1
|
Gonzales-Barron U, Pouillot R, De Oliveira Mota J, Hasegawa A, Allende A, Dong Q, Stasiewicz MJ, Kovacevic J, Cadavez V, Guillier L, Sanaa M. A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables. Foods 2024; 13:3610. [PMID: 39594027 PMCID: PMC11593469 DOI: 10.3390/foods13223610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
A quantitative risk assessment (QRA) model was developed to evaluate the risk of invasive listeriosis from the consumption of non-ready-to-eat (non-RTE) frozen vegetables. On a lot basis, the QRA model simulates Listeria monocytogenes concentration and prevalence in a "Processing module" that comprises blanching, potential recontamination and packaging, any post-packaging inactivation treatment, and within-lot end-product testing and in a subsequent "Consumer's handling module" that encompasses portioning of frozen vegetables, defrosting, and cooking. Based on available published data, the model was coded in nine sequential R functions designed to assess the effectiveness of blanching, the improvement in processing environment hygiene, the implementation of sampling schemes at the end of processing, and improved consumer instructions on the product's package. In a reference scenario, the model estimated that 9.4% of 500 g packages of frozen vegetables would be contaminated, although at mean levels lower than 10 CFU/g, and assuming that 20% of the portions of frozen vegetables would be left to thaw at room temperature for 2 h, the lot-level mean risk of listeriosis in the susceptible population would be 2.935 × 10-14 (median 5.446 × 10-15) for uncooked 50 g servings and 2.765 × 10-17 (median 5.184 × 10-18) for cooked 50 g servings. Analysis of selected scenarios suggested that not cooking the non-RTE product contributes to the risk to a greater extent than the level of contamination in the incoming raw vegetables, the latter in turn being more influential than the level of contamination in the processing environment. The QRA model is freely available as an R package with full documentation and can be used as a tool to inform the consideration of strengthened risk management measures in view of the current changes in consumer behavior and new diet trends.
Collapse
Affiliation(s)
- Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Régis Pouillot
- Independent Researcher, 18 rue Mohamed Al Ghazi, Rabat 10170, Morocco;
| | - Juliana De Oliveira Mota
- Nutrition and Food Safety Department, World Health Organization, 1202 Geneva, Switzerland; (J.D.O.M.); (A.H.)
| | - Akio Hasegawa
- Nutrition and Food Safety Department, World Health Organization, 1202 Geneva, Switzerland; (J.D.O.M.); (A.H.)
| | - Ana Allende
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Campus de Espinardo, 25, 30100 Murcia, Spain;
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Matthew J. Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR 97209, USA;
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Laurent Guillier
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 14 rue Pierre et Marie Curie Maisons-Alfort, 94701 Maisons-Alfort, France;
| | - Moez Sanaa
- Nutrition and Food Safety Department, World Health Organization, 1202 Geneva, Switzerland; (J.D.O.M.); (A.H.)
| |
Collapse
|
2
|
Finger JAFF, Santos IM, Silva GA, Bernardino MC, Pinto UM, Maffei DF. Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects. Foods 2023; 12:foods12112259. [PMID: 37297503 DOI: 10.3390/foods12112259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The global demand for minimally processed vegetables (MPVs) has grown, driven by changes in the population's lifestyle. MPVs are fresh vegetables that undergo several processing steps, resulting in ready-to-eat products, providing convenience for consumers and food companies. Among the processing steps, washing-disinfection plays an important role in reducing the microbial load and eliminating pathogens that may be present. However, poor hygiene practices can jeopardize the microbiological quality and safety of these products, thereby posing potential risks to consumer health. This study provides an overview of minimally processed vegetables (MPVs), with a specific focus on the Brazilian market. It includes information on the pricing of fresh vegetables and MPVs, as well as an examination of the various processing steps involved, and the microbiological aspects associated with MPVs. Data on the occurrence of hygiene indicators and pathogenic microorganisms in these products are presented. The focus of most studies has been on the detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes, with prevalence rates ranging from 0.7% to 100%, 0.6% to 26.7%, and 0.2% to 33.3%, respectively. Foodborne outbreaks associated with the consumption of fresh vegetables in Brazil between 2000 and 2021 were also addressed. Although there is no information about whether these vegetables were consumed as fresh vegetables or MPVs, these data highlight the need for control measures to guarantee products with quality and safety to consumers.
