1
|
Tao W, Li W, Aweya JJ, Lin R, Jin R, Liang D, Ren Z, Yang S. Bacillus subtilis fermented shrimp waste isolated peptide, PVQ9, and its antimicrobial mechanism on four Gram-positive foodborne bacteria. Food Microbiol 2025; 125:104654. [PMID: 39448164 DOI: 10.1016/j.fm.2024.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Bacillus subtilis produces proteases that hydrolyze proteins to produce bioactive peptides. Given the mounting waste from processed shrimp, the antimicrobial potential of peptides isolated from B. subtilis fermented shrimp waste was explored. Among the five peptides screened using molecular docking prediction, PVQ9 (AVFPSIVGRPR) had strong antibacterial activity against four common foodborne Gram-positive bacteria, i.e., Staphylococcus aureus, Bacillus cereus, Mammaliicoccus sciuri, and Kurthia gibsonii. The minimum bactericidal concentrations (MBCs) were 62.5 μg/mL for S. aureus and B. cereus, and 31.3 μg/mL for both M. sciuri and K. gibsonii, with a time-kill of 3 h observed for all strains. Mechanistically, it was demonstrated that PVQ9 could destroy bacterial cell walls, change bacteria cell membrane permeability, bind to bacteria DNA, and cause cell apoptosis. Most importantly, peptide PVQ9 could inhibit the spoilage of bean curd or tofu contaminated with K. gibsonii. These findings suggest that PVQ9 could be a useful preservative in controlling foodborne pathogenic bacteria in soy products and other processed foods.
Collapse
Affiliation(s)
- Weihong Tao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| | - Wenjie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
2
|
Chen L, Hua Q, Ten MZM, Li Z, Xue C, Li D. Lactiplantibacillus plantarum 299V-fermented soy whey improved the safety and shelf life of Pacific oysters (Magallana gigas). NPJ Sci Food 2024; 8:77. [PMID: 39369016 PMCID: PMC11457525 DOI: 10.1038/s41538-024-00317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
This study developed a postbiotic fermentation solution for fresh oyster preservation with the use of food waste soy whey. Lactiplantibacillus plantarum 299V was able to proliferate in soy whey within 24 h without any supplementation. Pacific oysters (Magallana gigas) were immersed in the postbiotic fermentation solution and stored at 4 °C for 12 days. Pathogenic bacteria Vibrio parahaemolyticus and Salmonella enterica introduced by bioaccumulation were suppressed to levels below the detection limit (<2 log CFU/g) within 4 days. The spoilage-related microbial parameters and chemical parameters were maintained at low levels across the 12 days. Sensory evaluation revealed that the product had a positive effect on most of the participants (>60%). Overall, the postbiotic fermentation solution reported in this study enhanced the shelf life and safety of oysters in a sustainable way and could also be recognized as an innovative probiotic vehicle with potential implications for human health promotion.
Collapse
Affiliation(s)
- Lipin Chen
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- School of Food Science and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Qian Hua
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Zhen Michelle Ten
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Gad AI, Orabi MM, Abou-Taleb KA, Abdelghani DY, Amin SA. In vitro digestive system simulation and anticancer activity of soymilk fermented by probiotics and synbiotics immobilised on agro-industrial residues. Sci Rep 2024; 14:18518. [PMID: 39122808 PMCID: PMC11316043 DOI: 10.1038/s41598-024-68086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, a variety of probiotic strains, including Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus reuteri, Lactobacillus delbrueckii subsp. bulgaricus, Lacticaseibacillus rhamnosus, and Bifidobacterium bifidum, were utilized for soymilk fermentation both as free cells and as synbiotics on agro-industrial residuals such as okara, whey protein, banana peels, apple pomace, sugarcane bagasse, orange peels, and lemon peels. Among these, Lacticaseibacillus rhamnosus emerged as the most significant strain for soymilk fermentation, exhibiting a viability of 10.47 log cfu/mL, a pH of 4.41, total acidity of 1.12%, and organic acid contents (lactic and acetic acid) of 11.20 and 7.50 g/L, respectively. As a synbiotic Lacticaseibacillus rhamnosus immobilised on okara, showed even more impressive results, with a viability of 12.98 log cfu/mL, a pH of 4.31, total acidity of 1.27%, and organic acid contents of 13.90 and 9.30 g/L, respectively. Over a 12-h fermentation period, cell viability values increased by 10.47-fold in free cells and 11.19-fold in synbiotics. Synbiotic supplementation of fermented soymilk proved more beneficial than free cells in terms of viability, acidity, and organic acid content. Furthermore, when synbiotic fermented soymilk was freeze-dried to simulate the digestive system in vitro, synbiotics and freeze-dried cells demonstrated superior gastrointestinal tract survival compared to free cells. Both the probiotic bacteria and the synbiotics exhibited cytotoxicity against colon and liver cancer cell lines, with half-maximal inhibitory concentrations ranging from 41.96 to 61.52 μL/well.
