1
|
Wang R, Thammasuwan R, Roth K, Tongchitpakdee S, Worobo R. Control of Alicyclobacillus acidoterrestris in Apple Juice with Natural Antimicrobial Glycolipid. J Food Prot 2025; 88:100460. [PMID: 39900181 DOI: 10.1016/j.jfp.2025.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Food waste caused by microbial spoilage poses negative economic and environmental impact at a global level. Alicyclobacillus acidoterrestris is a spore-forming, thermophilic bacterium that can cause spoilage in shelf-stable apple juice by producing off-odor compounds, including guaiacol. This study investigated the efficacies of natural glycolipid (NG), a novel antimicrobial, extracted from fungal fermentation, in controlling vegetative cells and spores of A. acidoterrestris in apple juice during storage at 25 °C and 45 °C. Apple juice was inoculated with vegetative cells or spores of A. acidoterrestris, and supplemented with 0, 10, 50, or 100 ppm NG. Half of the samples were subjected to heat treatment at 185°F (85 °C), and the other half were not. Samples were stored at 25 °C or 45 °C for 28 days with samplings on days 0, 1, 3, 7, 14, 21, and 28. The minimum inhibitory concentration of NG was 4 and 8 ppm against spores and vegetative cells, respectively. The minimum bactericidal concentration of NG varied between strains, but was much higher than 100 ppm, which is the maximum recommended concentration for NG in juice and beverage products. During the 28-day storage, all tested concentrations of NG completely inhibited growth and outgrowth of A. acidoterrestris vegetative cells and spores at 45 °C, while the effect of NG was masked at 25 °C. Results also showed heating had some inhibitory effects against vegetative cells but not spores of A. acidoterrestris. In conclusion, we find NG suitable for inhibiting the growth of A. acidoterrestris in shelf-stable apple juice.
Collapse
Affiliation(s)
- Rory Wang
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Rinrada Thammasuwan
- Department of Food Science and Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Katerina Roth
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
de Oliveira PRS, Pretes NS, Ribeiro AC, Castro JC, Garcia FP, Nakamura CV, Bona E, Mikcha JMG, Junior MM, de Abreu Filho BA. Comparative assessment of antibacterial activity of Matricaria chamomilla L. extract, nisin and of its combination against Alicyclobacillus spp. Food Microbiol 2024; 124:104597. [PMID: 39244376 DOI: 10.1016/j.fm.2024.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 09/09/2024]
Abstract
Alicyclobacillus spp. is a potential spoiling agent of acidic products and citrus drinks, leading to sensory alterations in contaminated products and consequent economic losses. Treatments such as pasteurization eliminate vegetative cells, but also create a favorable atmosphere for spore germination. To guarantee quality and safety, the application of natural substances as bioconservatives is a considerable and promising alternative for the food industry. This study evaluated the effect of hexane extract of Matricaria chamomilla L. (HE), Nisin (N) and their combination (HE + N). These compounds are present in some studies describing their antibacterial action, but no studies were found on the association of these compounds against the species Alicyclobacillus spp. This study aimed to analyze the antioxidant activity (AA) for the DPPH• (0,23 μmol Trolox/mg) and ABTS (27.93 μmol Trolox/mg), the Checkboard test revealed synergism between HE and N with a fractional inhibitory index (FIC) of 0.068., and to study the antibacterial and sporicidal effect. The antibacterial and sporicidal activity was satisfactory against Alicyclobacillus acidoterrestris with MIC and MBC of 1.95 μg/mL and MSC of 7.81 μg/mL in analyzes using HE + N. The application in orange juice proved to be effective, with an MBC of 0.007 μg/mL. The MIC results served as a parameter for other tests carried out in this study, such as flow cytometry and Scanning Electron Microscopy (SEM), and for the evaluation of sensory characteristics with Electronic Nose (E-nose).
Collapse
Affiliation(s)
| | - Natalia Santos Pretes
- Post-Graduate Program in Food Science, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, Paraná, Brazil.
| | - Anna Carla Ribeiro
- State University of Maringá, Department of Biotechnology, Genetics and Cell Biology, Maringá, Paraná, Brazil.
| | - Juliana Cristina Castro
- Department of Basic Health Sciences, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, Parana, Brazil.
| | - Francielle Pelegrin Garcia
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, CEP 87020-900, PR, Brazil.
