1
|
Borges Teixeira L, Zanini Campos J, Isabel Kothe C, Elisa Welke J, Rodrigues E, Frazzon J, Cruz Silveira Thys R. Type III sourdough: Evaluation of biopreservative potential in bakery products with enhanced antifungal activity. Food Res Int 2024; 189:114482. [PMID: 38876611 DOI: 10.1016/j.foodres.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
The potential biopreservative role of a Type III sourdough (tIII-SD), produced by starter cultures of Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum ATCC 8014, was assessed for its antifungal activity in baking applications. Fermentation was carried out using different substrates to enhance the production of antifungal metabolites for 24 and 48 h. The tIII-SD samples were analyzed in relation to pH, total titratable acidity (TTA) and the production of organic acids. The water/salt-soluble extract of the tIII-SD was evaluated in relation to the inhibition potential against key fungi that contaminate bakery products including Penicillium roqueforti, Penicillium chrysogenum and Aspergillus niger. Finally, breads with 10 % of the tIII-SD were prepared and the fungi contamination was evaluated throughout the shelf life period. The lowest pH value in sourdough was obtained from 48-hour fermentation by L. plantarum. The saline extracts exhibited varying degrees of inhibition in the in vitro test; however, the greatest enhancement of this effect was obtained when whole wheat grain flour was used. The tIII-SD crafted from a blend of wheat and flaxseed flours and fermented with F. sanfranciscensis for 48 h (BSWF48h-FS), demonstrated superior performance compared to other formulations. This variant exhibited a total shelf life of 10 days, suggesting that the utilization of tIII-SD could serve as a viable alternative for natural antifungal agents, proving beneficial for the bakery industry.
Collapse
Affiliation(s)
- Lílian Borges Teixeira
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul - CEVS/SES-RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Júlia Zanini Campos
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Isabel Kothe
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Juliane Elisa Welke
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Jeverson Frazzon
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Cruz Silveira Thys
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Fan Y, Yang X, Hu C, Wei B, Xu F, Guo Q. Fermentation Performance Evaluation of Lactic Acid Bacteria Strains for Sichuan Radish Paocai Production. Foods 2024; 13:1813. [PMID: 38928755 PMCID: PMC11202693 DOI: 10.3390/foods13121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fermented vegetable products play a significant role in various cuisines, and understanding the fermentation dynamics of lactic acid bacteria (LAB) strains is essential for optimizing their production and quality. Here, we sought to investigate the fermentation performance of five LAB strains isolated from Sichuan paocai as starters for paocai. Sensory evaluation revealed that the inoculation of radish paocai samples with LAB strains effectively improved the overall liking and sensory satisfaction of participants, increasing the scores to varying degrees in terms of taste, flavor, texture, and coloration. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus exhibited a good salt resistance in radish juice and could grow in a medium containing 10% NaCl. Four indicator strains commonly found in contaminated paocai were effectively inhibited by fermented LAB broths, which improved the edibility and safe production of paocai. Compared to spontaneous fermentation (CK), radish paocai inoculated with LAB showed a significantly accelerated acid production rate, shortening the fermentation period by approximately two days. The contents of titratable total acids, organic acids, and free amino acids were higher in the inoculated samples and were enriched in the taste of radish paocai. The content of volatile organic compounds in the inoculated samples was higher than that in CK. Based on OPLS-DA analysis, 31 key indicators of paocai quality were screened and used to rank the fermentation performances of the five strains using the TOPSIS method; here, Lpb. plantarum and Lcb. rhamnosus achieved the highest scores. This study provides a reference for selecting LAB strains as efficient and secure fermentation starters to optimize paocai quality.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Xu Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Cihai Hu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Banghong Wei
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Fei Xu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Quanyou Guo
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| |
Collapse
|
3
|
Bahmanpour H, Sowti Khiabani M, Pirsa S. Improving the microbial and physicochemical shelf life of yufka paste using Lactobacillus plantarum and calcium propionate. Food Sci Nutr 2024; 12:1635-1646. [PMID: 38455183 PMCID: PMC10916557 DOI: 10.1002/fsn3.3857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024] Open
Abstract
Considering the importance of reducing the use of chemical preservatives in food and the increasing attention of consumers to consume food products with minimal additives, the main goal of this research was to study the effect of use of chemical (calcium propionate) and biological (Lactobacillus plantarum) preservatives on increasing shelf life of yufka paste considering its physicochemical and microbial characteristics. For this purpose, three samples of yufka paste were prepared by adding concentrations of 103, 105, and 107 cfu/mL of L. plantarum individually and three samples of paste were prepared by adding the same amount of bacteria in combination with 0.3% calcium propionate and these samples were compared with the control sample (without preservative) and the sample only containing 0.3% calcium propionate. The obtained results showed that different treatments and time had a significant effect on physicochemical properties including pH, moisture, and protein of yufka paste (p < .05). The results of the survival of L. plantarum showed that with increasing time, the survival rate of bacteria increased (p < .05). The pH of the samples showed that the L. plantarum has a significant effect on controlling the chemical quality of yufka during storage. The count of mold and yeast in the combined use of L. plantarum and 0.3% propionate was lower than the single use of propionate chemical preservative, which indicated the very good effect of the green preservative in controlling the moldy spoilage of yufka. Low concentrations of bacteria showed better antimold results than treatments containing bacteria and propionate in a combined form, propionate or control treatment.
Collapse
Affiliation(s)
- Hannaneh Bahmanpour
- Department of Food Science and Engineering, Faculty of AgricultureIslamic Azad University, Tabriz BranchTabrizIran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| |
Collapse
|
4
|
Nouska C, Hatzikamari M, Matsakidou A, Biliaderis CG, Lazaridou A. Enhancement of Textural and Sensory Characteristics of Wheat Bread Using a Chickpea Sourdough Fermented with a Selected Autochthonous Microorganism. Foods 2023; 12:3112. [PMID: 37628111 PMCID: PMC10453481 DOI: 10.3390/foods12163112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
A traditional Greek sourdough, based on the fermentation of chickpea flour by an autochthonous culture, was evaluated as a wheat bread improver. The dominant indigenous microflora (Clostridium perfringens isolates) was identified by 16S rDNA analysis, and a selected strain (C. perfringens CP8) was employed to ferment chickpea flour to obtain a standardized starter culture (sourdough) for breadmaking. In accordance with toxin-typed strain identification, all isolates lacked the cpe gene; thus, there is no concern for a health hazard. Loaf-specific volumes increased with the addition of liquid, freeze-dried, and freeze-dried/maltodextrin sourdoughs compared to control bread leavened by baker's yeast only. Following storage (4 days/25 °C), the amylopectin retrogradation and crumb hardness changes (texture profile analysis) revealed a lower degree of staling for the sourdough-fortified breads. Modifications in the protein secondary structure of fortified doughs and breads were revealed by FTIR analysis. High amounts of organic acids were also found in the sourdough-supplemented breads; butyric and isobutyric acids seemed to be responsible for the characteristic 'butter-like' flavor of these products (sensory analysis). Overall, the addition of liquid or freeze-dried chickpea sourdough in wheat bread formulations can improve the specific volume, textural characteristics, and sensorial properties of loaves, along with extending bread shelf life.