Collapse
Affiliation(s)
- Abdallah I Gad
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt
| | - Mona M Orabi
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt
| | - Khadiga A Abou-Taleb
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt.
| | - Dina Y Abdelghani
- Department of Special Food and Nutrition, Agriculture Research Center, Food Technology Research Institute, Giza, Egypt.
| | - Shimaa A Amin
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt
| |
Collapse
|
4
|
Singh JK, Devi PB, Reddy GB, Jaiswal AK, Kavitake D, Shetty PH. Biosynthesis, classification, properties, and applications of Weissella bacteriocins. Front Microbiol 2024; 15:1406904. [PMID: 38939182 PMCID: PMC11210197 DOI: 10.3389/fmicb.2024.1406904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
This review aims to comprehensively chronicle the biosynthesis, classification, properties, and applications of bacteriocins produced by Weissella genus strains, particularly emphasizing their potential benefits in food preservation, human health, and animal productivity. Lactic Acid Bacteria (LAB) are a class of microorganisms well-known for their beneficial role in food fermentation, probiotics, and human health. A notable property of LAB is that they can synthesize antimicrobial peptides known as bacteriocins that exhibit antimicrobial action against both closely related and other bacteria as well. Bacteriocins produced by Weissella spp. are known to exhibit antimicrobial activity against several pathogenic bacteria including food spoilage species, making them highly invaluable for potential application in food preservation and food safety. Importantly, they provide significant health benefits to humans, including combating infections, reducing inflammation, and modulating the gut microbiota. In addition to their applications in food fermentation and probiotics, Weissella bacteriocins show promising prospects in poultry production, processing, and improving animal productivity. Future research should explore the utilization of Weissella bacteriocins in innovative food safety measures and medical applications, emphasizing their potential to combat antibiotic-resistant pathogens, enhance gut microbiota composition and function, and synergize with existing antimicrobial therapies.
Collapse
Affiliation(s)
- Jahnavi Kumari Singh
- Department of Food Science and Technology, Pondicherry University, Pondicherry, India
| | | | - G. Bhanuprakash Reddy
- Biochemistry Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, Dublin, Ireland
| | - Digambar Kavitake
- Biochemistry Division, Indian Council of Medical Research (ICMR)-National Institute of Nutrition, Hyderabad, Telangana, India
| | | |
Collapse
|
5
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
6
|
Guan Z, Zhang J, Zhang S, He Y, Li Y, Regenstein JM, Xie Y, Zhou P. Effect of Coagulant and Treatment Conditions on the Gelation and Textural Properties of Acidic Whey Tofu. Foods 2023; 12:foods12050918. [PMID: 36900435 PMCID: PMC10000490 DOI: 10.3390/foods12050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
This study aimed to investigate the properties of acidic whey tofu gelatin generated from two acidic whey coagulants by pure fermentation of Lactiplantibacillus paracasei and L. plantarum, as well as the characteristics of acidic whey tofu. The optimal holding temperature and the amount of coagulants added were determined based on the pH, water-holding capacity, texture, microstructure, and rheological properties of tofu gelation. Then, the differences in quality between tofu produced by pure bacterial fermentation and by natural fermentation were investigated under optimal tofu gelatin preparation conditions. The tofu gelatin presented the best texture at 37 °C with a 10% addition of coagulants fermented by both L. paracasei and L. plantarum. Under these conditions, the coagulant produced by the fermentation of L. plantarum resulted in a shorter formation time and stronger tofu gelatin compared with that produced from L. paracasei. Tofu produced by the fermentation of L. paracasei had higher pH, less hardness, and a rougher network structure, whereas tofu produced by the fermentation of L. plantarum was closer to tofu produced by natural fermentation in terms of pH, texture, rheology, and microstructure.
