R, Santamaría P, Tenorio C, López-Alfaro I. Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. MICROBIAL ECOLOGY 2012; 63:12-19. [PMID: 21779812 DOI: 10.1007/s00248-011-9911-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
Diversity of lactic acid bacteria (LAB) species has been analyzed for three consecutive years (2006, 2007, and 2008) during alcoholic and malolactic fermentations of Tempranillo wine in a winery at La Rioja. The results showed differences in malolactic fermentation duration, and in both diversity of LAB species and diversity of Oenococcus oeni genotypes. O. oeni was shown to be the predominant species (73% of total isolates). Monitoring the different strains of O. oeni using pulsed-field gel electrophoresis of chromosomal DNA digested with SfiI and ApaI allowed detection of a total of 37 distinct genotypes, most of them comprised at least two isolates. Six appeared in more than one vintage, one of them being present in the three studied years. Moreover, four genotypes were indistinct of the strains isolated from the air of this same winery in 2007 vintage. The frequency of participation of each genotype varied from year to year, thus dominant genotypes at one year were minority or not present at another year. This suggests that distinct indigenous O. oeni strains are better adapted to the different winery conditions every year. Predominant genotypes that appeared in more than one vintage and lead to quality wines with low histamine contents could be considered as interesting for selecting of new malolactic starter cultures.
Collapse
Affiliation(s)
- Lucía González-Arenzana
- Servicio de Investigación y Desarrollo Tecnológico Agroalimentario del Gobierno de La Rioja, Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja), Universidad de La Rioja and CSIC, Ctra. de Mendavia-Logroño (NA 134, km. 88), 26071, Logroño, La Rioja, Spain
| | | | | | | | | |
Collapse
|
32
|
Mesas JM, Rodríguez MC, Alegre MT. Characterization of lactic acid bacteria from musts and wines of three consecutive vintages of Ribeira Sacra. Lett Appl Microbiol 2011; 52:258-68. [PMID: 21204877 DOI: 10.1111/j.1472-765x.2010.02991.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS This study was designed to isolate and characterize the lactic acid microbiota of the musts and wines of a young denomination of origin area, Ribeira Sacra in north-west Spain. METHODS AND RESULTS Over three consecutive years (2007, 2008 and 2009), we examined musts and wines from four cellars in different zones of the region. Through biochemical and genetic tests, 459 isolates of lactic acid bacteria (LAB) were identified as the following species: Lactobacillus alvei (0·7%), Lactobacillus brevis (1·7%), Lactobacillus frumenti (0·9%), Lactobacillus kunkeei (12%), Lactobacillus plantarum (6·5%), Lactobacillus pentosus (0·9%), Lactococcus lactis ssp. lactis (3%), Leuconostoc citreum (0·7%), Leuconostoc fructosum (synon. Lactobacillus fructosum) (3·7%), Leuconostoc mesenteroides ssp. mesenteroides (2·8%), Leuconostoc pseudomesenteroides (0·2%), Oenococcus oeni (59%), Pediococcus parvulus (7%) and Weisella paramesenteroides (synon. Leuconostoc paramesenteroides) (0·9%). Of these species, O. oeni was the main one responsible for malolactic fermentation (MLF) in all cellars and years with the exception of Lact. plantarum, predominant in 2007, in one cellar, and Lact. brevis, Lact. frumenti and Ped. parvulus coexisting with O. oeni in one cellar in 2009. Different strains (84) of LAB species (14) were identified by biochemical techniques (API strips, the presence of plasmids, enzyme activities and MLF performance) and molecular techniques (PCR). All assays were carried out with every one of the 459 isolates. To select candidates for use as culture starters, we assessed malolactic, β-glucosidase and tannase activities, the presence of genes involved in biogenic amine production and plasmid content. CONCLUSIONS A high diversity of LAB is present in the grape musts of Ribeira Sacra but few species are responsible for MLF; however, different strains of such species are involved in the process. As far as we are aware, this is the first report of Lact. frumenti thriving in wine. SIGNIFICANCE AND IMPACT OF THE STUDY Information on LAB populations in must and wine is presented. A large collection of well-characterized strains of LAB are available as starter cultures to winemakers.
Collapse
Affiliation(s)
- J M Mesas
- Departamento de Química Analítica, Nutrición y Bromatología (Tecnología de Alimentos), Escuela Politécnica Superior, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo, Spain.
| | | | | |
Collapse
|
33
|
Fredericks IN, du Toit M, Krügel M. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol 2010; 28:510-7. [PMID: 21356459 DOI: 10.1016/j.fm.2010.10.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/22/2010] [Accepted: 10/23/2010] [Indexed: 11/26/2022]
Abstract
Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p < 0.05) germicidal effect against wine-specific microorganisms; hence, UV-C radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels.
Collapse
Affiliation(s)
- Ilse N Fredericks
- Faculty of Applied Sciences, Department of Food Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | | | | |
Collapse
|
34
|
du Toit M, Engelbrecht L, Lerm E, Krieger-Weber S. Lactobacillus: the Next Generation of Malolactic Fermentation Starter Cultures—an Overview. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0448-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Bacterial biodiversity and dynamics during malolactic fermentation of Tempranillo wines as determined by a culture-independent method (PCR-DGGE). Appl Microbiol Biotechnol 2010; 86:1555-62. [DOI: 10.1007/s00253-010-2492-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|