Collapse
Affiliation(s)
- Chrysanthi Nouska
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece; (M.H.); (A.M.); (C.G.B.); (A.L.)
| | | | | | | | | |
Collapse
|
5
|
Antimicrobial and physiochemical properties of films and coatings prepared from bio-fiber gum and whey protein isolate conjugates. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Valorization of wheat bread waste and cheese whey through cultivation of lactic acid bacteria for bio-preservation of bakery products. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
7
|
Diversity of Filamentous Fungi Associated with Dairy Processing Environments and Spoiled Products in Brazil. Foods 2022; 12:foods12010153. [PMID: 36613369 PMCID: PMC9818152 DOI: 10.3390/foods12010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Few studies have investigated the diversity of spoilage fungi from the dairy production chain in Brazil, despite their importance as spoilage microorganisms. In the present study, 109 filamentous fungi were isolated from various spoiled dairy products and dairy production environments. The isolates were identified through sequencing of the internal transcribed spacer (ITS) region. In spoiled products, Penicillium and Cladosporium were the most frequent genera of filamentous fungi and were also present in the dairy environment, indicating that they may represent a primary source of contamination. For dairy production environments, the most frequent genera were Cladosporium, Penicillium, Aspergillus, and Nigrospora. Four species (Hypoxylon griseobrunneum, Rhinocladiella similis, Coniochaeta rosae, and Paecilomyces maximus) were identified for the first time in dairy products or in dairy production environment. Phytopathogenic genera were also detected, such as Montagnula, Clonostachys, and Riopa. One species isolated from the dairy production environment is classified as the pathogenic fungi, R. similis. Regarding the phylogeny, 14 different families were observed and most of the fungi belong to the Ascomycota phylum. The understanding of fungal biodiversity in dairy products and environment can support the development of conservation strategies to control food spoilage. This includes the suitable use of preservatives in dairy products, as well as the application of specific cleaning and sanitizing protocols designed for a specific group of target microorganisms.
Collapse
|
8
|
Souza LV, Martins E, Moreira IMFB, de Carvalho AF. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int J Microbiol 2022; 2022:6264170. [PMID: 37645592 PMCID: PMC10462446 DOI: 10.1155/2022/6264170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 08/31/2023] Open
Abstract
Consumers worldwide are increasingly demanding food with fewer ingredients, preferably without chemical additives. The trend called "Clean Label" has stimulated the development and commercialization of new types of bioprotective bacterial cultures. These bacteria are not considered new, and several cultures have been available on the market. Additionally, new bioprotective bacteria are being identified to service the clean label trend, extend the shelf life, and, mainly, improve the food safety of food. In this context, the lactic acid bacteria (LAB) have been extensively prospected as a bioprotective culture, as they have a long history in food production and their antimicrobial activity against spoilage and pathogenic microorganisms is well established. However, to make LAB cultures available in the market is not that easy, the strains should be characterized phenotypically and genotypically, and studies of safety and technological application are necessary to validate their bioprotection performance. Thus, this review presents information on the bioprotection mechanisms developed by LAB in foods and describes the main strategies used to identify and characterize bioprotective LAB with potential application in the food industry.
Collapse
Affiliation(s)
- Luana Virgínia Souza
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Evandro Martins
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Isabella Maria Fernandes Botelho Moreira
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
9
|
Sung W, Lu S, Chen Y, Pan C, Hsiao H. Inhibition of individual and combination of cell free supernatants of phenyllactic acid, pediocin‐ and nisin‐producing lactic acid bacteria against food pathogens and bread spoilage molds. J Food Saf 2022. [DOI: 10.1111/jfs.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen‐Chieh Sung
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
- Center of Excellence for the Oceans National Taiwan Ocean University Keelung Taiwan, ROC
| | - Szu‐Hsaun Lu
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Yi‐Chen Chen
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Chorng‐Liang Pan
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Hsin‐I Hsiao
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| |
Collapse
|
10
|
da Silva MMA, Feitosa MKDSB, Palitot LEBT, Coutinho HDM, de Vasconcelos JEL, dos Santos FAV, de Lisbôa CGC, Raposo A, Alfheeaid HA, Alsharari ZD, Alturki HA, Alhaji JH, de Sousa EO. Preparation and characterization of sequilhos-type biscuits added with almond flour of Acrocomia intumescens. Front Nutr 2022; 9:1009455. [PMID: 36313115 PMCID: PMC9608797 DOI: 10.3389/fnut.2022.1009455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Acrocomia intumescens (“macaúba”) is a species that during processing generates a large amount of waste. The use of this residue for the production of flour for incorporation into food products is a way to minimize the cost and nutritionally enrich the final product. This work aimed to develop and analyze, in terms of physico-chemical and microbiological properties, cookies with macaúba almond cake residual flour. Sequilhos formulations were obtained using three different proportions of flour (2, 4 and 6%). The analysis of the flour allowed to find 4.29% of moisture, 1.13% of acidity, 5.33 of pH, 44.46% of carbohydrates, 28.74% of lipids, 20.06% of proteins and 2.45% of ash. In the analysis of the sequilhos formulations, the following values were found: moisture (5.03 to 8.13%), acidity (0.10 to 0.14%), pH (5.52 to 5.93), carbohydrates (67.17 to 73.37%), lipids (18.77 to 31.77%), proteins (0.85 to 1.92%), ash (0.83 to 0.94%) and total energy value (137.57 to 172,50 Kcal/100g). In microbiological analyzes it was highlighted that the sequilhos presented adequate sanitary conditions. The results indicate almond flour as an ingredient to be incorporated in the preparation of sequilhos, which in turn, presented satisfactory physico-chemical properties and microbiological results.