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in the Development of Pharmaceuticals and Cosmetics, State University of Maringá, Maringá, CEP 87020-900, PR, Brazil.
| | - Evandro Bona
- Post-Graduate Program in Food Technology (PPGTA), Federal Technological University of Paraná (UTFPR), Campo Mourão, Paraná, Brazil; Post-Graduate Program in chemistry (PPGQ), Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil.
| | - Jane Martha Graton Mikcha
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, Paraná, Brazil.
| | - Miguel Machinski Junior
- Department of Basic Health Sciences, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, Parana, Brazil.
| | - Benício Alves de Abreu Filho
- Post-Graduate Program in Food Science, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, Paraná, Brazil.
| |
Collapse
|
3
|
Napiórkowska A, Khaneghah AM, Kurek MA. Essential Oil Nanoemulsions-A New Strategy to Extend the Shelf Life of Smoothies. Foods 2024; 13:1854. [PMID: 38928796 PMCID: PMC11202876 DOI: 10.3390/foods13121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Over the years, consumer awareness of proper, healthy eating has increased significantly, but the consumption of fruits and vegetables remains too low. Smoothie drinks offer a convenient way to supplement daily diets with servings of fruits and vegetables. These ready-to-eat beverages retain the nutritional benefits of the raw ingredients from which they are made. Furthermore, they cater to the growing demand for quick and nutritious meal options. To meet consumer expectations, current trends in the food market are shifting towards natural, high-quality products with minimal processing and extended shelf life. Food manufacturers are increasingly aiming to reduce or eliminate synthetic preservatives, replacing them with plant-based alternatives. Plant-based preservatives are particularly appealing to consumers, who often view them as natural and organic substitutes for conventional preservatives. Essential oils, known for their antibacterial and antifungal properties, are effective against the microorganisms and fungi present in fruit and vegetable smoothies. However, the strong taste and aroma of essential oils can be a significant drawback, as the concentrations needed for microbiological stability are often unpalatable to consumers. Encapsulation of essential oils in nanoemulsions offers a promising and effective solution to these challenges, allowing for their use in food production without compromising sensory qualities.
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| | - Amin Mousavi Khaneghah
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran 1435713715, Iran;
| | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, bud. 32, pok. 109B, 02-787 Warszawa, Poland;
| |
Collapse
|
4
|
Shang C, Zhang T, Xu J, Zhao N, Zhang W, Fan M. Exploring the growth characteristics of Alicyclobacillus acidoterrestris for controlling juice spoilage with zero additives. Food Chem X 2023; 19:100790. [PMID: 37780307 PMCID: PMC10534113 DOI: 10.1016/j.fochx.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 10/03/2023] Open
Abstract
Fruit juice spoilage that caused by contaminated Alicyclobacillus has brought huge losses to beverage industry worldwide. Thus, it is very essential to understand the growth and metabolism processing of Alicyclobacillus acidoterrestris (A. acidoterrestris) in controlling juice spoilage caused by Alicyclobacillus. In this work, simulative models for the growth and metabolism of A. acidoterrestris were systematically conducted in the medium and fruit juice. The results showed that low temperature (4 ℃) and strong acidic environment (pH 3.0-2.0) of medium inhibited the growth and reproduction of A. acidoterrestris. In addition, with decreasing temperature, the color, smell and turbidity of commercially available juice supplemented with A. acidoterrestris significantly improved. This work provided a clear exploration of growth characteristics of A. acidoterrestris by applying theory (medium) to reality (fruit juices), and pave fundamental for exploring the zero additives of controlling juice spoilage.
