1
|
Jiang X, Zhang Y, Nychas GJE, Zhu L, Mao Y, Li K, Yang X, Luo X, Dong P. Study of the transfer of Shiga toxin-producing Escherichia coli during the slaughter of cattle using molecular typing combined with epidemiologic data. Meat Sci 2024; 208:109378. [PMID: 37952270 DOI: 10.1016/j.meatsci.2023.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Investigation on the distribution and biological characteristics of Shiga-toxin producing Escherichia coli (STEC) during beef processing is essential for in-plant critical control points and food safety risk assessment. Serogroups and subtypes of stx genes of STEC strains isolated from beef processing lines were first investigated. Identification to cross-contamination among different sampling sites was further conducted by combining multilocus sequence typing (MLST) with the previous distribution and characterization data. The PCR-positive rate for STEC in 435 samples from two slaughter plants in China was 14.3% and the isolation rate for the 62 PCR positive and the entire set of 435 samples were 26% and 3.68% respectively. The existence of serotype O157:H7 (33%) and serogroups O121 (42%) and O26 (21%) as well as the high detection rate of high pathogenic gene stx2a (68%) in these serogroups indicated potential risk to the safety of beef. Traceability analysis showed that hide plays a critical role in cross-contamination between feces, lairage pens and post-washing carcasses from a molecular perspective. Intervening measures revolves around de-hiding should be involved in the in-plant safety control policy according to the tracing analysis.
Collapse
Affiliation(s)
- Xueqing Jiang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Lixian Zhu
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Ke Li
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaoyin Yang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Pengcheng Dong
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
2
|
The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario? Microorganisms 2023; 11:microorganisms11020377. [PMID: 36838342 PMCID: PMC9964116 DOI: 10.3390/microorganisms11020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Samples of steak tartare were artificially contaminated with a cocktail of Shiga toxin-producing Escherichia coli (STEC) O91, O146, O153, and O156 to the level of 3 log and 6 log CFU/g. Immediately after vacuum packing, high-pressure processing (HPP) was performed at 400 or 600 MPa/5 min. Some of the samples not treated with HPP were cooked under conditions of 55 °C for 1, 3, or 6 h. HPP of 400 MPa/5 min resulted in a 1-2 log reduction in the STEC count. In contrast, HPP of 600 MPa/5 min led to the elimination of STEC even when inoculated to 6 log CFU/g. Nevertheless, sub-lethally damaged cells were resuscitated after enrichment, and STEC was observed in all samples regardless of the pressure used. STEC was not detected in the samples cooked in a 55 °C water bath for 6 h, even after enrichment. Unfortunately, the temperature of 55 °C negatively affected the texture of the steak tartare. Further experiments are necessary to find an optimal treatment for steak tartare to assure its food safety while preserving the character and quality of this attractive product.
Collapse
|
3
|
Liu Y, Wu L, Yan Y, Yang K, Dong P, Luo X, Zhang Y, Zhu L. Lactic Acid and Peroxyacetic Acid Inhibit Biofilm of Escherichia coli O157:H7 Formed in Beef Extract. Foodborne Pathog Dis 2021; 18:744-751. [PMID: 34197219 DOI: 10.1089/fpd.2021.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to evaluate the inhibitory effect of lactic acid (LA) and peroxyacetic acid (PAA) on the biofilm formation of Escherichia coli O157:H7 in beef extract (BE). BE medium was used as the growth substrate in this study, to make the control effect closer to the situation of the factory. The biofilm inhibitory efficacy of LA and PAA was tested by using a crystal violet staining assay and microscopic examination. And then, extracellular polymeric substance (EPS) production, metabolic activity, and real-time polymerase chain reaction assay were used to reveal the biofilm inhibition mechanism of LA and PAA. The results showed that both LA and PAA significantly inhibited biofilm formation of E. coli O157:H7 at minimum inhibitory concentrations (MICs) (p < 0.05). At MIC, LA and PAA showed different effects on the biofilm metabolic activity and the EPS production of E. coli O157:H7. Supporting these findings, expression analysis showed that LA significantly suppressed quorum sensing genes (luxS and sdiA) and adhesion genes (flhC), while PAA downregulated the transcription of extracellular polysaccharide synthesis genes (adrB and adrA) and the global regulatory factor csgD. This result revealed that LA and PAA had different biofilm inhibitory mechanisms on E. coli O157:H7; LA inhibited the biofilm formation mainly by inhibiting metabolic activity, while PAA inhibited EPS production. This study provided a theoretical basis for the control of E. coli O157:H7 biofilm in the actual production process.