Collapse
Affiliation(s)
- Maria Michele Alves da Silva
- Laboratory of Physical-Chemistry and Microbiological Analysis of Food, Faculty of Technology Cariri (FATEC), Juazeiro do Norte, Brazil
| | | | | | | | | | | | - Cícera Gomes Cavalcante de Lisbôa
- Laboratory of Physical-Chemistry and Microbiological Analysis of Food, Faculty of Technology Cariri (FATEC), Juazeiro do Norte, Brazil
| | - António Raposo
- Research Center for Biosciences and Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, Lisboa, Portugal
| | - Hani A. Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia,*Correspondence: Hani A. Alfheeaid,
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Tabuk University, Tabuk, Saudi Arabia
| | - Hmidan A. Alturki
- General Directorate for Funds and Grants, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Jwaher Haji Alhaji
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia
| | - Erlânio Oliveira de Sousa
- Laboratory of Physical-Chemistry and Microbiological Analysis of Food, Faculty of Technology Cariri (FATEC), Juazeiro do Norte, Brazil
| |
Collapse
|
11
|
Bergsma S, Euverink GJW, Charalampogiannis N, Poulios E, Janssens TKS, Achinas S. Biotechnological and Medical Aspects of Lactic Acid Bacteria Used for Plant Protection: A Comprehensive Review. BIOTECH 2022; 11:biotech11030040. [PMID: 36134914 PMCID: PMC9497054 DOI: 10.3390/biotech11030040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
The use of chemical pesticides in agriculture goes hand in hand with some crucial problems. These problems include environmental deterioration and human health complications. To eliminate the problems accompanying chemical pesticides, biological alternatives should be considered. These developments spark interest in many environmental fields, including agriculture. In this review, antifungal compounds produced by lactic acid bacteria (LABs) are considered. It summarizes the worldwide distribution of pesticides and the effect of pesticides on human health and goes into detail about LAB species, their growth, fermentation, and their antifungal compounds. Additionally, interactions between LABs with mycotoxins and plants are discussed.
Collapse
Affiliation(s)
- Simon Bergsma
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (S.B.); (S.A.)
| | - Gerrit Jan Willem Euverink
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Efthymios Poulios
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece
| | | | - Spyridon Achinas
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (S.B.); (S.A.)
| |
Collapse
|
12
|
Antifungal activity of lactic acid bacteria and their application in food biopreservation. ADVANCES IN APPLIED MICROBIOLOGY 2022; 120:33-77. [PMID: 36243452 DOI: 10.1016/bs.aambs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lactic acid bacteria (LAB) are ubiquitous bacteria associated with spontaneous lactic fermentation of vegetables, dairy and meat products. They are generally recognized as safe (GRAS), and they are involved in transformation of probiotic lacto-fermented foods, highly desired for their nutraceutical properties. The antifungal activity is one of the exciting properties of LAB, because of its possible application in food bio-preservation, as alternative to chemical preservatives. Many recent research works have been developed on antifungal activity of LAB, and they demonstrate their capacity to produce various antifungal compounds, (i.e. organic acids, PLA, proteinaceous compounds, peptides, cyclic dipeptides, fatty acids, and other compounds), of different properties (hydrophilic, hydrophobic and amphiphilic). The effectiveness of LAB in controlling spoilage and pathogenic fungi, demonstrated in different agricultural and food products, can be due to the synergistic effect between their antifungal compounds of different properties; where the amphiphilic-compounds allow the contact between the target microbial cell (hydrophilic compartment) and antifungal hydrophobic-compounds. Further studies on the interaction between compounds of these three properties are to de be developed, in order to highlight more their mechanism of action, and make LAB more profitable in improving shelf life and nutraceutical properties of foods.
Collapse
|
13
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
14
|
Dopazo V, Luz C, Calpe J, Vila‐Donat P, Rodríguez L, Meca G. Antifungal properties of whey fermented by lactic acid bacteria in films for the preservation of cheese slices. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Victor Dopazo
- Faculty of Pharmacy Laboratory of Food Chemistry and Toxicology University of Valencia Av. Vicent Andrés Estellés S/n Burjassot 46100Spain
| | - Carlos Luz
- Faculty of Pharmacy Laboratory of Food Chemistry and Toxicology University of Valencia Av. Vicent Andrés Estellés S/n Burjassot 46100Spain
| | - Jorge Calpe
- Faculty of Pharmacy Laboratory of Food Chemistry and Toxicology University of Valencia Av. Vicent Andrés Estellés S/n Burjassot 46100Spain
| | - Pilar Vila‐Donat
- Faculty of Pharmacy Laboratory of Food Chemistry and Toxicology University of Valencia Av. Vicent Andrés Estellés S/n Burjassot 46100Spain
| | - Lorena Rodríguez
- AIMPLAS Technological Institute of Polymers Calle Gustave Eiffel Paterna, Valencia 4 46980 Spain
| | - Giuseppe Meca
- Faculty of Pharmacy Laboratory of Food Chemistry and Toxicology University of Valencia Av. Vicent Andrés Estellés S/n Burjassot 46100Spain
| |
Collapse
|
15
|
Ran Q, Yang F, Geng M, Qin L, Chang Z, Gao H, Jiang D, Zou C, Jia C. A mixed culture of Propionibacterium freudenreichii and Lactiplantibacillus plantarum as antifungal biopreservatives in bakery product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Moro CB, Lemos JG, Gasperini AM, Stefanello A, Garcia MV, Copetti MV. Efficacy of weak acid preservatives on spoilage fungi of bakery products. Int J Food Microbiol 2022; 374:109723. [DOI: 10.1016/j.ijfoodmicro.2022.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022]
|
17
|
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022; 11:foods11091283. [PMID: 35564005 PMCID: PMC9099756 DOI: 10.3390/foods11091283] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
- Correspondence:
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|
18
|
Arsoy ES, Gül LB, Çon AH. Characterization and Selection of Potential Antifungal Lactic Acid Bacteria Isolated From Turkish Spontaneous Sourdough. Curr Microbiol 2022; 79:148. [PMID: 35397016 DOI: 10.1007/s00284-022-02839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
The aim of this research was to investigate the antifungal potential of lactic acid bacteria (LAB) isolated from Turkish spontaneous sourdough collected in summer and winter seasons from 25 different small bakeries in Trabzon, Giresun, Ordu, and Samsun. Lactic acid bacteria (933 isolates) were screened for inhibition of three common food spoilage molds (Aspergillus flavus, Aspergillus niger, and Penicillium expansum). Eight LAB isolates identified as Weissella cibaria 908, Lactiplantibacillus plantarum subsp. plantarum 2114, Leuconostoc pseudomesenteroides 2619, L. plantarum subsp. plantarum 2702, Fructilactobacillus sanfranciscensis 2709, Levilactobacillus brevis 2216Y, L. pentosus Y118, and L. plantarum subsp. plantarum Y201 by 16 S rRNA sequencing, which were found to have high antifungal activity against all the test molds. The antifungal activity of cell free supernatants from LAB isolates was not altered after thermal treatment and proteolytic enzyme proteinase K. The cell free supernatants obtained from LAB showed a high antifungal effect against molds with inhibition zone diameter up to 20 mm at pH 3.0, but no inhibitory activity was determined after pH neutralization. Moreover, all cell free suspension samples were able to maintain their efficacy up to a 1:4 dilution. The antifungal activity of supernatants was mostly related to organic acid content, especially lactic acid ranged from 4.33 to 8.41 g/L. The results indicated that eight bacterial isolates obtained from spontaneous Turkish sourdough could constitute biopreservative cultures, which may be used in food industry.
