1
|
Moraes WB, Madden LV, Baik BK, Gillespie J, Paul PA. Environmental Conditions After Fusarium Head Blight Visual Symptom Development Affect Contamination of Wheat Grain with Deoxynivalenol and Deoxynivalenol-3-Glucoside. PHYTOPATHOLOGY 2023; 113:206-224. [PMID: 36131392 DOI: 10.1094/phyto-06-22-0199-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fusarium head blight (FHB) of wheat, caused by the fungus Fusarium graminearum, is associated with grain contamination with mycotoxins such as deoxynivalenol (DON). Although FHB is often positively correlated with DON, this relationship can break down under certain conditions. One possible explanation for this could be the conversion of DON to DON-3-glucoside (D3G), which is typically missed by common DON testing methods. The objective of this study was to quantify the effects of temperature, relative humidity (RH), and preharvest rainfall on DON, D3G, and the D3D/DON relationship. D3G levels were higher in grain from spikes exposed to 100% RH than to 70, 80, or 90% RH at 20 and 25°C across all tested levels of mean FHB index (percentage of diseased spikelets per spike). Mean D3G contamination was higher at 20°C than at 25 or 30°C. There were significantly positive linear relationships between DON and D3G. Rainfall treatments resulted in significantly higher mean D3G than the rain-free check and induced preharvest sprouting, as indicated by low falling numbers (FNs). There were significant positive relationships between the rate of increase in D3G per unit increase in DON (a measure of conversion) and sprouting. As FN decreased, the rate of D3G conversion increased, and this rate of conversion per unit decrease in FN was greater at relatively low than at high mean DON levels. These results provide strong evidence that moisture after FHB visual symptom development was associated with DON-to-D3G conversion and constitute valuable new information for understanding this complex disease-mycotoxin system.
Collapse
Affiliation(s)
- Wanderson Bucker Moraes
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Laurence V Madden
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Byung-Kee Baik
- USDA-ARS-CSWQRU, Soft Wheat Quality Laboratory, Wooster, OH 44691
| | - James Gillespie
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
2
|
Bryła M, Stępniewska S, Modrzewska M, Waśkiewicz A, Podolska G, Ksieniewicz-Woźniak E, Yoshinari T, Stępień Ł, Urbaniak M, Roszko M, Gwiazdowski R, Kanabus J, Pierzgalski A. Dynamics of Deoxynivalenol and Nivalenol Glucosylation in Wheat Cultivars Infected with Fusarium culmorum in Field Conditions─A 3 Year Study (2018-2020). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4291-4302. [PMID: 35362967 DOI: 10.1021/acs.jafc.2c00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fusarium head blight (FHB) caused by pathogenic species of Fusarium fungi is one of the most important diseases of cereal plants and a factor contributing to losses in plant production. The growth of FHB-associated species is often accompanied by biosynthesis of secondary metabolites─mycotoxins, which serve as a virulence factor. The aim of the study was to evaluate the ratios between deoxynivalenol (DON) and nivalenol (NIV) and their derivatives in the ears of six cultivars of winter wheat with varying resistance to FHB, taking into account a range of factors (weather conditions, location, cultivar, and year) after inoculation with Fusarium culmorum, during a 3 year field experiment, 2018-2020. The presence of toxins in the ears was measured within 21 days of inoculation. The toxins were found in the ears as soon as on the third day from the start of the experiment, whereas relative humidity higher than 80% was a decisive factor for FHB incidence. All wheat cultivars showed the ability to biotransform DON and NIV present in the ears to glucosides, that is, deoxynivalenol-3-glucoside (DON-3G) and nivalenol-3-glucoside (NIV-3G). The levels of these metabolites showed significant correlation with the levels of their basic analogues. In most cases, higher levels of DON and NIV in wheat ears and higher levels of their metabolites were observed, but the relative levels of DON-3G/DON and NIV-3G/NIV at relatively high levels of toxins were lower compared to the ear samples with relatively low toxin levels. The presented results are the first studies, which systematically correlate a variety of wheat cultivars with their extent to glucosylate trichothecenes.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Sylwia Stępniewska