Collapse
Affiliation(s)
- Ziyu Guan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85326012
| | - Shitong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yun He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yadi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yuan Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
The Weissella Genus: Clinically Treatable Bacteria with Antimicrobial/Probiotic Effects on Inflammation and Cancer. Microorganisms 2022; 10:microorganisms10122427. [PMID: 36557680 PMCID: PMC9788376 DOI: 10.3390/microorganisms10122427] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Weissella is a genus earlier considered a member of the family Leuconostocaceae, which was reclassified into the family Lactobacillaceae in 1993. Recently, there have been studies emphasizing the probiotic and anti-inflammatory potential of various species of Weissella, of which W. confusa and W. cibaria are the most representative. Other species within this genus include: W. paramesenteroides, W. viridescens, W. halotolerans, W. minor, W. kandleri, W. soli, W. ghanensis, W. hellenica, W. thailandensis, W. fabalis, W. cryptocerci, W. koreensis, W. beninensis, W. fabaria, W. oryzae, W. ceti, W. uvarum, W. bombi, W. sagaensis, W. kimchi, W. muntiaci, W. jogaejeotgali, W. coleopterorum, W. hanii, W. salipiscis, and W. diestrammenae. Weissella confusa, W. paramesenteroides, W. koreensis, and W. cibaria are among the few species that have been isolated from human samples, although the identification of these and other species is possible using metagenomics, as we have shown for inflammatory bowel disease (IBD) and healthy controls. We were able to isolate Weissella in gut-associated bacteria (post 24 h food deprivation and laxatives). Other sources of isolation include fermented food, soil, and skin/gut/saliva of insects/animals. With the potential for hospital and industrial applications, there is a concern about possible infections. Herein, we present the current applications of Weissella on its antimicrobial and anti-inflammatory mechanistic effects, the predisposing factors (e.g., vancomycin) for pathogenicity in humans, and the antimicrobials used in patients. To address the medical concerns, we examined 28 case reports focused on W. confusa and found that 78.5% of infections were bacteremia (of which 7 were fatal; 1 for lack of treatment), 8 were associated with underlying malignancies, and 8 with gastrointestinal procedures/diseases of which 2 were Crohn’s disease patients. In cases of a successful resolution, commonly administered antibiotics included: cephalosporin, ampicillin, piperacillin-tazobactam, and daptomycin. Despite reports of Weissella-related infections, the evolving mechanistic findings suggest that Weissella are clinically treatable bacteria with emerging antimicrobial and probiotic benefits ranging from oral health, skin care, obesity, and inflammatory diseases to cancer.
Collapse
|
8
|
Chen H, Lin B, Zhang R, Gong Z, Wen M, Su W, Zhou J, Zhao L, Wang J. Controllable preparation of chitosan oligosaccharides via a recombinant chitosanase from marine Streptomyces lydicus S1 and its potential application on preservation of pre-packaged tofu. Front Microbiol 2022; 13:1007201. [PMID: 36225376 PMCID: PMC9549211 DOI: 10.3389/fmicb.2022.1007201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chitosan oligosaccharides (COSs) are widely applied in many areas due to its various biological activities. Controllable preparation of COSs with desired degree of polymerization (DP) via suitable chitosanase is of great value. Herein, a novel glycoside hydrolase (GH) family 46 chitosanase (SlCsn46) from marine Streptomyces lydicus S1 was prepared, characterized and used to controllably produce COSs with different DP. The specific activity of purified recombinant SlCsn46 was 1,008.5 U/mg. The optimal temperature and pH of purified SlCsn46 were 50°C and 6.0, respectively. Metal ions Mn2+ could improve the stability of SlCsn46. Additionally, SlCsn46 can efficiently hydrolyze 2% and 4% colloidal chitosan to prepare COSs with DP 2–4, 2–5, and 2–6 by adjusting the amount of SlCsn46 added. Moreover, COSs with DP 2–4, 2–5, and 2–6 exhibited potential application value for prolonging the shelf-life of pre-packaged Tofu. The water-holding capacity (WHC), sensorial properties, total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of pre-packed tofu incorporated with 4 mg/mL COSs with DP 2–4, 2–5, and 2–6 were better than those of the control during 15 days of storage at 10°C. Thus, the controllable hydrolysis strategy provides an effective method to prepare COSs with desired DP and its potential application on preservation of pre-packed tofu.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Bilian Lin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Rui Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Zhouliang Gong