Collapse
Affiliation(s)
- Esra Saraç Arsoy
- Ankara Food Control Laboratory Directorate, Republic of Turkey Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Latife Betül Gül
- Department of Food Engineering, Engineering Faculty, Giresun University, Giresun, Turkey.
| | - Ahmet Hilmi Çon
- Department of Food Engineering, Engineering Faculty, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
19
|
Antifungal activity of lactic acid bacteria isolated from kunu-zaki, a cereal-based Nigerian fermented beverage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Ogunremi OR, Leischtfeld SF, Schwenninger SM. MALDI-TOF MS profiling and exopolysaccharide production properties of lactic acid bacteria from Kunu-zaki - A cereal-based Nigerian fermented beverage. Int J Food Microbiol 2022; 366:109563. [DOI: 10.1016/j.ijfoodmicro.2022.109563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/16/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
|
21
|
Zhang L, Yu X, Yagoub AEA, Xia G, Zhou C. Effect of vacuum impregnation assisted probiotics fermentation suspension on shelf life quality of freshly cut lotus root. Food Chem 2022; 381:132281. [PMID: 35121314 DOI: 10.1016/j.foodchem.2022.132281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Probiotic fermentation suspension was used to extend the shelf life of freshly cut lotus root for the first time, which played a dual role of biological protection and quality maintenance. Fermentation suspension contained lactic acid bacteria (8-9 log CFU/mL) was prepared from juice of lotus root and used to immerse samples under atmospheric pressure and vacuum. Probiotic fermentation suspension inhibited microorganism and the activity of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), which slowed down the physiological reaction and was beneficial to maintain the color and hardness of tissues. Lactic acid bacteria antagonized other microorganisms, and metabolic acid production played a continuous role in preservation during storage. The vacuum was helpful for the fermentation suspension to be fully impregnated into samples. The probiotic fermentation suspension had a significant inhibitory effect on E.coli O157:H7, and extended lotus root shelf life from 3 to 9 days.
Collapse
Affiliation(s)
- Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Nanjing Shennongyuan Food Industry Co. LTD, Pingan Xi Road, Lishui, Nanjing, 211219, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Guohua Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Antifungal Preservation of Food by Lactic Acid Bacteria. Foods 2022; 11:foods11030395. [PMID: 35159544 PMCID: PMC8834354 DOI: 10.3390/foods11030395] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Fungal growth and consequent mycotoxin release in food and feed threatens human health, which might even, in acute cases, lead to death. Control and prevention of foodborne poisoning is a major task of public health that will be faced in the 21st century. Nowadays, consumers increasingly demand healthier and more natural food with minimal use of chemical preservatives, whose negative effects on human health are well known. Biopreservation is among the safest and most reliable methods for inhibiting fungi in food. Lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and probiotic properties. LAB produce bioactive compounds such as reuterin, cyclic peptides, fatty acids, etc., with antifungal properties. This review highlights the great potential of LAB as biopreservatives by summarizing various reported antifungal activities/metabolites of LAB against fungal growth into foods. In the end, it provides profound insight into the possibilities and different factors to be considered in the application of LAB in different foods as well as enhancing their efficiency in biodetoxification and biopreservative activities.
Collapse
|
23
|
Torrijos R, de Melo Nazareth T, Vila-Donat P, Mañes J, Meca G. Use of Mustard Extracts Fermented by Lactic Acid Bacteria to Mitigate the Production of Fumonisin B1 and B2 by Fusarium verticillioides in Corn Ears. Toxins (Basel) 2022; 14:toxins14020080. [PMID: 35202108 PMCID: PMC8880755 DOI: 10.3390/toxins14020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Corn (Zea mays) is a worldwide crop subjected to infection by toxigenic fungi such as Fusarium verticillioides during the pre-harvest stage. Fusarium contamination can lead to the synthesis of highly toxic mycotoxins, such as Fumonisin B1 (FB1) and Fumonisin B2 (FB2), which compromises human and animal health. The work aimed to study the antifungal properties of fermented yellow and oriental mustard extracts using nine lactic acid bacteria (LAB) in vitro. Moreover, a chemical characterization of the main phenolic compounds and organic acids were carried out in the extracts. The results highlighted that the yellow mustard, fermented by Lactiplantibacillus plantarum strains, avoided the growth of Fusarium spp. in vitro, showing Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) values, ranging from 7.8 to 15.6 g/L and 15.6 to 31.3 g/L, respectively. Then, the lyophilized yellow mustard fermented extract by L. plantarum TR71 was applied through spray-on corn ears contaminated with F. verticillioides to study the antimycotoxigenic activity. After 14 days of incubation, the control contained 14.71 mg/kg of FB1, while the treatment reduced the content to 1.09 mg/kg (92.6% reduction). Moreover, no FB2 was observed in the treated samples. The chemical characterization showed that lactic acid, 3-phenyllactic acid, and benzoic acid were the antifungal metabolites quantified in higher concentrations in the yellow mustard fermented extract with L. plantarum TR71. The results obtained confirmed the potential application of fermented mustard extracts as a solution to reduce the incidence of mycotoxins in corn ears.
Collapse
|
24
|
Lakhlifi T, Es-Sbata I, Eloirdi S, El Aamri L, Zouhair R, Belhaj A. Biopreservation of yogurt against fungal spoilage using cell-free supernatant of Lactiplantibacillus pentosus 22B and characterization of its antifungal compounds. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1980004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tarik Lakhlifi
- Microbial Ecology, Cellular Interactions and Environment Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Ikram Es-Sbata
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Samia Eloirdi
- Microbial Ecology, Cellular Interactions and Environment Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Lamya El Aamri
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Rachid Zouhair
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Abdelhaq Belhaj
- Microbial Ecology, Cellular Interactions and Environment Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
25
|
Chen H, Yan X, Du G, Guo Q, Shi Y, Chang J, Wang X, Yuan Y, Yue T. Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms. Crit Rev Food Sci Nutr 2021; 63:2544-2558. [PMID: 34523362 DOI: 10.1080/10408398.2021.1977610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fungal contamination of food, which causes large economic losses and public health problems, is a global concern. Chemical methods are typically used in the food industry to inhibit the growth of spoilage fungus, but there are several drawbacks of chemical methods. Thus, the development of consumer-friendly and ecologically sustainable biological preservation technology has become a hot spot in food research. As a natural biological control agent, lactic acid bacteria (LAB) is a good choice in food preservation due to its antifungal properties. In order to screen and identify new antifungal LAB and antifungal compounds, this review compares three screening methods (overlay method, agar diffusion method, and microplate inhibition method) of antifungal LAB and summarizes the separation and purification techniques of antifungal compounds. A discussion of the effects of LAB, media, temperature, pH, and incubation period on the antifungal activity of LAB to highlight the antifungal properties of LAB for future studies then follows. Additionally, the antifungal mechanism of LAB is elucidated from three aspects: 1) LAB cells, 2) antifungal compounds, and 3) co-cultivation. Finally, research regarding antifungal LAB in food preservation (fruits, vegetables, grain cereals, bakery products, and dairy products) is summarized, which demonstrates the potential application value of LAB in food.