- Department of Grain Processing and Bakery, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, Poznan 60-625, Poland
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation─State Research Institute, Czartoryskich 8, Pulawy 24-100, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Monika Urbaniak
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznan 60-479, Poland
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Romuald Gwiazdowski
- Research Centre for Registration of Agrochemicals, Institute of Plant Protection-National Research Institute, Wladysława Wegorka 20, Poznan 60-318, Poland
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology─State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| |
Collapse
|
3
|
Wang R, Hua C, Hu Y, Li L, Sun Z, Li T. Two Different Inoculation Methods Unveiled the Relative Independence of DON Accumulation in Wheat Kernels from Disease Severity on Spike after Infection by Fusarium Head Blight. Toxins (Basel) 2021; 13:toxins13050353. [PMID: 34069221 PMCID: PMC8156083 DOI: 10.3390/toxins13050353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) causes wheat yield loss and mycotoxin (deoxynivalenol, DON) accumulation in wheat kernel. Developing wheat cultivars with overall resistance to both FHB spread within a spike and DON accumulation in kernels is crucial for ensuring food security and food safety. Here, two relatively novel inoculation methods, bilateral floret inoculation (BFI) and basal rachis internode injection (BRII), were simultaneously employed to evaluate disease severity and DON content in kernels in a segregating population of recombinant inbred lines (RILs) developed from Ning 7840 (carrying Fhb1) and Clark (without Fhb1). Under both inoculation methods, four contrasting combinations of disease severity and DON content were identified: high severity/high DON (HSHD), high severity/low DON (HSLD), low severity/high DON (LSHD) and low severity/low DON (LSLD). Unexpectedly, the BRII method clearly indicated that disease severity was not necessarily relevant to DON concentration. The effects of Fhb1 on disease severity, and on DON concentrations, agreed very well across the two methods. Several lines carrying Fhb1 showed extremely higher severity and (or) DON content under both inoculation methods. The “Mahalanobis distance” (MD) method was used to rate overall resistance of a line by inclusion of both disease severity and DON content over both methods to select LSLD lines.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Li
- Correspondence: ; Tel.: +86-514-8797-7806
| |
Collapse
|
4
|
Effects of Durum Wheat Cultivars with Different Degrees of FHB Susceptibility Grown under Different Meteorological Conditions on the Contamination of Regulated, Modified and Emerging Mycotoxins. Microorganisms 2021; 9:microorganisms9020408. [PMID: 33669359 PMCID: PMC7920256 DOI: 10.3390/microorganisms9020408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022] Open
Abstract
The enhancement of Fusarium head blight (FHB) resistance is one of the best options to reduce mycotoxin contamination in wheat. This study has aimed to verify that the genotypes with high tolerance to deoxynivalenol could guarantee an overall minimization of the sanitary risk, by evaluating the contamination of regulated, modified and emerging mycotoxins on durum wheat cvs with different degrees of FHB susceptibility, grown under different meteorological conditions, in 8 growing seasons in North-West Italy. The years which were characterized by frequent and heavy rainfall in spring were also those with the highest contamination of deoxynivalenol, zearalenone, moniliformin, and enniatins. The most FHB resistant genotypes resulted in the lowest contamination of all the mycotoxins but showed the highest deoxynivalenol-3-glucoside/deoxynivalenol ratio and moniliformin/deoxynivalenol ratio. An inverse relationship between the amount of deoxynivalenol and the deoxynivalenol-3-glucoside/deoxynivalenol ratio was recorded for all the cvs and all the years. Conversely, the enniatins/deoxynivalenol ratio had a less intense relationship with cv tolerance to FHB. In conclusion, even though the more tolerant cvs, showed higher relative relationships between modified/emerging mycotoxins and native/target mycotoxins than the susceptible ones, they showed lower absolute levels of contamination of both emerging and modified mycotoxins.