Collapse
Affiliation(s)
- Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Lina Wu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Yuqing Yan
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Kehui Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.,National R&D Center for Beef Processing Technology, Tai'an, Shan, China
| |
Collapse
|
4
|
Wu L, Liu Y, Dong P, Zhang Y, Mao Y, Liang R, Yang X, Zhu L, Luo X. Beef-Based Medium Influences Biofilm Formation of Escherichia coli O157:H7 Isolated from Beef Processing Plants. J Food Prot 2021; 84:1060-1068. [PMID: 33508090 DOI: 10.4315/jfp-20-385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023]
Abstract
ABSTRACT Beef-based medium beef extract (BE) and standard medium tryptic soy broth (TSB) are used as minimally processed food models to study the effects on Escherichia coli O157:H7 biofilm formation. The effects of temperatures (4, 10, 25, 37, and 42°C), pH values (4.5, 5.0, 5.5, 6.0, 7.0, and 8.0), strain characteristics, and the expression of functional genes on the biofilm formation ability of the bacteria were determined. The three tested E. coli O157:H7 strains produced biofilm in both media. Biofilm formation was greater in BE than in TSB (P < 0.05). The strongest biofilm formation capacity of E. coli O157:H7 was achieved at 37°C and pH 7.0. Biofilm formation was significantly inhibited for three tested strains incubated at 4°C. Biofilm formation ability was correlated with swarming in TSB. Biofilm formation was significantly and positively correlated with autoaggregation or hydrophobicity in BE (P < 0.05). At the initial stage of biofilm formation, the expressions of luxS, sdiA, csgD, csgA, flhC, adrA, and rpoS were significantly higher in BE than in TSB (P < 0.05). At the maturity stage, the expressions of luxS, sdiA, csgD, csgA, flhC, csrA, adrB, adrA, iraM, and rpoS were significantly higher in TSB than in BE (P < 0.05). Such information could help in the development of effective biofilm removal technologies to deal with risks of E. coli O157:H7 biofilms in the beef industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Lina Wu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|
5
|
Zhao S, Huang W, Wang C, Wang Y, Zhang Y, Ye Z, Zhang J, Deng L, Dong A. Screening and Matching Amphiphilic Cationic Polymers for Efficient Antibiosis. Biomacromolecules 2020; 21:5269-5281. [PMID: 33226784 DOI: 10.1021/acs.biomac.0c01330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amphiphilic cationic polymers that mimic antimicrobial peptides have received increasing attention due to their excellent antibacterial activity. However, the relationship between the structure of cationic polymers and its antibacterial effect remains unclear. In our current work, a series of PEG blocked amphiphilic cationic polymers composed of hydrophobic alkyl-modified and quaternary ammonium salt (QAS) moieties have been prepared. The structure-antibacterial activity relationship of these cationic polymers was investigated against E. coli and S. aureus, including PEGylation, random structure, molecular weights, and the content and lengths of the hydrophobic alkyl side chains. The results indicated that PEGylated random amphiphilic cationic copolymer (mPB35/T57) showed stronger antibacterial activity and better biocompatibility than the random copolymer without PEG (PB33/T56). Furthermore, mPB35/T57 with appropriate mole fraction of alkyl side chains (falkyl = 0.38), degree of polymerization (DP = 92), and four-carbon hydrophobic alkyl moieties was found to have the optimal structure that revealed the best antibacterial activities against both E. coli (MIC = 8 μg/mL, selectivity > 250) and S. aureus (MIC = 4 μg/mL, selectivity > 500). More importantly, mPB35/T57 could effectively eradicate E. coli biofilms by killing the bacteria embedded in the biofilms. Therefore, the structure of mPB35/T57 provided valuable information for improving the antibacterial activity of cationic polymers.
Collapse
Affiliation(s)
- Shuyue Zhao
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenjun Huang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Changrong Wang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yaping Wang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - YuFeng Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanpeng Ye
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
6
|
Lu C, Liu H, Shangguan W, Chen S, Zhong Q. Antibiofilm activities of the cinnamon extract against Vibrio parahaemolyticus and Escherichia coli. Arch Microbiol 2020; 203:125-135. [PMID: 32772125 DOI: 10.1007/s00203-020-02008-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus and Escherichia coli are two major foodborne pathogens. In this paper, the antibiofilm activities of the ethanol extract of cinnamon against these two bacteria were studied in detail. The antibacterial activity and the MIC of the extract were determined, and the inhibition and removing effects of the extract on the biofilms of V. parahaemolyticus and E. coli were investigated. The biofilms stained with fluorescein isothiocyanate (FITC) and concanavalin A (Con A) were also observed by confocal laser scanning microscope (CLSM). The results indicated that the extract exhibited high antibacterial activity, with the MIC against V. parahaemolyticus and E. coli was 6.25 mg/mL. The effects on V. parahaemolyticus biofilm were significant with the inhibition rate of 75.46% at MIC, and the eradication rate of 93.26% at 32MIC, respectively. As to E. coli, the inhibition rate was 48.18% at MIC, and the eradication rate was 46.16% at 8MIC. Meanwhile, the extract could notably reduce the metabolic activities and the secretion of EPS in biofilm, it inhibited 78.57% EPS formation in V. parahaemolyticus biofilm at MIC, and eliminated 61.28% EPS in mature biofilm at 4MIC. CLSM images showed that the EPS of the treated biofilm became thinner and biofilm structure was looser, when compared with the untreated control. This study elucidated that the cinnamon extract was effective to prevent biofilm formation and eradicate mature biofilms of V. parahaemolyticus and E. coli.