Collapse
Affiliation(s)
- Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Jiale Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
26
|
Aitzhanova A, Oleinikova Y, Mounier J, Hymery N, Leyva Salas M, Amangeldi A, Saubenova M, Alimzhanova M, Ashimuly K, Sadanov A. Dairy associations for the targeted control of opportunistic Candida. World J Microbiol Biotechnol 2021; 37:143. [PMID: 34328568 DOI: 10.1007/s11274-021-03096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/18/2021] [Indexed: 01/15/2023]
Abstract
Antifungal and antibacterial activities of twenty-six combinations of lactic acid bacteria, propionibacteria, acetic acid bacteria and dairy yeasts inoculated in whey and milk were investigated. Associations including acetic acid bacteria were shown to suppress growth of the opportunistic yeast Candida albicans in well-diffusion assays. The protective effect of milk fermented with the two most promising consortia was confirmed in Caco-2 cell culture infected with C. albicans. Indeed, these fermented milks, after heat-treatment or not, suppressed lactate dehydrogenase release after 48 h while significant increase in LDH release was observed in the positive control (C. albicans alone) and with fermented milk obtained using commercial yogurt starter cultures. The analysis of volatile compounds in the cell-free supernatant using solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) showed accumulation of significant amount of acetic acid by the consortium composed of Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lentilactobacillus parabuchneri 3, Lacticaseibacillus paracasei 33-4, Acetobacter syzygii 2 and Kluyveromyces marxianus 19, which corresponded to the zone of partial inhibition of C. albicans growth during well-diffusion assays. Interestingly, another part of anti-Candida activity, yielding small and transparent inhibition zones, was linked with the consortium cell fraction. This study showed a correlation between anti-Candida activity and the presence of acetic acid bacteria in dairy associations as well as a significant effect of two dairy associations against C. albicans in a Caco-2 cell model. These two associations may be promising consortia for developing functional dairy products with antagonistic action against candidiasis agents.
Collapse
Affiliation(s)
- Aida Aitzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Alma Amangeldi
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Mereke Alimzhanova
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040, Almaty, Kazakhstan
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Amankeldy Sadanov
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
27
|
Müller DC, Mischler S, Schönlechner R, Miescher Schwenninger S. Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations. Microorganisms 2021; 9:1633. [PMID: 34442711 PMCID: PMC8399619 DOI: 10.3390/microorganisms9081633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, the potential of Leuconostoc as non-conventional sourdough starter cultures was investigated. A screening for antifungal activities of 99 lactic acid bacteria (LAB) strains revealed high suppression of bakery-relevant moulds in nine strains of Leuconostoc with activities against Penicillium sp., Aspergillus sp., and Cladosporium sp. Mannitol production was determined in 49 Leuconostoc strains with >30 g/L mannitol in fructose (50 g/L)-enriched MRS. Further, exopolysaccharides (EPS) production was qualitatively determined on sucrose (40 g/L)-enriched MRS agar and revealed 59 EPS positive Leuconostoc strains that harboured dextransucrase genes, as confirmed by PCR. Four multifunctional Lc. citreum strains (DCM49, DCM65, MA079, and MA113) were finally applied in lab-scale sourdough fermentations (30 °C, 24 h). Lc. citreum was confirmed by MALDI-TOF MS up to 9 log CFU/g and pH dropped to 4.0 and TTA increased to 12.4. Antifungal compounds such as acetic acid, phenyllactic and hydroxyphenyllactic acids were determined up to 1.7 mg/g, 2.1 µg/g, and 1.3 µg/g, respectively, mannitol up to 8.6 mg/g, and EPS up to 0.62 g/100 g. Due to the observed multifunctionalities and the competitiveness in the natural flour microbiota present in sourdoughs, non-conventional LAB genera such as Leuconostoc seem promising for application in sourdough-based bakery products.
Collapse
Affiliation(s)
- Denise C. Müller
- Food Biotechnology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland; (D.C.M.); (S.M.)
- Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria;
| | - Sandra Mischler
- Food Biotechnology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland; (D.C.M.); (S.M.)
| | - Regine Schönlechner
- Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria;
| | - Susanne Miescher Schwenninger
- Food Biotechnology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland; (D.C.M.); (S.M.)
| |
Collapse
|
28
|
Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges-A review. Food Chem 2021; 360:130038. [PMID: 34020364 DOI: 10.1016/j.foodchem.2021.130038] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Increasing the intake of whole-wheat flour (WWF) products is one of the methods to promote health. Sourdough fermentation is increasingly being used in improving the quality of WWF products. This review aims to analyze the effect of sourdough fermentation on WWF products. The effects of sourdough on bran particles, starch, and gluten, as well as the rheology, antinutritional factors, and flavor components in WWF dough/products are comprehensively reviewed. Meanwhile, sourdough fermentation technology has a promising future in reducing anti-nutritional factors and toxic and harmful substances in WFF products. Finally, researchers are encouraged to focus on the efficient strain screening and metabolic pathway control of sourdough for WWF products, as well as the use of bran pre-fermentation and integrated biotechnology to improve the quality of whole-wheat products. This review provides a comprehensive understanding of the effect of sourdough fermentation technology on wholemeal products to promote WWF production.
Collapse
|
29
|
El oirdi S, Lakhlifi T, Bahar AA, Yatim M, Rachid Z, Belhaj A. Isolation and identification of
Lactobacillus plantarum 4F
, a strain with high antifungal activity, fungicidal effect, and biopreservation properties of food. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Samia El oirdi
- Laboratory of Microbial Ecology, Cellular Interaction and Environment Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Tarik Lakhlifi
- Laboratory of Microbial Ecology, Cellular Interaction and Environment Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Ali Adem Bahar
- Molecular Biotechnology and Epigenetic Laboratory Advanced Technologies and Research CenterKutahya Dumlupinar University Kutahya Turkey
| | - Meriem Yatim
- Laboratory of Plant Biotechnology and Molecular Biology Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Zouhair Rachid
- Laboratory of Plant Biotechnology and Molecular Biology Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| | - Abdelhaq Belhaj
- Laboratory of Microbial Ecology, Cellular Interaction and Environment Department of Biology Faculty of Sciences Moulay Ismail University Meknes Morocco
| |
Collapse
|
30
|
Combination of Extrusion and Fermentation with Lactobacillus plantarum and L. uvarum Strains for Improving the Safety Characteristics of Wheat Bran. Toxins (Basel) 2021; 13:toxins13020163. [PMID: 33669853 PMCID: PMC7923204 DOI: 10.3390/toxins13020163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Processed wheat bran (W) is of great importance for food and feed. Consequently, the biosafety of W should be evaluated and improved with valorisation strategies. This study tested a design combining extrusion (at temperature of 115 and 130 °C; screw speeds of 16, 20, and 25 rpm) and fermentation with Lactobacillus plantarum and L. uvarum strains for the valorisation of W to provide safer food and feed stock. The influence of different treatments on biogenic amine formation, mycotoxin content, and free amino acids, as well as acidity, microbiological parameters, and sugar concentration, were analysed. This research showed that a combination of extrusion and fermentation with selected strains can change several aspects of W characteristics. There was a significant effect of applied treatments on acidity and the microbiological parameters of W, as well as biogenic amines content. The lowest total mycotoxin concentration (29.8 µg/kg) was found in extruded (130 °C; 25 rpm) and fermented with L. uvarum sample. Finally, the combination of the abovementioned treatments can be confirmed as a prospective innovative pre-treatment for W, capable of potentially enhancing their safety characteristics and composition.