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Ming Wen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | | | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd., Shenzhen, China
- Jianrong Wang,
| |
Collapse
|
9
|
Effect of Novel Bacteriocinogenic Lactobacillus fermentum BZ532 on Microbiological Shelf-Life and Physicochemical and Organoleptic Properties of Fresh Home-Made Bozai. Foods 2021; 10:foods10092120. [PMID: 34574232 PMCID: PMC8470737 DOI: 10.3390/foods10092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriocinogenic Lactobacillus fermentum BZ532 with novel bacteriocin LF-BZ532 was originally isolated from Chinese cereal fermented drink, showing an antimicrobial characteristic during fermentation. This study aimed to explore the in situ antimicrobial activities of L. fermentum BZ532 and co-culturing investigation against key food pathogens, i.e., Staphylococcus aureus and Escherichia coli K-12, was conducted during fresh bozai production. The growth of spoilage bacteria was suppressed and bacterial count was reduced to a significantly low level during 48 h of co-cultures. In situ production of antimicrobial compounds expressed positive activity against S. aureus and E. coli K-12, but negative acitivity against Salmonella sp. D104. The total viable count of bozai BZ-Lf (bozai fermented with BZ532 strain) had a comparatively lower viable count than bozai BZ-C (bozai as an experimental control without BZ532) during storage of 7 days. Titratable acidity of bozai treatments (BZ-C, BZ-Lf) was increased, while pH declined accordingly during storage of 7 days. The organoleptic quality of bozai BZ-C had low sensorial scores as compared with BZ-Lf during storage. In comparison with naturally fermented bozai (BZ-C), L. fermentum BZ532 (BZ-Lf) could significantly reduce the microbial spoilage and extend the shelf-life based on microbiological examination. Conclusively, L. fermentum BZ532 can be used as a bio-protective culture for improving the safety of bozai.
Collapse
|
10
|
Zhao L, Jia L, Ma B, Zhong W, Huang Y, Duan F. Heat-resistant bacteria contamination investigation in Chinese soybean curd industrial processing using high-throughput gene sequencing and MALDI-TOF-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Yang X, Wang Y, Hao M, Li L. Synergistic Effect of the Lactic Acid Bacteria and Salt Coagulant in Improvement of Quality Characteristics and Storage Stability of Tofu. J Oleo Sci 2020; 69:1455-1465. [PMID: 33055439 DOI: 10.5650/jos.ess20102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, a new way to produce tofu with lactic acid bacteria (Lactobacillus casei, L. casei) and salt coagulant (magnesium sulfate) has been developed and optimized in order to improve the quality characteristics and the storage stability. Processing parameters (bean-water ratio, inoculation amount, magnesium sulfate concentration and pressing time) of tofu were studied. Yield, water holding capacity (WHC), texture and sensory were measured for evaluating quality characteristics of tofu. Based on the single factor and response surface methodology (RSM), the optimized conditions of tofu were determined as follows: bean-water ratio was 1:4 g/mL, fermentation time was 5 h at 37°C when the inoculation amount was 4.0%, magnesium sulfate concentration was 2.0 mol/L and pressing time was 1 h. Under the optimum conditions, the yield of the tofu was 140.45 g, the WHC was 87.25 %, the hardness was 420.36 g, and the tofu had better sensory characteristics, soft, uniform texture, as well as good flavor. The shelf life and stability of tofu during storage were also evaluated under the optimum conditions. The results showed that fermented tofu had a longer shelf life than unfermented tofu at room temperature. Compared with the "pasteurization + low temperature" group and "low temperature" group, the fermented tofu in the "microwave + low temperature" group had a longer shelf life and better-quality properties during storage. Tofu, prepared by the lactic acid bacteria fermentation and salt coagulant, would be accepted as a new type of tofu according to its quality characteristics and storage stability.