Collapse
Affiliation(s)
- Jéssica A F F Finger
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo 05508-080, SP, Brazil
| | - Isabela M Santos
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, SP, Brazil
| | - Guilherme A Silva
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Sao Paulo 01246-904, SP, Brazil
| | - Mariana C Bernardino
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Sao Paulo 01246-904, SP, Brazil
| | - Uelinton M Pinto
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo 05508-080, SP, Brazil
| | - Daniele F Maffei
- Food Research Center (FoRC-CEPID), Sao Paulo 05508-080, SP, Brazil
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
3
|
Li X, Zhang R, Wang C, Wang X, Yang Y, Cui S, Guo Y. Use of β-cyclodextrin and milk protein-coated activated charcoal for rapid detection of Listeria monocytogenes in leafy greens by PCR without pre-enrichment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Feng Y, Cheng Z, Wei X, Chen M, Zhang J, Zhang Y, Xue L, Chen M, Li F, Shang Y, Liang T, Ding Y, Wu Q. Novel method for rapid identification of Listeria monocytogenes based on metabolomics and deep learning. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Lotoux A, Milohanic E, Bierne H. The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Front Cell Infect Microbiol 2022; 12:849915. [PMID: 35372114 PMCID: PMC8974916 DOI: 10.3389/fcimb.2022.849915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Many bacterial species, including several pathogens, can enter a so-called “viable but non-culturable” (VBNC) state when subjected to stress. Bacteria in the VBNC state are metabolically active but have lost their ability to grow on standard culture media, which compromises their detection by conventional techniques based on bacterial division. Under certain conditions, VBNC bacteria can regain their growth capacity and, for pathogens, their virulence potential, through a process called resuscitation. Here, we review the current state of knowledge of the VBNC state of Listeria monocytogenes (Lm), a Gram-positive pathogenic bacterium responsible for listeriosis, one of the most dangerous foodborne zoonosis. After a brief summary of characteristics of VBNC bacteria, we highlight work on VBNC Lm in the environment and in agricultural and food industry settings, with particular emphasis on the impact of antimicrobial treatments. We subsequently discuss recent data suggesting that Lm can enter the VBNC state in the host, raising the possibility that VBNC forms contribute to the asymptomatic carriage of this pathogen in wildlife, livestock and even humans. We also consider the resuscitation and virulence potential of VBNC Lm and the danger posed by these bacteria to at-risk individuals, particularly pregnant women. Overall, we put forth the hypothesis that VBNC forms contribute to adaptation, persistence, and transmission of Lm between different ecological niches in the One-Health continuum, and suggest that screening for healthy carriers, using alternative techniques to culture-based enrichment methods, should better prevent listeriosis risks.
Collapse
|
6
|
Conventional and Emerging Techniques for Detection of Foodborne Pathogens in Horticulture Crops: a Leap to Food Safety. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02730-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Reducing time in detection of Listeria monocytogenes from food by MALDI-TOF mass spectrometry. Journal of Food Science and Technology 2021; 58:4102-4109. [PMID: 34538894 DOI: 10.1007/s13197-020-04869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
In this study, direct detection of L. monocytogenes from liquid culture and enrichment broths containing foods was investigated by using MALDI-TOF MS. For determining the sole effect of food constituents on detection and accuracy of identification in enrichment broths, sterile foods were used before the experiments with food. L. monocytogenes could be detected in BHI broth after 24 h of incubation. Detection period was determined as 18 h for 3 × 101 cfu/mL initial bacterial count in BHI broth containing sterile food. The period extended in ONE broth containing sterile garnish, which was 24 and 30 h for 3 × 101 and 1 cfu/mL inoculum, respectively. It was found that identification times in UHT milk were longer than that of canned garnish. In the experiments performed with foods having a specific microbiota; White cheese, iceberg lettuce, parsley and watermelon were used. Although no reliable identification was obtained by using White cheese, iceberg lettuce and parsley, L. monocytogenes could be detected in 24 h in the enrichment broth containing watermelon. Detection was achieved during a single step enrichment in a reduced time of 24 h for even 1 cfu/mL initial inoculum.
Collapse
|
8
|
García-Hernández J, Hernández M, Moreno Y. Combination of Direct Viable Count and Fluorescent In Situ Hybridization (DVC-FISH) as a Potential Method for Identifying Viable Vibrio parahaemolyticus in Oysters and Mussels. Foods 2021; 10:1502. [PMID: 34209577 PMCID: PMC8303443 DOI: 10.3390/foods10071502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism.