Collapse
|
31
|
Torrijos R, Nazareth TDM, Quiles JM, Mañes J, Meca G. Application of White Mustard Bran and Flour on Bread as Natural Preservative Agents. Foods 2021; 10:431. [PMID: 33669358 PMCID: PMC7920268 DOI: 10.3390/foods10020431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the antifungal activity of white mustard bran (MB), a by-product of mustard (Sinapis alba) milling, and white mustard seed flour (MF) was tested against mycotoxigenic fungi in the agar diffusion method. The results obtained were posteriorly confirmed in a quantitative test, determining the minimum concentration of extract that inhibits the fungal growth (MIC) and the minimum concentration with fungicidal activity (MFC). Since MF demonstrated no antifungal activity, the MB was stored under different temperature conditions and storage time to determine its antifungal stability. Finally, an in situ assay was carried out, applying the MB as a natural ingredient into the dough to avoid P. commune CECT 20767 growth and increase the bread shelf life. The results demonstrated that the antifungal activity of MB was dose-dependent. The higher assayed dose of MB (10 g/kg) reduced the fungal population in 4.20 Log CFU/g regarding the control group. Moreover, the shelf life was extended four days compared to the control, equaling its effectiveness with the synthetic preservative sodium propionate (E-281). Therefore, MB could be an alternative to chemical additives in bread formulations since it satisfies consumer requirements. Also, the formulation of bread with MB valorizes this by-product generated during mustard seed milling, thereby helping the industry move forward sustainably by reducing environmental impact.
Collapse
Affiliation(s)
| | - Tiago de Melo Nazareth
- Department of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (R.T.); (J.M.Q.); (J.M.); (G.M.)
| | | | | | | |
Collapse
|
32
|
Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods 2021; 10:foods10010076. [PMID: 33401747 PMCID: PMC7824337 DOI: 10.3390/foods10010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
The high loss rate of bread is generally known to contribute to the alarmingly high numbers in worldwide food waste. Correct storage techniques are believed to enable the reduction of preventable food waste. Therefore, the influence of storage parameters on staling and spoilage behavior of German bread within the limits of common household methods was investigated in this study. The aim was to generate reliable data for staling and spoilage using different storage methods (PE-layered microperforated paper bag, plastic bag, and fridge and bread box) to bridge the gap between consumer’s needs and scientific research questions. Everyday routines of life, such as visual inspection, were compared with microbiological techniques and were found to represent an adequate tool for microbial safety control. Visually undetectable fungal growth has not been found to result in the production of mycotoxins (fumonisins B1 and B2 and ochratoxin A) in quantifiable or harmful concentrations. Thus, disgust should prevent any foodborne health risks as the visual appearance should lead to avoiding the consumption of spoiled food before mycotoxins are produced in amounts causing adverse health effects within the limits of this experimental setup. Additionally, the storage temperature especially was found to influence the kinetics of staling processes, as a reduction accelerated the staling process. Further, crumb moisture loss was found to contradict a long shelf life but, on the other hand, an elevated humidity was shown to provoke excessive microbial growth and should therefore be observed when designing suitable storage methods. Further, the correct choice of the bread type stored and a good sanitary practice represent simply accessible ways to prolong the storage period of bread loaves.
Collapse
|
33
|
Guyomarc'h F, Francius G, Parayre S, Madec MN, Deutsch SM. Surface properties associated with the production of polysaccharides in the food bacteria Propionibacterium freudenreichii. Food Microbiol 2020; 92:103579. [PMID: 32950163 DOI: 10.1016/j.fm.2020.103579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
This study explores the production of polysaccharides (PS) in the strain Pf2289 of the food species Propionibacterium freudenreichii. Pf2289 presents characteristics atypical of the species: a molar-shaped morphotype upon plating, and cells strongly aggregative in liquid medium. When plating Pf2289, another morphotype was observed with a 4% frequency of appearance: round-shaped colonies, typical of the species. A clone was isolated, designated Pf456. No reversibility of Pf456 towards the molar-shaped morphotype was observed. Pf2289 was shown to produce a surface polysaccharide (PS) bound to the cell wall, mainly during the stationary growth phase. Meanwhile, Pf456 had lost the ability to produce the PS. AFM images of Pf2289 showed that entangled filaments spread over the whole surface of the bacteria, whereas Pf456 exhibited a smooth surface. Adhesion force maps, performed with concanavalin-A grafted probes, revealed twice as much adhesion of Pf2289 to concanavalin-A compared to Pf456. Furthermore, the length of PS molecules surrounding Pf2289 measured at least 7 μm, whereas it only reached 1 μm in Pf456. Finally, the presence of PS had a strong impact on adhesion properties: Pf2289 did not adhere to hydrophobic surfaces, whereas Pf456 showed strong adhesion.
Collapse
Affiliation(s)
| | - Grégory Francius
- Université de Lorraine, LCPME, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, 54600, Villers-lès-Nancy, France
| | | | | | | |
Collapse
|
34
|
Izzo L, Luz C, Ritieni A, Mañes J, Meca G. Whey fermented by using Lactobacillus plantarum strains: A promising approach to increase the shelf life of pita bread. J Dairy Sci 2020; 103:5906-5915. [DOI: 10.3168/jds.2019-17547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
|
35
|
Garnier L, Penland M, Thierry A, Maillard MB, Jardin J, Coton M, Leyva Salas M, Coton E, Valence F, Mounier J. Antifungal activity of fermented dairy ingredients: Identification of antifungal compounds. Int J Food Microbiol 2020; 322:108574. [DOI: 10.1016/j.ijfoodmicro.2020.108574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
|
36
|
Ebrahimi M, Sadeghi A, Mortazavi SA. The use of cyclic dipeptide producing LAB with potent anti-aflatoxigenic capability to improve techno-functional properties of clean-label bread. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01571-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The aim of the present study was to evaluate the antifungal activity, anti-aflatoxigenic capability, and technological functionality of the selected lactic acid bacteria (LAB) isolated from wheat sourdough.
Methods
The preselected LAB isolates were screened based on their antifungal activities and acidification capacities. Then, the antifungal compounds were identified using gas chromatography/mass spectrometry in the selected LAB culture filtrate obtained from its preparative thin-layer chromatography. The HPLC-based analysis was also used to investigate the anti-aflatoxigenic potentials of the selected LAB isolate. Finally, controlled sourdough (containing selected LAB isolate as starter culture) was used to produce loaf bread, and properties of the product were evaluated in terms of hardness, phytic acid content, overall acceptability, and surface moldiness.