Collapse
Affiliation(s)
- Xiaoyu Yang
- College of Food Science, Northeast Agricultural University
| | - Yan Wang
- College of Food Science, Northeast Agricultural University
| | - Ming Hao
- College of Food Science, Northeast Agricultural University
| | - Liang Li
- College of Food Science, Northeast Agricultural University
| |
Collapse
|
12
|
Pini F, Aquilani C, Giovannetti L, Viti C, Pugliese C. Characterization of the microbial community composition in Italian Cinta Senese sausages dry-fermented with natural extracts as alternatives to sodium nitrite. Food Microbiol 2020; 89:103417. [DOI: 10.1016/j.fm.2020.103417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
|
13
|
Tang W, Han S, Zhou J, Xu Q, Dong M, Fan X, Rui X, Zhang Q, Chen X, Jiang M, Wu J, Li W. Selective fermentation of Lactobacillus delbrueckii ssp. Bulgaricus SRFM-1 derived exopolysaccharide by Lactobacillus and Streptococcus strains revealed prebiotic properties. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Ma J, Yu W, Hou J, Han X, Shao H, Liu Y. Characterization and production optimization of a broad-spectrum bacteriocin produced by Lactobacillus casei KLDS 1.0338 and its application in soybean milk biopreservation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1751656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiue Han
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hong Shao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ying Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Akpınar Kankaya D, Tuncer Y. Antibiotic resistance in vancomycin‐resistant lactic acid bacteria (VRLAB) isolated from foods of animal origin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Engineering Faculty of Engineering Süleyman Demirel University Isparta Turkey
- Department of Food Technology Gelendost Vocational School Isparta Uygulamalı Bilimler University Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
16
|
|
17
|
Tenea GN, Lara MI. Antimicrobial compounds produced by Weissella confusa Cys2-2 strain inhibit Gram-negative bacteria growth. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1561520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gabriela N. Tenea
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Ecuador
| | - Mauricio Israel Lara
- Faculty of Engineering in Agricultural and Environmental Sciences, The Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
18
|
Yang S, Peng Z, Wang L, Wang T, Yang C. Calcinated Shell Powder from Corbicula fluminea as a Natural Antimicrobial Agent for Soybean Curd (Tofu) Preservation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shihang Yang
- Department of Food Science and Technology, National Pingtung University of Science and Technology
| | - Zhengzi Peng
- Department of Food Science and Technology, National Pingtung University of Science and Technology
| | - Litang Wang
- Department of Electrical Engineering, National Central University
| | - Tzuching Wang
- Department of Hospitality Management, Meiho University
| | - Chiching Yang
- Department of Food Science and Technology, National Pingtung University of Science and Technology
| |
Collapse
|
19
|
Xing G, Rui X, Wang D, Liu M, Chen X, Dong M. Effect of Fermentation pH on Protein Bioaccessibility of Soymilk Curd with Added Tea Polyphenols As Assessed by in Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11125-11132. [PMID: 29185340 DOI: 10.1021/acs.jafc.7b04456] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The aim of this study was to compare the effect of fermentation pH on protein bioaccessibility of four soymilk curds enriched with tea polyphenols (TP). The curds were generated by fermentation with Weissella hellenica D1501 and the fermentation terminated at different pH values, namely at pH 5.7, 5.4, 5.1, and 4.8 (SMTP-5.7, SMTP-5.4, SMTP-5.1, SMTP-4.8). Particle-size distribution, soluble protein content, gel electrophoresis, and peptides content were monitored at oral, gastric, and intestinal levels. Results showed that SMTP-4.8 was the matrix most resistant to protein digestion in the gastric phase according to the soluble protein content. Similar particle size distribution and protein degradation patterns were observed for these curds in gastric and intestinal phase. However, there was a significant difference (P < 0.05) in the content of small peptides (<10 kDa) at the end of intestinal digestion among the four curds. Overall, terminating fermentation at pH 5.4-5.7 of soymilk curds enriched with TP is recommended.
