1
|
Gong Q, Zhang Z, Huang P, Wang B, Zheng X. Assessment of Fungal and Contamination of Ochratoxin A and Patulin in Foods Susceptible to Contamination in the Yangzhou Market, China. Foods 2024; 13:3205. [PMID: 39410238 PMCID: PMC11475113 DOI: 10.3390/foods13193205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The conducive conditions of warm and humid climates can facilitate mold proliferation and subsequent mycotoxin production during food processing and distribution, thereby posing a potential risk to consumer health. However, there exists a significant lack of research regarding the diversity of molds and the presence of ochratoxin A (OTA) and patulin (PAT) in food products available in the Yangzhou market. This study was conducted to assess OTA contamination levels and fungal presence in 57 cereal-based food samples, as well as PAT contamination levels and fungal presence in 50 types of foods, including apples, hawthorn berries, pears, and their derivatives. Ochratoxin A (OTA) was detected in 17 out of 57 cereal-based food samples, with concentrations ranging from 0.93 to 32.69 μg/kg. The contamination rate was determined to be 31.48%, and no samples exceeded the established regulatory limits. Furthermore, seven apple products were identified as contaminated with patulin (PAT), exhibiting concentrations between 26.85 and 192.78 μg/kg. Additionally, three food samples derived from hawthorn showed PAT contamination levels ranging from 29.83 to 88.56 μg/kg. Through purification on potato dextrose agar (PDA) medium, observation of colony morphology, and analysis of internal transcribed spacer (ITS) sequences, a total of 35 fungal strains belonging to 13 genera were identified in cereal-based foods. The predominant genera in cereals included Talaromyces, Fusarium, Aspergillus, and Penicillium. Additionally, twelve fungal strains from five genera (Penicillium, Cladosporium, Aureobasidium, Curvularia, and Alternaria) were isolated and identified in fruits and their derivatives. The findings indicate that OTA and PAT toxins are one of the important risk factors that threaten consumer health. Furthermore, the contamination of some other toxigenic strains is also a matter of substantial concern, with potential implications for consumer health.
Collapse
Affiliation(s)
| | | | | | | | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou 225009, China; (Q.G.); (B.W.)
| |
Collapse
|
2
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
3
|
La Placa L, Tsitsigiannis D, Camardo Leggieri M, Battilani P. From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination. Foods 2023; 12:260. [PMID: 36673352 PMCID: PMC9858051 DOI: 10.3390/foods12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
Collapse
Affiliation(s)
- Laura La Placa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Dimitrios Tsitsigiannis
- Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
4
|
Pushparaj K, Meyyazhagan A, Pappuswamy M, Mousavi Khaneghah A, Liu W, Balasubramanian B. Occurrence, identification, and decontamination of potential mycotoxins in fruits and fruit by‐products. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences Avinashilingam Institute for Home Science and Higher Education for Women Coimbatore Tamil Nadu India
| | - Arun Meyyazhagan
- Department of Life Science CHRIST (Deemed to be University) Bengaluru Karnataka India
| | - Manikantan Pappuswamy
- Department of Life Science CHRIST (Deemed to be University) Bengaluru Karnataka India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute Warsaw Poland
| | - Wen‐Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences Guangdong Ocean University Zhanjiang China
| | | |
Collapse
|
5
|
Removal of Ochratoxin A from Grape Juice by Clarification: A Response Surface Methodology Study. Foods 2022; 11:foods11101432. [PMID: 35627005 PMCID: PMC9141085 DOI: 10.3390/foods11101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023] Open
Abstract
This study achieved maximum removal of ochratoxin A (OTA) during the grape juice clarification process with minimal reduction in antioxidant compounds (phenolic acid, flavonoids, and antioxidant capacity by FRAP) by the RSM method. Independent variables included three types of clarifiers—gelatin, bentonite, and diatomite (diatomaceous earth)—at a concentration level of 0.25–0.75% and clarification time of 1–3 h. OTA was measured by high-performance liquid chromatography with fluorescence detection. Clarifying agent concentration and clarification time affected the reduction amount of OTA and antioxidant compounds in grape juice. There was a direct linear correlation between the reduction amounts of OTA and antioxidant compounds and capacity with the concentration of bentonite, gelatin, and diatomite, and the clarification time. The reduction amount of OTA and antioxidant capacity followed the linear mode. However, the decreased phenolic acid and flavonoid values followed the quadratic model. The study results showed that if the concentrations of bentonite, gelatin, and diatomite and clarification time were 0.45, 0.62, 0.25%, and 1 h, respectively, the maximum amount of OTA reduction (41.67%) occurred. Furthermore, the phenolic acid, flavonoid, and antioxidant activity decrease amounts were at their lowest levels, i.e., 23.86, 7.20, and 17.27%, respectively.