Collapse
Affiliation(s)
- Jorge García-Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Manuel Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Yolanda Moreno
- Research Institute of Water and Environmental Ingeneering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
9
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Sant'Anna PB, de Melo Franco BD, Maffei DF. Microbiological safety of ready-to-eat minimally processed vegetables in Brazil: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4664-4670. [PMID: 32329100 DOI: 10.1002/jsfa.10438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The market of ready-to-eat minimally processed vegetables (RTE-MPV) is increasing in Brazil and many other countries. During processing, these vegetables go through several steps that modify their natural structure while maintaining the same nutritional and sensory attributes as the fresh produce. One of the most important steps is washing-disinfection, which aims to reduce the microbial load, prevent cross-contamination and inactivate pathogenic microorganisms that may be present. Nonetheless, the presence of pathogens and occurrence of foodborne illnesses associated with consumption of RTE-MPV concern consumers, governments and the food industry. This review brings an overview on the microbiological safety of RTE-MPV, focusing on Brazilian findings. Most of the published data are on detection of Salmonella spp. and Listeria monocytogenes, indicating that their prevalence may range from 0.4% to 12.5% and from 0.6% to 3.1%, respectively. The presence of these pathogens in fresh produce is unacceptable and risky, mainly in RTE-MPV, because consumers expect them to be clean and sanitized and consequently safe for consumption without any additional care. Therefore, proper control during the production of RTE-MPV is mandatory to guarantee products with quality and safety to consumers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pedro B Sant'Anna
- Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Bernadette Dg de Melo Franco
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo, Brazil
| | - Daniele F Maffei
- Food Research Center (FoRC-CEPID), Sao Paulo, Brazil
- Department of Agri-food Industry, Food and Nutrition, 'Luiz de Queiroz' College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| |
Collapse
|
11
|
Santos T, Campos F, Padovani N, Dias M, Mendes M, Maffei D. Assessment of the microbiological quality and safety of minimally processed vegetables sold in Piracicaba, SP, Brazil. Lett Appl Microbiol 2020; 71:187-194. [DOI: 10.1111/lam.13305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- T.S. Santos
- Department of Agri‐food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture University of Sao Paulo Piracicaba SP Brazil
| | - F.B. Campos
- Department of Agri‐food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture University of Sao Paulo Piracicaba SP Brazil
| | - N.F.A. Padovani
- Department of Agri‐food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture University of Sao Paulo Piracicaba SP Brazil
| | - M. Dias
- Dempster MS Lab Department of Chemical Engineering Polytechnic School University of Sao Paulo Sao Paulo SP Brazil
| | - M.A. Mendes
- Dempster MS Lab Department of Chemical Engineering Polytechnic School University of Sao Paulo Sao Paulo SP Brazil
| | - D.F. Maffei
- Department of Agri‐food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture University of Sao Paulo Piracicaba SP Brazil
- Food Research Center (FoRC‐CEPID) Sao Paulo SP Brazil
| |
Collapse
|
12
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jordan K, Sampers I, Wagner M, Da Silva Felicio MT, Georgiadis M, Messens W, Mosbach‐Schulz O, Allende A. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA J 2020; 18:e06092. [PMID: 32874300 PMCID: PMC7448082 DOI: 10.2903/j.efsa.2020.6092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A multi-country outbreak of Listeria monocytogenes ST6 linked to blanched frozen vegetables (bfV) took place in the EU (2015-2018). Evidence of food-borne outbreaks shows that L. monocytogenes is the most relevant pathogen associated with bfV. The probability of illness per serving of uncooked bfV, for the elderly (65-74 years old) population, is up to 3,600 times greater than cooked bfV and very likely lower than any of the evaluated ready-to-eat food categories. The main factors affecting contamination and growth of L. monocytogenes in bfV during processing are the hygiene of the raw materials and process water; the hygienic conditions of the food processing environment (FPE); and the time/Temperature (t/T) combinations used for storage and processing (e.g. blanching, cooling). Relevant factors after processing are the intrinsic characteristics of the bfV, the t/T combinations used for thawing and storage and subsequent cooking conditions, unless eaten uncooked. Analysis of the possible control options suggests that application of a complete HACCP plan is either not possible or would not further enhance food safety. Instead, specific prerequisite programmes (PRP) and operational PRP activities should be applied such as cleaning and disinfection of the FPE, water control, t/T control and product information and consumer awareness. The occurrence of low levels of L. monocytogenes at the end of the production process (e.g. < 10 CFU/g) would be compatible with the limit of 100 CFU/g at the moment of consumption if any labelling recommendations are strictly followed (i.e. 24 h at 5°C). Under reasonably foreseeable conditions of use (i.e. 48 h at 12°C), L. monocytogenes levels need to be considerably lower (not detected in 25 g). Routine monitoring programmes for L. monocytogenes should be designed following a risk-based approach and regularly revised based on trend analysis, being FPE monitoring a key activity in the frozen vegetable industry.