Collapse
|
5
|
Updating the Breeding Philosophy of Wheat to Fusarium Head Blight (FHB): Resistance Components, QTL Identification, and Phenotyping-A Review. PLANTS 2020; 9:plants9121702. [PMID: 33287353 PMCID: PMC7761804 DOI: 10.3390/plants9121702] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
Fusarium head blight has posed continuous risks to wheat production worldwide due to its effects on yield, and the fungus provides additional risks with production of toxins. Plant resistance is thought to be the most powerful method. The host plant resistance is complex, Types I–V were reported. From the time of spraying inoculation (Type I), all resistance types can be identified and used to determine the total resistance. Type II resistance (at point inoculation) describes the spread of head blight from the ovary to the other parts of the head. Therefore, it cannot solve the resistance problem alone. Type II QTL (quantitative trait locus) Fhb1 on 3BS from Sumai 3 descendant CM82036 secures about the same resistance level as Type I QTL does on 5AS and 5ASc in terms of visual symptoms, FDK (Fusarium damaged kernel), and deoxynivalenol response. Recently, increasing evidence supports the association of deoxynivalenol (DON) content and low kernel infection with FHB (Fusarium head blight) resistance (Types III and IV), as QTL for individual resistance types has been identified. In plant breeding practice, the role of visual selection remains vital, but the higher correlations for FDK/DON make it possible to select low-DON genotypes via FDK value. For phenotyping, the use of more independent inocula (isolates or mixtures) makes resistance evaluation more reliable. The large heterogeneity of the mapping populations is a serious source of underestimating genetic effects. Therefore, the increasing of homogeneity is a necessity. As no wheat varieties exist with full resistance to FHB, crops must be supported by proper agronomy and fungicide use.
Collapse
|
6
|
Gong X, He X, Zhang Y, Li L, Sun Z, Bai G, Singh PK, Li T. Development of an Evaluation System for Fusarium Resistance in Wheat Grains and Its Application in Assessment of the Corresponding Effects of Fhb1. PLANT DISEASE 2020; 104:2210-2216. [PMID: 32511047 DOI: 10.1094/pdis-12-19-2584-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fusarium head blight (FHB) caused by Fusarium species is a globally important wheat disease. Host resistance to FHB is composed of multiple mechanisms, including resistance to initial infection (type I), disease spread (type II), toxin accumulation (type III), kernel infection (type IV), and yield loss (type V), of which the last three have been less studied. Traditionally, the Fusarium-damaged kernel rate (FDK; percentage of Fusarium-infected grains) from point- or spray-inoculated experiments was used as the parameter for type IV resistance, which may be problematic because of the influence of type II resistance. Here we propose a new definition for type IV resistance: that is, the resistance against Fusarium infection expressed in wheat grains that have the same chance in contact with the pathogen, under favorable temperature and humidity for infection. Fhb1 confers strong type II resistance, leading to significantly reduced FHB severity and FDK. To investigate the role of Fhb1 in type IV resistance, a pair of near-isogenic lines, R22W (Fhb1 carrier, resistant in terms of type II resistance) and S22V (non-Fhb1, susceptible), along with eight wheat genotypes differing at Fhb1 were inoculated at different grain development stages with Fusarium macrospores both in vivo and in vitro. The in vivo experiments with all florets inoculated demonstrated a significant reduction in thousand kernel weight (TKW) in inoculated grains, regardless of their Fhb1 status and developmental stages. Surprisingly, R22W showed more TKW reduction than S22V, which was supported by the scanning electron microscopy observation that confirmed the more severe degradation of starch granules in R22W grains. The in vitro experiments demonstrated that grains from both R22W and S22V promoted fungal colonization, but no significant difference was found between the two lines. In summary, our results indicated that the proposed type IV evaluation system is effective in determining different grain resistance levels, providing novel tools for FHB resistance breeding. The finding that Fhb1 is not associated with type IV resistance enriches our understanding of this gene.