Collapse
Affiliation(s)
- Guangliang Xing
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Dan Wang
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Mei Liu
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University , Nan Jing, Jiangsu, PRC
| |
Collapse
|
20
|
Kim E, Cho Y, Lee Y, Han SK, Kim CG, Choo DW, Kim YR, Kim HY. A proteomic approach for rapid identification of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database. Int J Food Microbiol 2017; 243:9-15. [DOI: 10.1016/j.ijfoodmicro.2016.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/13/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
|
21
|
Onivogui G, Zhang X, Diaby M, Maomy CG, Song Y. Potential nutritional and antioxidant activity of various solvent extracts from leaves and stem bark of Anisophyllea laurina R. Br ex Sabine used in folk medicine. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000216040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Gbago Onivogui
- Jiangnan University, China; Center of Scientific research Rogbane Conakry, Guinea
| | | | | | | | - Yuanda Song
- Jiangnan University, China; Jiangnan University, China
| |
Collapse
|
22
|
Xiudong X, Ying W, Xiaoli L, Ying L, Jianzhong Z. Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone bioconversion, and cell survival under simulated gastric and intestinal conditions. PeerJ 2016; 4:e2701. [PMID: 27867770 PMCID: PMC5111894 DOI: 10.7717/peerj.2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2016] [Indexed: 01/11/2023] Open
Abstract
Cell immobilization is an alternative to microencapsulation for the maintenance of cells in a liquid medium. However, artificial immobilization carriers are expensive and pose a high safety risk. Okara, a food-grade byproduct from soymilk production, is rich in prebiotics. Lactobacilli could provide health enhancing effects to the host. This study aimed to evaluate the potential of okara as a natural immobilizer for L. plantarum 70810 cells. The study also aimed to evaluate the effects of okara-immobilized L. plantarum 70810 cells (IL) on soymilk fermentation, glucosidic isoflavone bioconversion, and cell resistance to simulated gastric and intestinal stresses. Scanning electron microscopy (SEM) was used to show cells adherence to the surface of okara. Lactic acid, acetic acid and isoflavone analyses in unfermented and fermented soymilk were performed by HPLC with UV detection. Viability and growth kinetics of immobilized and free L. plantarum 70810 cells (FL) were followed during soymilk fermentation. Moreover, changes in pH, titrable acidity and viscosity were measured by conventional methods. For in vitro testing of simulated gastrointestinal resistance, fermented soymilk was inoculated with FL or IL and an aliquot incubated into acidic MRS broth which was conveniently prepared to simulate gastric, pancreatic juices and bile salts. Survival to simulated gastric and intestinal stresses was evaluated by plate count of colony forming units on MRS agar. SEM revealed that the lactobacilli cells attached and bound to the surface of okara. Compared with FL, IL exhibited a significantly higher specific growth rate, shorter lag phase of growth, higher productions of lactic and acetic acids, a faster decrease in pH and increase in titrable acidity, and a higher soymilk viscosity. Similarly, IL in soymilk showed higher productions of daizein and genistein compared with the control. Compared with FL, IL showed reinforced resistance to simulatedgastric and intestinal stresses in vitro that included low pH, low pH plus pepsin, pancreatin, and bile salt. Our results indicate that okara is a new potential immobilization carrier to enhance the growth and glucosidic isoflavone bioconversion activities of L. plantarum in soymilk and improve cell survivability following simulated gastric and intestinal conditions.
Collapse
Affiliation(s)
- Xia Xiudong
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , PR China
| | - Wang Ying
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , PR China
| | - Liu Xiaoli
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , PR China
| | - Li Ying
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , PR China
| | - Zhou Jianzhong
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences , Nanjing , Jiangsu , PR China
| |
Collapse
|
23
|
Microbiological characteristics of fresh tofu produced in small industrial scale and identification of specific spoiling microorganisms (SSO). Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Wang J, Xiao Y, Rui X, Xu X, Guan Y, Zhang Q, Dong M. Fu brick tea extract supplementation enhanced probiotic viability and antioxidant activity of tofu under simulated gastrointestinal digestion condition. RSC Adv 2016. [DOI: 10.1039/c6ra20730h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel tofu (named as bio-tofu) was developed by adding Fu brick tea extract (FBTE) into soymilk and using the probiotic Lactobacillus plantarum B1-6 as a bio-coagulant.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Yu Xiao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Xin Rui
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Xiao Xu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Ying Guan
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Qiuqin Zhang
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- P. R. China
| |
Collapse
|
25
|
Abriouel H, Lerma LL, Casado Muñoz MDC, Montoro BP, Kabisch J, Pichner R, Cho GS, Neve H, Fusco V, Franz CMAP, Gálvez A, Benomar N. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 2015; 6:1197. [PMID: 26579103 PMCID: PMC4621295 DOI: 10.3389/fmicb.2015.01197] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Rohtraud Pichner