Collapse
Affiliation(s)
| | | | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| |
Collapse
|
5
|
Ribeiro AM, Paiva AD, Cruz AM, Vanetti MC, Ferreira SO, Mantovani HC. Bovicin HC5 and nisin reduce cell viability and the thermal resistance of Alicyclobacillus acidoterrestris endospores in fruit juices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3994-4002. [PMID: 34997599 DOI: 10.1002/jsfa.11747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alicyclobacillus acidoterrestris is an important thermoacidophilic spore-forming bacterium in fruit-juice deterioration, and alternative non-thermal methods have been investigated to control fruit juice spoilage. This work aimed to evaluate the capacity of bovicin HC5 and nisin to inhibit the growth of vegetative cells and reduce the thermal resistance of endospores of A. acidoterrestris inoculated (107 CFU mL-1 ) in different fruit juices. The number of viable cells was determined after 12 h incubation at 43 °C in the presence and absence of nisin or bovicin HC5 (10-100 AU mL-1 ). The exposure time (min) required to kill 90% of the initial population (reduction of one log factor) at 90 ºC (D90ºC ) was used to assess the thermal resistance of A. acidoterrestris endospores exposed (80 AU mL-1 ) or non-exposed to the bacteriocins. Additionally, the effect of bovicin and nisin on the morphology and cell structure of A. acidoterrestris was evaluated by atomic force microscopy (AFM). RESULTS Bovicin HC5 and nisin were bactericidal against A. acidoterrestris inoculated in fruit juices and reduced the D90°C values up to 30-fold. AFM topographical images revealed substantial structural changes in the cellular framework of vegetative cells upon treatment with bovicin HC5 or nisin. CONCLUSIONS These results emphasize the potential application of lantibiotics as additional hurdles in food processing to control thermoacidophilic spoilage bacteria in fruit juices. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aryádina M Ribeiro
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline D Paiva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alexandra Mo Cruz
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria Cd Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
6
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
7
|
Jia H, Zeng X, Cai R, Wang Z, Yuan Y, Yue T. Fabrication of Epsilon-Polylysine-Based Magnetic Nanoflowers with Effective Antibacterial Activity against Alicyclobacillus acidoterrestris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:857-868. [PMID: 35040323 DOI: 10.1021/acs.jafc.1c06885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The risk of fruit juice contamination caused by microorganisms, especially Alicyclobacillus acidoterrestris, has been reported worldwide. To develop cost-effective control methods, in this work, flower-like magnetic molybdenum disulfide (Fe3O4@MoS2) nanoparticles (NPs) were fabricated by a facile two-step hydrothermal method. After further modifying polyacrylic acid (PAA) on the surface of the NPs, epsilon-polylysine (EPL) was immobilized via N-(3-dimethylaminopropyl)-N-carbodiimide hydrochloride/N-hydroxysuccinimide coupling reaction to obtain the Fe3O4@MoS2@PAA-EPL nanocomposites. Antibacterial results exhibited that the synthesized nanocomposites showed effective antibacterial activity against A. acidoterrestris with a minimum inhibitory concentration of 0.31 mg mL-1. Investigation on the antibacterial mechanism revealed that the presence of nanocomposites caused damage and disruption of the bacterial membrane through dent formation, resulting in the leakage of intracellular protein. Moreover, the activity of dehydrogenase enzymes was inhibited with the treatment of Fe3O4@MoS2@PAA-EPL, causing the reduction of metabolic activity and adenosine triphosphate levels in bacteria. Simultaneously, the presence of nanocomposites improved intracellular reactive oxygen species levels, and this disrupted the antioxidant defense system and caused oxidative damage to bacteria. Furthermore, Fe3O4@MoS2@PAA-EPL nanocomposites were confirmed to possess satisfactory biocompatibility by performing in vitro cytotoxicity and in vivo acute toxicity experiments. The aim of this research was to develop a new pathway for the inhibition of A. acidoterrestris in the juice industry.
Collapse
Affiliation(s)
- Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Dutra TV, de Menezes JL, Mizuta AG, de Oliveira A, Moreira TFM, Barros L, Mandim F, Pereira C, Gonçalves OH, Leimann FV, Mikcha JMG, Machinski Junior M, Abreu Filho BAD. Use of nanoencapsulated curcumin against vegetative cells and spores of Alicyclobacillus spp. in industrialized orange juice. Int J Food Microbiol 2021; 360:109442. [PMID: 34688124 DOI: 10.1016/j.ijfoodmicro.2021.109442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Pathogenic and deteriorating bacteria are a great concern to food safety. In this sense, the present study evaluated the fight against microbial contamination through the use of nanoparticles containing curcumin, in addition to analyzing the physical properties of these nanoparticles. Efficient curcumin encapsulation was determined by Fourier transform infrared spectra evaluation and differential scanning calorimetry. Transmission electron microscopy images showed irregular shaped nanoparticles with broad size distribution (20-250 nm). The antibacterial activity was considered satisfactory, since curcumin in the form of nanoparticles demonstrated antimicrobial and antibacterial activity superior to curcumin in its free form, against both pathogenic bacteria, such as Staphylococcus aureus (MIC 125 μg/mL), and deteriorates, such as Alicyclobacillus acidoterrestris (MIC 62.5 μg/mL). Since curcumin nanoparticles may be consumed as a food additive, the bioactive properties of the nanoencapsulated curcumin were also evaluated in relation to antioxidant capacity (Thiobarbituric acid reactive substances (TBARS) and oxidative hemolysis inhibition assays) and cytotoxicity against four carcinoma cell lines, as well as two non-tumor cells. As a proof of concept, nanoparticles were incorporated in orange juice, with the juice maintaining satisfactory pH, °Brix, and color stability, during three days of storage (8 °C).