Collapse
Affiliation(s)
- Xuan Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico DF, Mexico
| | - Yuhui Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Lei Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Zhengxi Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guihua Bai
- USDA Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, U.S.A
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico DF, Mexico
| | - Tao Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
The Influence of the Dilution Rate on the Aggressiveness of Inocula and the Expression of Resistance against Fusarium Head Blight in Wheat. PLANTS 2020; 9:plants9080943. [PMID: 32722377 PMCID: PMC7465623 DOI: 10.3390/plants9080943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 01/28/2023]
Abstract
In previous research, conidium concentrations varying between 10,000 and 1,000,000/mL have not been related to any aggressiveness test. Therefore, two Fusarium graminearum and two Fusarium culmorum isolates were tested in the field on seven genotypes highly differing in resistance at no dilution, and 1:1, 1:2, 1:4, 1:8, and 1:16 dilutions in two years (2013 and 2014). The isolates showed different aggressiveness, which changed significantly at different dilution rates for disease index (DI), Fusarium-damaged kernels (FDK), and deoxynivalenol (DON). The traits also had diverging responses to the infection. The effect of the dilution could not be forecasted. The genotype ranks also varied. Dilution seldomly increased aggressiveness, but often lower aggressiveness occurred at high variation. The maximum and minimum values varied between 15% and 40% for traits and dilutions. The reductions between the non-diluted and diluted values (total means) for DI ranged from 6% and 33%, for FDK 8.3–37.7%, and for DON 5.8–44.8%. The most sensitive and most important trait was DON. The introduction of the aggressiveness test provides improved regulation compared to the uncontrolled manipulation of the conidium concentration. The use of more isolates significantly increases the credibility of phenotyping in genetic and cultivar registration studies.
Collapse
|
8
|
Villafana RT, Ramdass AC, Rampersad SN. TRI Genotyping and Chemotyping: A Balance of Power. Toxins (Basel) 2020; 12:E64. [PMID: 31973043 PMCID: PMC7076749 DOI: 10.3390/toxins12020064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
Fusarium is among the top 10 most economically important plant pathogens in the world. Trichothecenes are the principal mycotoxins produced as secondary metabolites by select species of Fusarium and cause acute and chronic toxicity in animals and humans upon exposure either through consumption and/or contact. There are over 100 trichothecene metabolites and they can occur in a wide range of commodities that form food and feed products. This review discusses strategies to mitigate the risk of mycotoxin production and exposure by examining the Fusarium-trichothecene model. Fundamental to mitigation of risk is knowing the identity of the pathogen. As such, a comparison of current, recommended molecular approaches for sequence-based identification of Fusaria is presented, followed by an analysis of the rationale and methods of trichothecene (TRI) genotyping and chemotyping. This type of information confirms the source and nature of risk. While both are powerful tools for informing regulatory decisions, an assessment of the causes of incongruence between TRI genotyping and chemotyping data must be made. Reconciliation of this discordance will map the way forward in terms of optimization of molecular approaches, which includes data validation and sharing in the form of accessible repositories of genomic data and browsers for querying such data.
Collapse
Affiliation(s)
| | | | - Sephra N. Rampersad
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
9
|
Ameye M, Van Meulebroek L, Meuninck B, Vanhaecke L, Smagghe G, Haesaert G, Audenaert K. Metabolomics Reveal Induction of ROS Production and Glycosylation Events in Wheat Upon Exposure to the Green Leaf Volatile Z-3-Hexenyl Acetate. FRONTIERS IN PLANT SCIENCE 2020; 11:596271. [PMID: 33343599 PMCID: PMC7744478 DOI: 10.3389/fpls.2020.596271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The activation and priming of plant defense upon perception of green leaf volatiles (GLVs) have often been reported. However, information as to which metabolic pathways in plants are affected by GLVs remains elusive. We report the production of reactive oxygen species in the tip of young wheat leaves followed by activation of antioxidant-related enzyme activity. In this study, we aimed to uncover metabolic signatures upon exposure to the GLV Z-3-hexenyl acetate (Z-3-HAC). By using an untargeted metabolomics approach, we observed changes in the phenylpropanoid pathways which yield metabolites that are involved in many anti-oxidative processes. Furthermore, exposure to GLV, followed by infection with Fusarium graminearum (Fg), induced significantly greater changes in the phenylpropanoid pathway compared to a sole Z-3-HAC treatment. Fragmentation of a selection of metabolites, which are significantly more upregulated in the Z-3-HAC + Fg treatment, showed D-glucose to be present as a substructure. This suggests that Z-3-HAC induces early glycosylation processes in plants. Additionally, we identified the presence of hexenyl diglycosides, which indicates that aerial Z-3-HAC is metabolized in the leaves by glycosyltransferases. Together these data indicate that GLV Z-3-HAC is taken up by leaves and incites oxidative stress. This subsequently results in the modulation of the phenylpropanoid pathway and an induction of glycosylation processes.