Collapse
|
6
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
7
|
Cosme F, Inês A, Silva D, Filipe-Ribeiro L, Abrunhosa L, Nunes FM. Elimination of ochratoxin A from white and red wines: Critical characteristics of activated carbons and impact on wine quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Li X, Ma W, Ma Z, Zhang Q, Li H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit Rev Food Sci Nutr 2021; 62:5444-5461. [PMID: 33583259 DOI: 10.1080/10408398.2021.1885340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ochratoxin A is a highly toxic mycotoxin and has posed great threat to human health. Due to its serious toxicity and wide contamination, great efforts have been made to develop reliable determination methods. In this review, analytical methods are comprehensively summarized in terms of sample preparation strategy and instrumental analysis. Detailed method is described according to the food commodities in the order of cereal, wine, coffee, beer, cocoa, dried fruit and spice. This review mainly focuses on the recent advances, especially reported in the last decade. At last, challenges and perspectives are also discussed to achieve better advancement and promote practical application in this field.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| |
Collapse
|
9
|
Heshmati A, Ghadimi S, Ranjbar A, Mousavi Khaneghah A. Assessment of processing impacts and type of clarifier on the concentration of ochratoxin A in pekmez as a conventional grape-based product. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Gonçalves BL, Coppa CFSC, Neeff DVD, Corassin CH, Oliveira CAF. Mycotoxins in fruits and fruit-based products: occurrence and methods for decontamination. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1457056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna Leonel Gonçalves
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | - Diane Valganon de Neeff
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Humberto Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
11
|
El Khoury R, Choque E, El Khoury A, Snini SP, Cairns R, Andriantsiferana C, Mathieu F. OTA Prevention and Detoxification by Actinobacterial Strains and Activated Carbon Fibers: Preliminary Results. Toxins (Basel) 2018; 10:toxins10040137. [PMID: 29587362 PMCID: PMC5923303 DOI: 10.3390/toxins10040137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium that contaminate food and feed raw materials. To reduce OTA contamination, we first tested in vitro, actinobacterial strains as potential biocontrol agents and afterward, through a physical decontamination method using activated carbon fibers (ACFs). Actinobacterial strains were screened for their ability to reduce OTA in solid co-culture with A. carbonarius, which is the major OTA-producing species in European vineyards. Four strains showed a high affinity for removing OTA (67%–83%) with no significant effect on fungal growth (<20%). The mechanism of action was first studied by analyzing the expression of OTA cluster genes (acOTApks, acOTAnrps, acOTAhal) by RT-qPCR showing a drastic reduction in all genes (7–15 times). Second, the ability of these strains to degrade OTA was assessed in vitro on ISP2 solid medium supplemented with OTA (100 µg/L). Two strains reduced OTA to undetectable levels. As for the physical method, high adsorption rates were obtained for ACFs at 0.8 g/L with a 50% adsorption of OTA in red wine by AC15 and 52% in grape juice by AC20 within 24 h. These promising methods could be complementarily applied toward reducing OTA contamination in food chains, which promotes food safety and quality.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Elodie Choque
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI-EA 3900), Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens CEDEX, France.
| | - Anthony El Khoury
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Robbie Cairns
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Caroline Andriantsiferana
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| |
Collapse
|
12
|
Yamamoto R, Sawada M, Yamato N, Yamamoto A, Kodama S. High-performance liquid chromatography with fluorescence detection of ochratoxin A in cereal, coffee, and wine: Effective pretreatment with bovine serum albumin-immobilized adsorbent. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryohei Yamamoto
- College of Bioscience and Biotechnology; Chubu University; Kasugai-shi Japan
| | - Minato Sawada
- College of Bioscience and Biotechnology; Chubu University; Kasugai-shi Japan
| | - Naoki Yamato
- College of Bioscience and Biotechnology; Chubu University; Kasugai-shi Japan
| | - Atsushi Yamamoto
- College of Bioscience and Biotechnology; Chubu University; Kasugai-shi Japan
| | - Shuji Kodama
- School of Science; Tokai University; Hiratsuka Japan
| |
Collapse
|
13
|
|