Collapse
Affiliation(s)
- Tatiane Viana Dutra
- Graduate Program in Food Science (PPC), State University of Maringá (UEM), Av. Colombo, 5790, 87020-900 Maringá, Brazil
| | - Jéssica Lima de Menezes
- Graduate Program in Food Science (PPC), State University of Maringá (UEM), Av. Colombo, 5790, 87020-900 Maringá, Brazil
| | - Amanda Gouveia Mizuta
- Graduate Program in Food Science (PPC), State University of Maringá (UEM), Av. Colombo, 5790, 87020-900 Maringá, Brazil
| | - Anielle de Oliveira
- Graduate Program in Food Science (PPC), State University of Maringá (UEM), Av. Colombo, 5790, 87020-900 Maringá, Brazil; Graduate Program in Food Technology (PPGTA), Federal Technological University of Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria dos Santos, 1233, 87301-899, Campo Mourão, Brazil
| | - Thaysa Fernandes Moya Moreira
- Graduate Program in Food Science (PPC), State University of Maringá (UEM), Av. Colombo, 5790, 87020-900 Maringá, Brazil; Graduate Program in Food Technology (PPGTA), Federal Technological University of Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria dos Santos, 1233, 87301-899, Campo Mourão, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Odinei Hess Gonçalves
- Graduate Program in Food Technology (PPGTA), Federal Technological University of Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria dos Santos, 1233, 87301-899, Campo Mourão, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Fernanda Vitória Leimann
- Graduate Program in Food Technology (PPGTA), Federal Technological University of Paraná, Campus Campo Mourão (UTFPR-CM), Via Rosalina Maria dos Santos, 1233, 87301-899, Campo Mourão, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Jane Martha Graton Mikcha
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo, 5790, Maringá, 87020-900, Paraná, Brazil
| | - Miguel Machinski Junior
- Department of Basic Health Sciences, State University of Maringa, Av. Colombo, 5790, Maringá, 87020-900 Paraná, Brazil
| | - Benício Alves de Abreu Filho
- Graduate Program in Food Science (PPC), State University of Maringá (UEM), Av. Colombo, 5790, 87020-900 Maringá, Brazil; Department of Basic Health Sciences, State University of Maringa, Av. Colombo, 5790, Maringá, 87020-900 Paraná, Brazil.
| |
Collapse
|
9
|
Fan Q, Liu C, Gao Z, Hu Z, Wang Z, Xiao J, Yuan Y, Yue T. Inactivation Effect of Thymoquinone on Alicyclobacillus acidoterrestris Vegetative Cells, Spores, and Biofilms. Front Microbiol 2021; 12:679808. [PMID: 34149671 PMCID: PMC8206486 DOI: 10.3389/fmicb.2021.679808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
Alicyclobacillus acidoterrestris (A. acidoterrestris), a spore-forming bacterium, has become a main challenge and concern for the juices and acid beverage industry across the world due to its thermo-acidophilic characteristic. Thymoquinone (TQ) is one of the active components derived from Nigella sativa seeds. The objective of this study was to investigate antibacterial activity and associated molecular mechanism of TQ against A. acidoterrestris vegetative cells, and to evaluate effects of TQ on A. acidoterrestris spores and biofilms formed on polystyrene and stainless steel surfaces. Minimum inhibitory concentrations of TQ against five tested A. acidoterrestris strains ranged from 32 to 64 μg/mL. TQ could destroy bacterial cell morphology and membrane integrity in a concentration-dependent manner. Field-emission scanning electron microscopy observation showed that TQ caused abnormal morphology of spores and thus exerted a killing effect on spores. Moreover, TQ was effective in inactivating and removing A. acidoterrestris mature biofilms. These findings indicated that TQ is promising as a new alternative to control A. acidoterrestris and thereby reduce associated contamination and deterioration in the juice and acid beverage industry.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Cheng Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
- College of Food Science and Technology, Northwest University, Xi’an, China
| |
Collapse
|
10
|
Clove Oil ( Syzygium aromaticum L.) Activity against Alicyclobacillus acidoterrestris Biofilm on Technical Surfaces. Molecules 2020; 25:molecules25153334. [PMID: 32708039 PMCID: PMC7435816 DOI: 10.3390/molecules25153334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Acidotermophilic bacteria Alicyclobacillus acidoterrestris is one of the main contaminants in the fruit industry forming biofilms which are difficult to remove from the production line by conventional methods. An alternative approach aims for the use of essential oils to prevent Alicyclobacillus biofilm development. The effect of clove essential oil on A. acidoterrestris biofilms on glass and polyvinyl chloride surfaces under static and agitated culture conditions was investigated by atomic force microscopy and the plate count method. The medium-flow and the type of technical surface significantly influenced A. acidoterrestris biofilm. The PVC was colonized in a greater extent comparing to glass. Clove essential oil in 0.05% (v/v) caused 25.1–65.0% reduction of biofilms on the technical surfaces along with substantial changes in their morphology by a decrease in the biofilm: height, surface roughness, and surface area difference. The oil also induced alteration in individual bacterial cells length and visible increase of their roughness. Clove essential oil seems to release EPS from biofilm and thus induce detachment of bacteria from the surface. Due to anti-A. acidoterrestris biofilm activity, the clove oil may be used in the juice industry to hinder a development of A. acidoterrestris biofilms on production surfaces.