Collapse
Affiliation(s)
- Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Maarten Ameye,
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Bianca Meuninck
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Kris Audenaert,
| |
Collapse
|
10
|
Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Bürstmayr M, Bürstmayr H. Trichothecenes in Cereal Grains - An Update. Toxins (Basel) 2019; 11:E634. [PMID: 31683661 PMCID: PMC6891312 DOI: 10.3390/toxins11110634] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Trichothecenes are sesquiterpenoid mycotoxins produced by fungi from the order Hypocreales, including members of the Fusarium genus that infect cereal grain crops. Different trichothecene-producing Fusarium species and strains have different trichothecene chemotypes belonging to the Type A and B class. These fungi cause a disease of small grain cereals, called Fusarium head blight, and their toxins contaminate host tissues. As potent inhibitors of eukaryotic protein synthesis, trichothecenes pose a health risk to human and animal consumers of infected cereal grains. In 2009, Foroud and Eudes published a review of trichothecenes in cereal grains for human consumption. As an update to this review, the work herein provides a comprehensive and multi-disciplinary review of the Fusarium trichothecenes covering topics in chemistry and biochemistry, pathogen biology, trichothecene toxicity, molecular mechanisms of resistance or detoxification, genetics of resistance and breeding strategies to reduce their contamination of wheat and barley.
Collapse
Affiliation(s)
- Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Danica Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Tatiana Y Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), St. Petersburg, Pushkin 196608, Russia.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Maria Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Hermann Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| |
Collapse
|
11
|
Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem Toxicol 2017; 111:189-205. [PMID: 29158197 DOI: 10.1016/j.fct.2017.11.021] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
Modified mycotoxins are metabolites that normally remain undetected during the testing for parent mycotoxin. These modified forms of mycotoxins can be produced by fungi or generated as part of the defense mechanism of the infected plant. In some cases, they are formed during food processing. The various processing steps greatly affect mycotoxin levels present in the final product (free and modified), although the results are still controversial regarding the increase or reduction of these levels, being strongly related to the type of process and the composition of the food in question. Evidence exists that some modified mycotoxins can be converted into the parent mycotoxin during digestion in humans and animals, potentially leading to adverse health effects. Some of these formed compounds can be even more toxic, in case they have higher bioaccessibility and bioavailability than the parent mycotoxin. The modified mycotoxins can occur simultaneously with the free mycotoxin, and, in some cases, the concentration of modified mycotoxins may exceed the level of free mycotoxin in processed foods. Even though toxicological data are scarce, the possibility of modified mycotoxin conversion to its free form may result in a potential risk to human and animal health. This review aims to update information on the formation, detection, occurrence, and toxic effects caused by modified mycotoxin.
Collapse
|
12
|
Nakagawa H, He X, Matsuo Y, Singh PK, Kushiro M. Analysis of the Masked Metabolite of Deoxynivalenol and Fusarium Resistance in CIMMYT Wheat Germplasm. Toxins (Basel) 2017; 9:E238. [PMID: 28758925 PMCID: PMC5577572 DOI: 10.3390/toxins9080238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) causes significant grain loss and contamination of grains with harmful mycotoxins, especially deoxynivalenol (DON). Fusarium resistance and DON accumulation have been extensively investigated in various cultivars; however, the level of DON-3-O-glucoside (D3G) has not been as carefully studied. In this study, we measured accumulated DON and D3G levels in CIMMYT wheat elite germplasm using an analytical method validated in-house. Co-occurring nivalenol (NIV) and ergostrerol (ERG) were also analyzed. LC-MS/MS and LC-UV analyses were applied to the 50 CIMMYT elite wheat lines. D3G showed rather high correlation with DON (r = 0.82), while FHB symptoms showed slight correlation with DON and D3G (r = 0.36 and 0.32, respectively). D3G/DON ratio varied widely from 8.1 to 37.7%, and the ratio was not related with FHB resistance in this dataset.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
- Advanced Analysis Center, NARO, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico DF 06600, Mexico.