Results
Molecular approaches led to the identification of Pediococcus pentosaceus as the selected LAB isolate. In vitro and in situ antifungal activities of the selected LAB against Aspergillus niger were verified. Antifungal metabolites of the LAB included fatty acid ester, hydroxylated fatty acid ester, an antimicrobial compound, and cyclic dipeptide. Potent anti-aflatoxigenic capabilities of the LAB isolate and cyclic dipeptide (which was identified in the antifungal fraction of the LAB) were also verified. To our best knowledge, the cyclic dipeptide detected in the present study has never been shown before to possess anti-aflatoxigenic effect. Furthermore, the results revealed that controlled sourdough improved the techno-functional properties of the produced loaf wheat bread.
Conclusion
Altogether, our findings indicate that the selected P. pentosaceus isolate exhibiting proper characteristics can be used as a bio-preservative and bio-improver in the processing of clean-label breads.
Collapse
|
37
|
Debonne E, Van Schoors F, Maene P, Van Bockstaele F, Vermeir P, Verwaeren J, Eeckhout M, Devlieghere F. Comparison of the antifungal effect of undissociated lactic and acetic acid in sourdough bread and in chemically acidified wheat bread. Int J Food Microbiol 2020; 321:108551. [DOI: 10.1016/j.ijfoodmicro.2020.108551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
|
38
|
Bukhari SA, Salman M, Numan M, Javed MR, Zubair M, Mustafa G. Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water. Mol Biol Rep 2020; 47:1871-1881. [PMID: 32006197 DOI: 10.1007/s11033-020-05281-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
A recent spike in demand for chemical preservative free food has derived the scientific community to develop natural ways of food preservation. Therefore, bio-preservation could be considered as the great alternative over chemical ones owing to its potential to increase shelf-life and nutritional values of foodstuffs. In the present study, lactic acid producing bacterial species were isolated from rice rinsed water and identified by 16S rRNA gene sequencing as Lactobacillus plantarum BCH-1 (KX388380) and Lactobacillus coryniformis BCH-4 (KX388387). Antifungal metabolites from both Lactobacillus species were extracted by polarity-based solvents in which ethyl acetate showed remarkable antifungal activity against Aspergillus flavus and Aspergillus fumigatus by disc diffusion assay. Different organic acids and fatty acids have been identified by reversed-phase high-performance liquid chromatography (RP-HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis, respectively. Lactic acid and citric acid were the major organic acids found in ethyl acetate fractions of L. plantarum and L. coryniformis, respectively. Similarly, 9,12-otadecadienoic acid (Z,Z)-methyl ester and hexadecanoic acid, methyl ester were the major fatty acids found in n-hexane fractions of L. plantarum and L. coryniformis respectively. Moreover, the isolation of novel antifungal metabolites from locally isolated Lactobacillus species was focused and it was revealed that organic acids are important contributors towards antifungal potential. A novel fatty acid (i.e. 12-hydroxydodecanoic acid) has also been explored and found as potential metabolite against filamentous fungi. Conclusively, various metabolites isolated from non-dairy source showed antifungal activity especially against Aspergillus species. Hence, these metabolites have been considered as a good choice for bio-preservation.
Collapse
Affiliation(s)
| | - Mahwish Salman
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Numan
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Faculty of Sciences, University of Gujrat, Gujrat, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
39
|
Missaoui J, Saidane D, Mzoughi R, Minervini F. Fermented Seeds ("Zgougou") from Aleppo Pine as a Novel Source of Potentially Probiotic Lactic Acid Bacteria. Microorganisms 2019; 7:E709. [PMID: 31861080 PMCID: PMC6958562 DOI: 10.3390/microorganisms7120709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms inhabiting fermented foods represent the main link between the consumption of this food and human health. Although some fermented food is a reservoir of potentially probiotic microorganisms, several foods are still unexplored. This study aimed at characterizing the probiotic potential of lactic acid bacteria isolated from zgougou, a fermented matrix consisting of a watery mixture of Aleppo pine's seeds. In vitro methods were used to characterize the safety, survival ability in typical conditions of the gastrointestinal tract, and adherence capacity to surfaces, antimicrobial, and antioxidant activities. Strains belonged to the Lactobacillus plantarum group and Enterococcus faecalis showed no DNase, hemolytic, and gelatinase activities. In addition, their susceptibility to most of the tested antibiotics, satisfied some of the safety prerequisites for their potential use as probiotics. All the strains tolerated low pH, gastrointestinal enzymes, and bile salts. They displayed a good antibacterial activity and antibiofilm formation against 10 reference bacterial pathogens, especially when used as a cell-free supernatant. Furthermore, the lactic acid bacteria (LAB) strains inhibited the growth of Aspergillus flavus and Aspergillus carbonarius. Finally, they had good antioxidant activity, although depending on the strain. Overall, the results of this work highlight that zgougou represents an important reservoir of potentially probiotic LAB. Obviously, future studies should be addressed to confirm the health benefits of the LAB strains.
Collapse
Affiliation(s)
- Jihen Missaoui
- Laboratory of Analysis, Treatment and Evaluation of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, 5000 Monastir, Tunisia; (J.M.); (D.S.); (R.M.)
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Dalila Saidane
- Laboratory of Analysis, Treatment and Evaluation of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, 5000 Monastir, Tunisia; (J.M.); (D.S.); (R.M.)
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Evaluation of Environmental Pollutants and Products, Faculty of Pharmacy, Monastir University, 5000 Monastir, Tunisia; (J.M.); (D.S.); (R.M.)