Collapse
|
11
|
Wahia H, Zhou C, Mustapha AT, Amanor-Atiemoh R, Mo L, Fakayode OA, Ma H. Storage effects on the quality quartet of orange juice submitted to moderate thermosonication: Predictive modeling and odor fingerprinting approach. ULTRASONICS SONOCHEMISTRY 2020; 64:104982. [PMID: 32004753 DOI: 10.1016/j.ultsonch.2020.104982] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 05/18/2023]
Abstract
The effects of moderate thermosonication (MTS) on the quality quartet: physico-chemical, microbial, nutritional and sensory qualities of orange juice (OJ) inoculated with Alicyclobacillus acidoterrestris (AAT) were studied during 24 days of storage at ambient and refrigerated temperatures. The bioactive compounds and antioxidant activity of OJ decreased with storage, while the pectin methyl esterase (PME) increased. Nonetheless, noticeable changes were observed from the 12th day of storage. There was no obvious (p > 0.05) variation in pH and total soluble solids. To determine the nutritional and microbial quality characteristics of OJ during storage, non-linear kinetic curves were successfully fitted with least square fitting polynomial and four-parameter log-logistic distribution models. The E-nose sensors succeeded in discriminating between the aroma of non-treated and treated OJ based on linear discriminant analysis (LDA). Furthermore, terpenes, alcohol and partially aromatic compounds were the main spoilage indicators of OJ during storage based on E-nose analysis and confirmed by HS-SPME-GC/MS analysis. Thus, MTS significantly extended the shelf life of the quality quartet of natural OJ at 4 °C. E-nose-GC/MS fusion offered odor fingerprints to AAT microorganisms that can be used as spoilage index without using traditional food analysis techniques. The proposed approach can be used as an alternative tool for rapid detection of spoilage microorganisms in OJ.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdullateef Taiye Mustapha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Robert Amanor-Atiemoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Li Mo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
12
|
Application of iron oxide nanoparticles @ polydopamine-nisin composites to the inactivation of Alicyclobacillus acidoterrestris in apple juice. Food Chem 2019; 287:68-75. [DOI: 10.1016/j.foodchem.2019.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
|
13
|
Song Z, Niu C, Wu H, Wei J, Zhang Y, Yue T. Transcriptomic Analysis of the Molecular Mechanisms Underlying the Antibacterial Activity of IONPs@pDA-Nisin Composites toward Alicyclobacillus acidoterrestris. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21874-21886. [PMID: 31185568 DOI: 10.1021/acsami.9b02990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple and no-drug resistance antibacterial method was developed by the synthesis of heat-stable and pH-tolerant nisin-loaded iron oxide nanoparticles polydopamine (IONPs@pDA) composites. The composites had a crystal structure and diameters of 25 ± 3 nm, with a saturation magnetization ( Ms) of 43.7995 emu g-1. Nisin was successfully conjugated onto the IONPs@pDA nanoparticles, as evinced by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses. The novel synthesized material showed good performance in reducing Alicyclobacillus acidoterrestris, a common food spoilage bacterium that represents a significant problem for the food industry. Treatment of A. acidoterrestris cells with composites resulted in membrane damage, as observed by live/dead staining and scanning electron microscopy and transmission electron microscopy analyses. Further, the composites exhibited highly efficient antibacterial activity against cells in only 5 min. Transcriptomic sequencing of culture RNA pools after exposure to composites resulted in a total of 334 differentially expressed genes that were primarily associated with transcriptional regulation, energy metabolism, membrane transporters, membrane and cell wall syntheses, and cell motility. Thus, these results suggested that changes in transcriptional regulation caused by aggregated composites on target cells led to major changes in homeostasis that manifested by decreased energy metabolism, pore formation in the membrane, and repressed cell wall synthesis. Concomitantly, cell motility and sporulation activities were both repressed, and finally, intracellular substances flowed out of leaky cells. The proposed biocontrol method represents a novel means to control microorganisms without inducing drug resistance. Further, these results provide novel insights into the molecular mechanisms underlying the antibacterial activity of composites against microorganisms.