| | - Yosuke Matsuo
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico DF 06600, Mexico.
| | - Masayo Kushiro
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannon-dai, Tsukuba-shi, Ibaraki 305-8642, Japan.
| |
Collapse
|
13
|
Palacios SA, Erazo JG, Ciasca B, Lattanzio VMT, Reynoso MM, Farnochi MC, Torres AM. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chem 2017; 230:728-734. [PMID: 28407973 DOI: 10.1016/j.foodchem.2017.03.085] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
The occurrence of deoxynivalenol, 3- and 15-deoxynivalenol and deoxynivalenol-3-glucoside in 84 durum wheat samples, from the Argentinean main growing area, was investigated during 2012/13 and 2013/14 using LC-MS/MS. Deoxynivalenol was found in all samples at concentrations varying between <LOQ (50μg/kg) and 9480μg/kg. Deoxynivalenol-3-glucoside was detected in 94% of the samples at concentrations ranging from <LOQ (50μg/kg) to 850μg/kg. Moreover, the acetylated derivatives were also detected but at lower frequency (49%). To the best of our knowledge, this is the first report of deoxynivalenol-3-glucoside in wheat in Argentina. All the commercial cultivars transformed deoxynivalenol to its glucosylated form at conversion rates between 6 and 22%. The results obtained alert of the potential risk present in durum wheat for Argentinean consumers but also show that some of the commercial cultivars currently on used could be promising candidates for breeding programs intended to obtained Fusarium head blight resistance.
Collapse
Affiliation(s)
- Sofía A Palacios
- UNRC-CONICET-Department of Microbiology and Immunology, Facultad de Cs. Exactas Fco.-Qcas. y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - Jessica G Erazo
- UNRC-CONICET-Department of Microbiology and Immunology, Facultad de Cs. Exactas Fco.-Qcas. y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - Biancamaria Ciasca
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Veronica M T Lattanzio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - María M Reynoso
- UNRC-CONICET-Department of Microbiology and Immunology, Facultad de Cs. Exactas Fco.-Qcas. y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - María C Farnochi
- UNRC-CONICET-Department of Microbiology and Immunology, Facultad de Cs. Exactas Fco.-Qcas. y Naturales, Universidad Nacional de Río Cuarto, Argentina
| | - Adriana M Torres
- UNRC-CONICET-Department of Microbiology and Immunology, Facultad de Cs. Exactas Fco.-Qcas. y Naturales, Universidad Nacional de Río Cuarto, Argentina.
| |
Collapse
|
14
|
Lemmens M, Steiner B, Sulyok M, Nicholson P, Mesterhazy A, Buerstmayr H. Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.2029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
From economic and environmental points of view, enhancing resistance to Fusarium head blight (FHB) in wheat is regarded as the best option to reduce fungal colonisation and the concomitant mycotoxin contamination. This review focuses on the effect of FHB resistance on deoxynivalenol (DON) and the masked metabolite deoxynivalenol-3-glucoside (DON-3-glucoside) in wheat. Based on published information complemented with our own results we draw the following conclusions: (1) All investigated wheat cultivars can convert DON to DON-3-glucoside. Hence, detoxification of DON to DON-3-glucoside is not a new trait introduced by recent resistance breeding against FHB. (2) The amount of DON-3-glucoside relative to DON contamination can be substantial (up to 35%) and is among other things dependent on genetic and environmental factors. (3) Correlation analyses showed a highly significant relationship between the amount of FHB symptoms and DON contamination: breeding for FHB resistance reduces DON contamination. (4) DON contamination data are highly correlated with DON-3-glucoside concentration data: in other words, reduction of DON content through resistance breeding results in a concomitant reduction in DON-3-glucoside content. (5) The DON-3-glucoside/DON ratio increases with decreasing DON contamination: the most resistant lines with the lowest DON contamination show the highest relative level of DON-3-glucoside to DON. In summary, introgressing FHB resistance reduces both DON and DON-3-glucoside levels in the grain, but the reduction is lower for the masked toxin. DON-3-glucoside can represent a possible hazard to human and animal health, especially in wheat samples contaminated with DON close to permitted limits.