Collapse
Affiliation(s)
- Chengrong Lu
- SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, 521000, China
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Liu
- SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, 521000, China
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wendan Shangguan
- SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, 521000, China
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Song Chen
- SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, 521000, China
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingping Zhong
- SCAU (Chaozhou) Food Institute Co. Ltd., Chaozhou, 521000, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Dong P, Xiao T, Nychas GJE, Zhang Y, Zhu L, Luo X. Occurrence and characterization of Shiga toxin-producing Escherichia coli (STEC) isolated from Chinese beef processing plants. Meat Sci 2020; 168:108188. [PMID: 32470758 DOI: 10.1016/j.meatsci.2020.108188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/26/2022]
Abstract
In order to investigate the prevalence, O serogroup, virulence genes and antibiotic resistance of Shiga toxin-producing Escherichia coli (STEC) in two beef plants in China, a total of 600 samples collected from 6 sites (feces, hide, pre-evisceration carcasses, post-washing carcasses, chilled carcasses and meat, 50 samples per site in each plant) were screened for the existence of Shiga toxin-encoding genes by PCR. STEC strains in positives were isolated and characterized for serogroup and antibiotic sensitivity. The PCR prevalence rate in each site was 45.0%, 31.0%, 14.0%, 13.0%, 9.0% and 18.0%, respectively. Sixteen O serogroups including O157, O146 and O76 which are associated with disease were identified. The existence of both stx1 and stx2 genes was the most common among the isolated strains (42.3%). Among the overall 26 isolates, seven and three were resistant to at least three and ten antibiotics, indicating a high antibiotic resistance in STEC strains isolated from the study.
Collapse
Affiliation(s)
- Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tongtong Xiao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
8
|
Obaidat MM. Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7 in imported beef cattle in Jordan. Comp Immunol Microbiol Infect Dis 2020; 70:101447. [PMID: 32105836 DOI: 10.1016/j.cimid.2020.101447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/30/2023]
Abstract
This study characterized Listeria monocytogenes, Salmonella enterica, and E. coli O157:H7 by collecting rectoanal mucosal swabs and fecal samples from 518 imported beef cattle at Jordan's major abattoir. A unique 53 L. monocytogenes, 287 S. enterica, and 17 E. coli O157:H7 were isolated from 37, 120 and 9 different animals; respectively. The prevalence of S. enterica, L. monocytogenes and E. coli O157:H7 were 23.2 % (95 % CI, 19.7-27.0 %), 7.1 % (95 % CI, 5.2-9.7 %) and 1.7 % (95 % CI, 0.9-3.3 %); respectively. All L. monocytogenes, all E. coli O157:H7 and 93.0 % of S. enterica isolates resisted at least one antimicrobial class. All L. monocytogenes, 94.1 % of E. coli O157:H7 and 69.7 % of S. enterica isolates exhibited multidrug resistance (resistant to ≥3 antimicrobials classes). Moreover, high percentages of L. monocytogenes (98.1 %), E. coli O157:H7 (64.7 %) and S. enterica (45.3 %) isolates resisted ≥5 antimicrobial classes. More than 90 % of the L. monocytogenes isolates resisted ampicillin, penicillin and erythromycin and more than 75 % resisted vancomycin. S. enterica isolates resisted several treatment-of-choice antimicrobials such as nalidixic acid (85.4 %), ciprofloxacin (26.8 %) and ceftriaxone (19.5 %). Furthermore, greater than 50 % of the E. coli O157:H7 isolates resisted streptomycin, nalidixic acid, tetracycline, ampicillin, sulfamethoxazole-trimethoprim, kanamycin, chloramphenicol and ciprofloxacin. The high prevalence and the high resistance percentages of the studied pathogens toward clinically important antimicrobials is alarming. Thus, applying strict sanitation procedures at the abattoirs in Jordan is crucial to lower the risk of carcasses contamination.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
9
|
Cameron A, McAllister TA. Antimicrobial usage and resistance in beef production. J Anim Sci Biotechnol 2016; 7:68. [PMID: 27999667 PMCID: PMC5154118 DOI: 10.1186/s40104-016-0127-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots, threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.
Collapse
Affiliation(s)
- Andrew Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB Canada ; Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | | |
Collapse
|
10
|
Abuelhassan NN, Mutalib SA, Gimba FI, Yusoff WM. Molecular characterization and phylogeny of Shiga toxin-producing E. coli (STEC) from imported beef meat in Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17553-17562. [PMID: 27234829 DOI: 10.1007/s11356-016-6954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak of food-borne disease. The isolation of pathogenic E. coli strains from the imported meat samples calls for prudent management of imported meats by the relevant authorities.
Collapse
Affiliation(s)
- Nawal Nouridaim Abuelhassan
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Darul Ehsan, Malaysia.
| | - Sahilah Abdul Mutalib
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Darul Ehsan, Malaysia
| | - Fufa Ido Gimba
- Department of Pathology and Microbiology, University Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| | - Wan Mohtar Yusoff
- School of Bioscience and Biotechnology, School of Chemical Sciences and Food Technology, Faculty of Food Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Darul Ehsan, Malaysia
| |
Collapse
|