Collapse
Affiliation(s)
- Zihan Song
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Chen Niu
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| | - Hao Wu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jianping Wei
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Yuxiang Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Tianli Yue
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| |
Collapse
|
14
|
Pornpukdeewattana S, Jindaprasert A, Massa S. Alicyclobacillusspoilage and control - a review. Crit Rev Food Sci Nutr 2019; 60:108-122. [DOI: 10.1080/10408398.2018.1516190] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Aphacha Jindaprasert
- Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Salvatore Massa
- Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
15
|
Pia AKR, Pereira APM, Costa RA, Alvarenga VO, Freire L, Carlin F, Sant'Ana AS. The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiol 2019; 82:99-106. [PMID: 31027825 DOI: 10.1016/j.fm.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/26/2022]
Abstract
Alkalization is a step of cocoa processing and consists of the use of alkali and high temperature to improve the sensorial and technological qualities of cocoa. Intense food processing can select spores, which can compromise safety and quality of the final product. Thus, the aim of this study was to evaluate the fate of B. cereus and G. stearothermophilus spores during the alkalization of pre-roasted (Pr) nibs (held at 120 °C) and unroasted (Ur) nibs (held at 90 °C) using potassium carbonate (0, 2, 4 and 6% w/w). In all conditions, log-linear inactivation kinetics with a tail was observed. The inactivation rate (kmax) for B. cereus varied from 0.065 to 1.67 min-1, whereas the kmax for G. stearothermophilus varied from 0.012 to 0.063 min-1. For both microorganisms, the lowest kmax values were observed during Ur nibs alkalization. The carbonate concentration increase promoted kmax values reduction. The highest tail values were observed for G. stearothermophilus in Ur nibs alkalization, reaching 3.04 log spores/g. Tail formation and low kmax values indicated that cocoa alkalization does not cause significant reductions on bacterial spore population. Therefore, the microbiological control should be primarily ensured by the raw material quality and by avoiding recontamination in the cocoa chain.
Collapse
Affiliation(s)
- Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ana P M Pereira
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ramon A Costa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Verônica O Alvarenga
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luisa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Frédéric Carlin
- UMR408 SQPOV "Sécurité et Qualité des Produits d'Origine Végétale", INRA Avignon Université, 84000, Avignon, France
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
16
|
Prado DBD, Fernandes MDS, dos Anjos MM, Tognim MCB, Nakamura CV, Machinski Junior M, Mikcha JMG, de Abreu Filho BA. Biofilm-forming ability ofAlicyclobacillusspp. isolates from orange juice concentrate processing plant. J Food Saf 2018. [DOI: 10.1111/jfs.12466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniela Biral do Prado
- Postgraduate Program in Food Science; State University of Maringá; Maringá Paraná Brazil
| | - Meg da Silva Fernandes
- Postgraduate Program in Food Science; State University of Maringá; Maringá Paraná Brazil
| | - Márcia Maria dos Anjos
- Postgraduate Program in Food Science; State University of Maringá; Maringá Paraná Brazil
| | | | - Celso Vataru Nakamura
- Department of Basic Health Sciences; State University of Maringá; Maringá Paraná Brazil
| | | | | | | |
Collapse
|
17
|
Zhang JB, Gao ZP, Liu XH, Yue TL, Yuan YH. The Effect of RF Treatment Combined with Nisin Against Alicyclobacillus Spores in Kiwi Fruit Juice. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|