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Vincenzina Fusco
- Institute of Sciences of Food Production, National Research Council of Italy , Bari, Italy
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Federal Research Institute of Nutrition and Food, Max Rubner-Institut , Kiel, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén , Jaén, Spain
| |
Collapse
|
26
|
Cui H, Zhao C, Lin L. The specific antibacterial activity of liposome-encapsulated Clove oil and its application in tofu. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.026] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Li T, Tu C, Rui X, Gao Y, Li W, Wang K, Xiao Y, Dong M. Study of water dynamics in the soaking, steaming, and solid-state fermentation of glutinous rice by LF-NMR: a novel monitoring approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3261-3270. [PMID: 25775016 DOI: 10.1021/acs.jafc.5b00769] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solid-state fermentation (SSF) of starchy grain is a traditional technique for food and alcoholic beverage production in East Asia. In the present study, low-field nuclear magnetic resonance (LF-NMR) was introduced for the elucidation of water dynamics and microstructure alternations during the soaking, steaming, and SSF of glutinous rice as a rapid real-time monitoring method. Three different proton fractions with different mobilities were identified based on the degree of interaction between biopolymers and water. Soaking and steaming significantly changed the proton distribution of the sample. The different phases of SSF were reflected by the T2 parameters. In addition, the variations in the T2 parameters were explained by the microstructure changes of rice induced by SSF. The fermentation time and T2 parameters were sigmoidally correlated. Thus, LF-NMR may be an effective real-time monitoring method for SSF in starch systems.
Collapse
Affiliation(s)
- Teng Li
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Chuanhai Tu
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Xin Rui
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Yangwen Gao
- ‡Institute of Innovation Research, Shanghai Niumag Corporation, Shanghai 200333, P. R. China
| | - Wei Li
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Kun Wang
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Yu Xiao
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| | - Mingsheng Dong
- †College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
28
|
Fusco V, Quero GM, Cho GS, Kabisch J, Meske D, Neve H, Bockelmann W, Franz CMAP. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 2015; 6:155. [PMID: 25852652 PMCID: PMC4362408 DOI: 10.3389/fmicb.2015.00155] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/10/2015] [Indexed: 01/20/2023] Open
Abstract
Bacteria assigned to the genus Weissella are Gram-positive, catalase-negative, non-endospore forming cells with coccoid or rod-shaped morphology (Collins et al., 1993; Björkroth et al., 2009, 2014) and belong to the group of bacteria generally known as lactic acid bacteria. Phylogenetically, the Weissella belong to the Firmicutes, class Bacilli, order Lactobacillales and family Leuconostocaceae (Collins et al., 1993). They are obligately heterofermentative, producing CO2 from carbohydrate metabolism with either d(-)-, or a mixture of d(-)- and l(+)- lactic acid and acetic acid as major end products from sugar metabolism. To date, there are 19 validly described Weissella species known. Weissella spp. have been isolated from and occur in a wide range of habitats, e.g., on the skin and in the milk and feces of animals, from saliva, breast milk, feces and vagina of humans, from plants and vegetables, as well as from a variety of fermented foods such as European sourdoughs and Asian and African traditional fermented foods. Thus, apart from a perceived technical role of certain Weissella species involved in such traditional fermentations, specific Weissella strains are also receiving attention as potential probiotics, and strain development of particularly W. cibaria strains is receiving attention because of their high probiotic potential for controlling periodontal disease. Moreover, W. confusa and W. cibaria strains are known to produce copius amounts of novel, non-digestible oligosaccharides and extracellular polysaccharides, mainly dextran. These polymers are receiving increased attention for their potential application as prebiotics and for a wide range of industrial applications, predominantly for bakeries and for the production of cereal-based fermented functional beverages. On the detrimental side, strains of certain Weissella species, e.g., of W. viridescens, W. cibaria and W. confusa, are known as opportunistic pathogens involved in human infections while strains of W. ceti have been recently recongnized as etiological agent of "weissellosis," which is a disease affecting farmed rainbow trouts. Bacteria belonging to this species thus are important both from a technological, as well as from a medical point of view, and both aspects should be taken into account in any envisaged biotechnological applications.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food ProductionBari, Italy
| | - Grazia M. Quero
- National Research Council of Italy, Institute of Sciences of Food ProductionBari, Italy
| | - Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Jan Kabisch
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Diana Meske
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-InstitutKiel, Germany
| | | |
Collapse
|