Collapse
|
13
|
Park SH, Kang JW, Kang DH. Inactivation of foodborne pathogens on fresh produce by combined treatment with UV-C radiation and chlorine dioxide gas, and mechanisms of synergistic inactivation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Ro EY, Kim GS, Kwon DY, Park YM, Cho SW, Lee SY, Yeo IH, Yoon KS. Effects of natural antimicrobials with modified atmosphere packaging on the growth kinetics of Listeria monocytogenes in ravioli at various temperatures. J Food Saf 2018; 38:e12392. [PMID: 29456276 PMCID: PMC5811900 DOI: 10.1111/jfs.12392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/27/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the antimicrobial effects of cultured sugar/vinegar (CSV) blend and nisin to control the risk of Listeria monocytogenes in ready to cook (RTC) ravioli. Ravioli dough was prepared with 0.1, 0.3, 0.5, 1% CSV blend and 0.1, 0.2, and 0.3% nisin. Inoculated spinach or artichoke raviolis with 2.0 ± 0.5 log cfu/g of L. monocytogenes were packed aerobically or using modified atmosphere packaging (MAP), and then stored at 4, 10, 17, and 24 °C for 60 days. Growth kinetic parameters of the observed data fit well to the Baranyi equation. Ravioli with spinach filling materials yielded a higher risk than that with artichoke. L. monocytogenes was able to survive in ravioli with artichoke, but did not grow. The addition of 1% CSV blend or 0.3% nisin in spinach ravioli with the combination of MAP effectively controlled the growth of L. monocytogenes at the temperature below 10 °C. The organoleptic quality of spinach ravioli was not also affected by the application of 1% CSV blend. Therefore, the CSV blend can be recommended to improve the microbial safety and quality of natural RTC ravioli at retail market. Practical applications The risk of ravioli was affected by the filling materials of ravioli at retail market. Addition of 1% cultured sugar/vinegar blend in dough substantially contributes to the extension of shelf-life of MAP spinach raviolis. classification and regression tree analysis results indicate that refrigeration temperature is the main control factor to affect lag time and growth rate, while packaging method is critical for maximum population density.
Collapse
Affiliation(s)
- Eun Young Ro
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Geun Su Kim
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Do Young Kwon
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Young Min Park
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Sang Woo Cho
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Sang Yun Lee
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Ik Hyun Yeo
- R&D Center for Food TechnologyPulmuone Co., LtdSeoulSouth Korea
| | - Ki Sun Yoon
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
15
|
Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Microbiology of organic and conventionally grown fresh produce. Braz J Microbiol 2016; 47 Suppl 1:99-105. [PMID: 27825766 PMCID: PMC5156503 DOI: 10.1016/j.bjm.2016.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022] Open
Abstract
Fresh produce is a generalized term for a group of farm-produced crops, including fruits and vegetables. Organic agriculture has been on the rise and attracting the attention of the food production sector, since it uses eco-agricultural principles that are ostensibly environmentally-friendly and provides products potentially free from the residues of agrochemicals. Organic farming practices such as the use of animal manure can however increase the risk of contamination by enteric pathogenic microorganisms and may consequently pose health risks. A number of scientific studies conducted in different countries have compared the microbiological quality of produce samples from organic and conventional production and results are contradictory. While some have reported greater microbial counts in fresh produce from organic production, other studies do not. This manuscript provides a brief review of the current knowledge and summarizes data on the occurrence of pathogenic microorganisms in vegetables from organic production.