| | - Fabio Minervini
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
40
|
Chen Y, Guo Q, Wei J, Zhang J, Zhang Z, Wang JD, Wu B. Inhibitory effect and mechanism of nitric oxide (NO) fumigation on fungal disease in Xinjiang Saimaiti dried apricots. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Chai Q, Li Y, Li X, Wu W, Peng H, Jia R, Sun Q. Assessment of variation in paddy microbial communities under different storage temperatures and relative humidity by Illumina sequencing analysis. Food Res Int 2019; 126:108581. [DOI: 10.1016/j.foodres.2019.108581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
|
42
|
Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiol 2019; 82:160-170. [DOI: 10.1016/j.fm.2019.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
|
43
|
Sadiq FA, Yan B, Tian F, Zhao J, Zhang H, Chen W. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1403-1436. [PMID: 33336904 DOI: 10.1111/1541-4337.12481] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/21/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022]
Abstract
Fungal contamination of food and animal feed, especially by mycotoxigenic fungi, is not only a global food quality concern for food manufacturers, but it also poses serious health concerns because of the production of a variety of mycotoxins, some of which present considerable food safety challenges. In today's mega-scale food and feed productions, which involve a number of processing steps and the use of a variety of ingredients, fungal contamination is regarded as unavoidable, even good manufacturing practices are followed. Chemical preservatives, to some extent, are successful in retarding microbial growth and achieving considerably longer shelf-life. However, the increasing demand for clean label products requires manufacturers to find natural alternatives to replace chemically derived ingredients to guarantee the clean label. Lactic acid bacteria (LAB), with the status generally recognized as safe (GRAS), are apprehended as an apt choice to be used as natural preservatives in food and animal feed to control fungal growth and subsequent mycotoxin production. LAB species produce a vast spectrum of antifungal metabolites to inhibit fungal growth; and also have the capacity to adsorb, degrade, or detoxify fungal mycotoxins including ochratoxins, aflatoxins, and Fusarium toxins. The potential of many LAB species to circumvent spoilage associated with fungi has been exploited in a variety of human food and animal feed stuff. This review provides the most recent updates on the ability of LAB to serve as antifungal and anti-mycotoxigenic agents. In addition, some recent trends of the use of LAB as biopreservative agents against fungal growth and mycotoxin production are highlighted.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan Univ., Wuxi, 214122, China.,National Engineering Research Center for Functional Food, Jiangnan Univ., Wuxi, 214122, China
| |
Collapse
|
44
|
Makariti I, Kapetanakou AE, Gkerekou M, Bertoli M, Dremetsika C, Kalaitzoglou I, Skandamis PN. Using the gamma concept in modelling fungal growth: A case study on brioche-type products. Food Microbiol 2019; 81:12-21. [DOI: 10.1016/j.fm.2018.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/14/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
|
45
|
Ben Taheur F, Mansour C, Kouidhi B, Chaieb K. Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production. Toxicon 2019; 166:15-23. [DOI: 10.1016/j.toxicon.2019.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/27/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
|
46
|
Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiol 2019; 81:97-107. [DOI: 10.1016/j.fm.2018.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/02/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
|
47
|
Merabti R, Madec MN, Chuat V, Becila FZ, Boussekine R, Bekhouche F, Valence F. First Insight into the Technological Features of Lactic Acid Bacteria Isolated from Algerian Fermented Wheat Lemzeiet. Curr Microbiol 2019; 76:1095-1104. [DOI: 10.1007/s00284-019-01727-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
48
|
Schmidt M, Zannini E, Lynch KM, Arendt EK. Novel approaches for chemical and microbiological shelf life extension of cereal crops. Crit Rev Food Sci Nutr 2018; 59:3395-3419. [PMID: 29993266 DOI: 10.1080/10408398.2018.1491526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Economic losses due to post-harvest fungal spoilage and mycotoxin contamination of cereal crops is a frequently encountered issue. Typically, chemical preservatives are used to reduce the initial microbial load and the environmental conditions during storage are controlled to prevent microbial growth. However, in recent years the consumers' desire for more naturally produced foods containing less chemical preservatives has grown increasingly stronger. This article reviews the latest advances in terms of novel approaches for chemical decontamination, namely application cold atmospheric pressure plasma and electrolyzed water, and their suitability for preservation of stored cereal crops. In addition, the alternative use of bio-preservatives, such as starter cultures or purified antimicrobial compounds, to prevent the growth of spoilage organisms or remove in-field accumulated mycotoxins is evaluated. All treatments assessed here show potential for inhibition of microbial spoilage. However, each method encounters draw-backs, making industrial application difficult. Even under optimized processing conditions, it is unlikely that one single treatment can reduce the natural microbial load sufficiently. It is evident that future research needs to examine the combined application of several treatments to exploit their synergistic properties. This would enable sufficient reduction in the microbial load and ensure microbiological safety of cereal crops during long-term storage.
Collapse
Affiliation(s)
- Marcus Schmidt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
49
|
Impact of par-baking and packaging on the microbial quality of par-baked wheat and sourdough bread. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Leyva Salas M, Thierry A, Lemaître M, Garric G, Harel-Oger M, Chatel M, Lê S, Mounier J, Valence F, Coton E. Antifungal Activity of Lactic Acid Bacteria Combinations in Dairy Mimicking Models and Their Potential as Bioprotective Cultures in Pilot Scale Applications. Front Microbiol 2018; 9:1787. [PMID: 30131783 PMCID: PMC6090892 DOI: 10.3389/fmicb.2018.01787] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Consumer's demand for naturally preserved food products is growing and the use of bioprotective cultures is an alternative to chemical preservatives or a complementary tool to hurdle technologies to avoid or delay fungal spoilage of dairy products. To develop antifungal cultures for the dairy product biopreservation, experiments were conducted both in vitro and in situ. Firstly, the antifungal activity of 32 strains of lactic acid bacteria (LAB) and propionibacteria was screened alone, and then on combinations based on 5 selected lactobacilli strains. This screening was performed in yogurt and cheese models against four major spoilage fungi previously isolated from contaminated dairy products (Penicillium commune, Mucor racemosus, Galactomyces geotrichum, and Yarrowia lipolytica). Selected combinations were then tested as adjunct cultures in sour cream and semi-hard cheeses produced at a pilot scale to evaluate their antifungal activity during challenge tests against selected fungal targets (P. commune, M. racemosus, and Rhodotorula mucilaginosa) and shelf life tests; and their impact on product organoleptic properties. The screening step allowed selecting two binary combinations, A1 and A3 composed of Lactobacillus plantarum L244 and either Lactobacillus harbinensis L172 or Lactobacillus rhamnosus CIRM-BIA1113, respectively. In situ assays showed that the A1 combination delayed the growth of P. commune, M. racemosus and R. mucilaginosa for 2–24 days on sour cream depending of the antifungal culture inoculum, without effect on organoleptic properties at low inoculum (106 colony-forming units (CFU)/mL). Moreover, the A1 and A3 combinations also delayed the growth of P. commune in semi-hard cheese for 1–6 days and 1 day, respectively. Antifungal cultures neither impacted the growth of starter cultures in both sour cream and cheese nor the products' pH, although post acidification was observed in sour cream supplemented with these combinations at the highest concentrations (2.107 CFU/mL). The combination of both in vitro and in situ screening assays allowed developing 2 antifungal combinations exhibiting significant antifungal activity and providing future prospects for use as bioprotective cultures in dairy products.
Collapse
Affiliation(s)
- Marcia Leyva Salas
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France.,UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, Rennes, France
| | - Anne Thierry
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, Rennes, France
| | - Mathilde Lemaître
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Gilles Garric
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, Rennes, France
| | - Marielle Harel-Oger
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, Rennes, France
| | - Manon Chatel
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, Rennes, France
| | - Sébastien Lê
- Applied Mathematics Department, Agrocampus Ouest, Rennes, France
| | - Jérôme Mounier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| | - Florence Valence
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, Rennes, France
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, ESIAB, Technopôle Brest-Iroise, Plouzané, France
| |
Collapse
|