Collapse
Affiliation(s)
- M. Lemmens
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - B. Steiner
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - M. Sulyok
- Center for Analytical Chemistry, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P. Nicholson
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - A. Mesterhazy
- Cereal Research non-profit Ltd., 6701 Szeged, P.O. Box 391, Hungary
| | - H. Buerstmayr
- Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| |
Collapse
|
15
|
Buerstmayr H, Lemmens M. Breeding healthy cereals: genetic improvement of Fusarium resistance and consequences for mycotoxins. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2015.1889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although it is generally agreed that increased genetic resistance to fungal colonisation by Fusarium head blight (FHB) should lead to reduced damage and particularly to reduced contamination due to mycotoxins, this review aims to highlight on this relation based on published literature in comparison to our own results. We focus here on the major cereal crop plants wheat and barley. Generally, correlations between measures for disease severity on the plants or the seeds and toxin content were found positive and significant. Breeding of new cultivars with reduced Fusarium disease severity will therefore lead to a correlated selection response in the direction of reduced toxin contamination, for the prevalent toxins such as deoxynivalenol, but also for less abundant mycotoxins and masked mycotoxins. Choosing resistant cultivars is possibly the best option for mycotoxin reduction right at the beginning of the cereal production chain: on the farmer’s field. Therefore, investment in breeding FHB resistant cultivars will contribute to sustainable reduction of the mycotoxin problems in the cereal production chain, and increase food and feed safety.
Collapse
Affiliation(s)
- H. Buerstmayr
- BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Institute for Biotechnology in Plant Production, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - M. Lemmens
- BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Institute for Biotechnology in Plant Production, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| |
Collapse
|
16
|
Vanheule A, Audenaert K, De Boevre M, Landschoot S, Bekaert B, Munaut F, Eeckhout M, Höfte M, De Saeger S, Haesaert G. The compositional mosaic of Fusarium species and their mycotoxins in unprocessed cereals, food and feed products in Belgium. Int J Food Microbiol 2014; 181:28-36. [DOI: 10.1016/j.ijfoodmicro.2014.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 01/11/2023]
|
17
|
De Boevre M, Vanheule A, Audenaert K, Bekaert B, Di Mavungu JD, Werbrouck S, Haesaert G, De Saeger S. Detached leaf in vitro model for masked mycotoxin biosynthesis and subsequent analysis of unknown conjugates. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2014.1717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The manuscript details the development of an in vitro model plant system using detached leaves because there is a need for biosynthetic methods for the production and isolation of masked mycotoxins. This detached leaf in vitro model was firstly applied to deoxynivalenol with satisfying results. The biosynthesis of deoxynivalenol-3-glucoside was confirmed using its respective commercially available reference standard. Secondly, the detached leaf in vitro model was applied to T-2 toxin. Mono- and tri-glucoside derivatives of T-2 toxin and HT-2 toxin, T-2-(3)-glucoside, T-2-(3)-triglucoside and HT-2-(3)-glucoside were identified and characterised using Orbitrap high-resolution mass spectrometry. This is the first report on a triglucoside of T-2 toxin. The discovery of new masked forms implies the importance of the development of analytical methods for their detection, the constitution of toxicity studies, and proving the relevance of their presence in the food and feed chain.
Collapse
Affiliation(s)
- M. De Boevre
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - A. Vanheule
- Department of Applied Bioscience Engineering, Building C, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Applied Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - K. Audenaert
- Department of Applied Bioscience Engineering, Building C, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Applied Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - B. Bekaert
- Department of Applied Bioscience Engineering, Building C, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - J. Diana Di Mavungu
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - S. Werbrouck
- Department of Applied Bioscience Engineering, Building C, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Applied Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - G. Haesaert
- Department of Applied Bioscience Engineering, Building C, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Department of Crop Protection, Laboratory of Phytopathology, Faculty of Applied Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - S. De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|