Collapse
|
17
|
Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization. Food Microbiol 2016; 62:39-45. [PMID: 27889163 DOI: 10.1016/j.fm.2016.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 12/12/2022]
Abstract
Yersinia enterocolitica, Y. pseudotuberculosis and Y. pestis are pathogens of major medical importance, which are responsible for a considerable number of infections every year. The detection of these species still relies on cultural methods, which are slow, labour intensive and often hampered by the presence of high amounts of accompanying flora. In this study, fluorescence in situ hybridization (FISH) was used to develop a fast, sensitive and reliable alternative to detect viable bacteria in food. For this purpose, highly specific probes targeting the 16S and 23S ribosomal RNA were employed to differentially detect each of the three species. In order to enable the differentiation of single nucleotide polymorphisms (SNPs), suitable competitor oligonucleotides and locked nucleic acids (LNAs) were used. Starved cells still showed a strong signal and a direct viable count (DVC) approach combined with FISH optimized live/dead discrimination. Sensitivity of the FISH test was high and even a single cell per gram of spiked minced pork meat could be detected within a day, demonstrating the applicability to identify foodborne hazards at an early stage. In conclusion, the established FISH tests proved to be promising tools to compensate existing drawbacks of the conventional cultural detection of these important zoonotic agents.
Collapse
|
18
|
de Vasconcelos Byrne V, Hofer E, Vallim DC, de Castro Almeida RC. Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables. Braz J Microbiol 2016; 47:438-43. [PMID: 26991279 PMCID: PMC4874581 DOI: 10.1016/j.bjm.2015.11.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/12/2015] [Indexed: 02/05/2023] Open
Abstract
Although the consumption of fresh and minimally processed vegetables is considered healthy, outbreaks related to the contamination of these products are frequently reported. Among the food-borne pathogens that contaminate vegetables is Listeria monocytogenes, a ubiquitous organism that exhibits the ability to survive and multiply at refrigerated temperatures. This study aimed to evaluate the occurrence of L. monocytogenes in vegetables as well as the antimicrobial resistance of isolates. The results showed that 3.03% of samples were contaminated with L. monocytogenes, comprising 2.22% of raw vegetables and 5.56% of ready-to-eat vegetables. Multiplex PCR confirmed the virulence potential of the isolates. Antimicrobial resistance profiling showed that 50% of the isolates were susceptible to the antibiotics used. The resistance of one isolate to penicillin G, a commonly employed therapeutic agent, and the presence of serotype 4b, a serotype commonly associated with food-borne outbreaks, could be potential health hazards for consumers.
Collapse
Affiliation(s)
| | - Ernesto Hofer
- Laboratory of Bacterial Zoonoses, Oswaldo Cruz Institute, Pavilhão Rocha Lima, Rio de Janeiro, RJ, Brazil
| | - Deyse Christina Vallim
- Laboratory of Bacterial Zoonoses, Oswaldo Cruz Institute, Pavilhão Rocha Lima, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
19
|
Välimaa AL, Tilsala-Timisjärvi A, Virtanen E. Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Fusco V, Quero GM. Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Compr Rev Food Sci Food Saf 2014; 13:493-537. [DOI: 10.1111/1541-4337.12074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzina Fusco
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| | - Grazia Marina Quero
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| |
Collapse
|
21
|
Doménech E, Conchado A, Escriche I. Evaluation of risk impact of consumers' behaviour in terms of exposure to Listeria monocytogenes in lettuce. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Eva Doménech
- Departamento de Tecnologia de los alimentos; Instituto de Ingeniería de Alimentos para el Desarrollo; Universitat Politécnica de Valencia; PO Box 46022, Valencia Spain
| | - Andrea Conchado
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad; Centro de Gestión de la Calidad y del Cambio; Universitat Politécnica de Valencia; PO Box 46022 Valencia Spain
| | - Isabel Escriche
- Departamento de Tecnologia de los alimentos; Instituto de Ingeniería de Alimentos para el Desarrollo; Universitat Politécnica de Valencia; PO Box 46022, Valencia Spain
| |
Collapse
|
22
|
Jadhav S, Sevior D, Bhave M, Palombo EA. Detection of Listeria monocytogenes from selective enrichment broth using MALDI-TOF Mass Spectrometry. J Proteomics 2013; 97:100-6. [PMID: 24080423 DOI: 10.1016/j.jprot.2013.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 09/03/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022]
Abstract
UNLABELLED Conventional methods used for primary detection of Listeria monocytogenes from foods and subsequent confirmation of presumptive positive samples involve prolonged incubation and biochemical testing which generally require four to five days to obtain a result. In the current study, a simple and rapid proteomics-based MALDI-TOF MS approach was developed to detect L. monocytogenes directly from selective enrichment broths. Milk samples spiked with single species and multiple species cultures were incubated in a selective enrichment broth for 24h, followed by an additional 6h secondary enrichment. As few as 1 colony-forming unit (cfu) of L. monocytogenes per mL of initial selective broth culture could be detected within 30h. On applying the same approach to solid foods previously implicated in listeriosis, namely chicken pâté, cantaloupe and Camembert cheese, detection was achieved within the same time interval at inoculation levels of 10cfu/mL. Unlike the routine application of MALDI-TOF MS for identification of bacteria from solid media, this study proposes a cost-effective and time-saving detection scheme for direct identification of L. monocytogenes from broth cultures.This article is part of a Special Issue entitled: Trends in Microbial Proteomics. BIOLOGICAL SIGNIFICANCE Globally, foodborne diseases are major causes of illness and fatalities in humans. Hence, there is a continual need for reliable and rapid means for pathogen detection from food samples. Recent applications of MALDI-TOF MS for diagnostic microbiology focused on detection of microbes from clinical specimens. However, the current study has emphasized its use as a tool for detecting the major foodborne pathogen, Listeria monocytogenes, directly from selective enrichment broths. This proof-of-concept study proposes a detection scheme that is more rapid and simple compared to conventional methods of Listeria detection. Very low levels of the pathogen could be identified from different food samples post-enrichment in selective enrichment broths. Use of this scheme will facilitate rapid and cost-effective testing for this important foodborne pathogen.
Collapse
Affiliation(s)
- Snehal Jadhav
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122 Victoria, Australia
| | - Danielle Sevior
- bioMérieux Australia Pty Ltd, Unit 25 Parkview Business Centre, 1 Maitland Place, Baulkham Hills, NSW 2153, Australia
| | - Mrinal Bhave
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122 Victoria, Australia
| | - Enzo A Palombo
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122 Victoria, Australia.
| |
Collapse
|
23
|
Listeriosis during Pregnancy: A Public Health Concern. ISRN OBSTETRICS AND GYNECOLOGY 2013; 2013:851712. [PMID: 24191199 PMCID: PMC3804396 DOI: 10.1155/2013/851712] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 01/13/2023]
Abstract
Listeria was first described in 1926 by Murray, Webb, and Swann, who discovered it while investigating an epidemic infection among laboratory rabbits and guinea pigs. The role of Listeria monocytogenes as a foodborne pathogen was definitively recognized during the 1980s. This recognition was the consequence of a number of epidemic human outbreaks due to the consumption of contaminated foods, in Canada, in the USA and in Europe. Listeriosis is especially severe in immunocompromised individuals such as pregnant women. The disease has a low incidence of infection, although this is undeniably increasing, with a high fatality rate amongst those infected. In pregnant women listeriosis may cause abortion, fetal death, or neonatal morbidity in the form of septicemia and meningitis. Improved education concerning the disease, its transmission, and prevention measures for immunocompromised individuals and pregnant women has been identified as a pressing need.
Collapse
|
24
|
Abstract
Paper mills are open systems, which provide favorable conditions for microbial growth. Microbial contamination can cause substantial economic losses, including the deterioration of raw materials, interference with production processes by breakdowns and lowering product quality, and eventually, problems in wastewater treatment. Damage is caused by acidification, attack on raw materials, the formation of odorous products, discoloration of pigments, and the formation of methane and hydrogen, thereby producing potentially explosive conditions. Population analyses have revealed that a wide variety of microorganisms are involved, but there appear to be no typical strains associated with paper mills. Current trends in process engineering, such as chlorine-free bleaching, processing at neutral pH, closed cycles, and the use of recycled paper also favor microbial growth and biofilm (slime) formation. A fundamental problem associated with slimes is the extensive matrix of extracellular polymeric substances, which is composed of a large variety of highly hydrated polysaccharides, proteins, nucleic acids, and lipids. No 'silver bullet' against biofouling can be expected, and effective countermeasures have to be based on holistic approaches.
Collapse
|