1
|
Shymialevich D, Wójcicki M, Świder O, Średnicka P, Sokołowska B. Characterization and Genome Study of a Newly Isolated Temperate Phage Belonging to a New Genus Targeting Alicyclobacillus acidoterrestris. Genes (Basel) 2023; 14:1303. [PMID: 37372483 PMCID: PMC10297869 DOI: 10.3390/genes14061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The spoilage of juices by Alicyclobacillus spp. remains a serious problem in industry and leads to economic losses. Compounds such as guaiacol and halophenols, which are produced by Alicyclobacillus, create undesirable flavors and odors and, thus, decrease the quality of juices. The inactivation of Alicyclobacillus spp. constitutes a challenge because it is resistant to environmental factors, such as high temperatures, and active acidity. However, the use of bacteriophages seems to be a promising approach. In this study, we aimed to isolate and comprehensively characterize a novel bacteriophage targeting Alicyclobacillus spp. The Alicyclobacillus phage strain KKP 3916 was isolated from orchard soil against the Alicyclobacillus acidoterrestris strain KKP 3133. The bacterial host's range and the effect of phage addition at different rates of multiplicity of infections (MOIs) on the host's growth kinetics were determined using a Bioscreen C Pro growth analyzer. The Alicyclobacillus phage strain KKP 3916, retained its activity in a wide range of temperatures (from 4 °C to 30 °C) and active acidity values (pH from 3 to 11). At 70 °C, the activity of the phage decreased by 99.9%. In turn, at 80 °C, no activity against the bacterial host was observed. Thirty minutes of exposure to UV reduced the activity of the phages by almost 99.99%. Based on transmission-electron microscopy (TEM) and whole-genome sequencing (WGS) analyses, the Alicyclobacillus phage strain KKP 3916 was classified as a tailed bacteriophage. The genomic sequencing revealed that the newly isolated phage had linear double-stranded DNA (dsDNA) with sizes of 120 bp and 131 bp and 40.3% G+C content. Of the 204 predicted proteins, 134 were of unknown function, while the remainder were annotated as structural, replication, and lysis proteins. No genes associated with antibiotic resistance were found in the genome of the newly isolated phage. However, several regions, including four associated with integration into the bacterial host genome and excisionase, were identified, which indicates the temperate (lysogenic) life cycle of the bacteriophage. Due to the risk of its potential involvement in horizontal gene transfer, this phage is not an appropriate candidate for further research on its use in food biocontrol. To the best of our knowledge, this is the first article on the isolation and whole-genome analysis of the Alicyclobacillus-specific phage.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (P.Ś.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland;
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (P.Ś.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
2
|
Bevilacqua A, Speranza B, Petruzzi L, Sinigaglia M, Corbo MR. Using regression and Multifactorial Analysis of Variance to assess the effect of ascorbic, citric, and malic acids on spores and activated spores of Alicyclobacillus acidoterrestris. Food Microbiol 2023; 110:104158. [DOI: 10.1016/j.fm.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
3
|
Kozono L, Fenoglio D, Ferrario M, Guerrero S. Inactivation of Alicyclobacillus acidoterrestris spores, single or composite Escherichia coli and native microbiota in isotonic fruit-flavoured sports drinks processed by UV-C light. Int J Food Microbiol 2023; 386:110024. [PMID: 36446270 DOI: 10.1016/j.ijfoodmicro.2022.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Pasteurized sports drinks and other fruit-based beverages are susceptible to deterioration due to thermal processing ineffectiveness to inactivate certain spoilage microorganisms, like Alicyclobacillus acidoterrestris. This represents a major challenge for the beverage industry. The goals of this study were to: i) investigate the UV-C inactivation (annular thin film unit, actinometrical delivered fluence: 795-1270 mJ/cm2, 10-15 min, 20 °C, 1.8 L/h, Reh = 391-1067, recirculation mode operation) and the evolution during refrigerated storage of A. acidoterrestris ATCC 49025 spores and single or composite Escherichia coli ATCC 25922 in isotonic sports drinks (ISDs) made from orange (orange-ISD, UVT% = 81) or orange-banana-mango-kiwi-strawberry-lemon juices (multi-fruit-ISD, UVT% = 91), compared to a turbid orange-tangerine juice (OT juice, UVT% = 40); ii) assess the effect of pH, °Brix, A254nm, turbidity, colour and particle size of the ISDs and juice on microbial inactivation, iii) evaluate the evolution of native microbiota during cold storage, iv) investigate the Coroller, biphasic, Weibull, and Weibull-plus-tail models' ability to describe microbial inactivation and v) measure 5-hydroxymethylfurfural (HMF) formation. The modified biodosimetry method was used to calculate the germicidal UV-C fluences. Heat pasteurization (T-coil, 80 °C/6 min) was evaluated as the control treatment. UV-C was highly effective at inactivating E. coli as 4.1-5.1 and 4.5-5.6 log reductions were determined in the multi-fruit-ISD and orange-ISD, respectively, barely impacted by the background microbiota. No significant differences were recorded for the inactivation of E. coli in the UV-C and T-coil systems. Whereas, a significantly higher inactivation of A. acidoterrestris spores was achieved by UV-C (3.7-4.0 log reductions), compared to the negligible one achieved by the thermal treatment. Even though E. coli inactivation curves were similar in shape, UV-C was less effective when a cocktail of other E. coli strains was present. In comparison to the OT juice, the ISDs' inactivation kinetics were markedly different in shape, with a rapid decrease in population during the first minutes of treatment. The germicidal fluence (Hd biod) corresponding to A. acidoterrestris (19.1 mJ/cm2) was selected as it was higher than the one obtained for E. coli (11.0 mJ/cm2). UV-C induced 2.8- or 1.3 and 2.3- or 0.8 log-reductions of total aerobes or moulds and yeasts in the multi-fruit-ISD and orange-ISD, respectively. Compared to the other models, the Coroller and biphasic models showed a better fit and more accurate parameter estimates. UV-C-induced HMF production was not significant in the ISDs. The current study found that the UV-C treatment was more effective than typical heat pasteurization for inactivating A. acidoterrestris spores in isotonic drinks, following a similar trend for E. coli and native microbiota.
Collapse
Affiliation(s)
- Luz Kozono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina
| | - Daniela Fenoglio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina
| | - Mariana Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina
| | - Sandra Guerrero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de, Alimentos y Procesos Químicos (ITAPROQ), Argentina.
| |
Collapse
|
4
|
Zhang S, Meenu M, Hu L, Ren J, Ramaswamy HS, Yu Y. Recent Progress in the Synergistic Bactericidal Effect of High Pressure and Temperature Processing in Fruits and Vegetables and Related Kinetics. Foods 2022; 11:foods11223698. [PMID: 36429290 PMCID: PMC9689688 DOI: 10.3390/foods11223698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traditional thermal processing is a widely used method to ensure food safety. However, thermal processing leads to a significant decline in food quality, especially in the case of fruits and vegetables. To overcome this drawback, researchers are extensively exploring alternative non-thermal High-Pressure Processing (HPP) technology to ensure microbial safety and retaining the sensory and nutritional quality of food. However, HPP is unable to inactivate the spores of some pathogenic bacteria; thus, HPP in conjunction with moderate- and low-temperature is employed for inactivating the spores of harmful microorganisms. Scope and approach: In this paper, the inactivation effect of high-pressure and high-pressure thermal processing (HPTP) on harmful microorganisms in different food systems, along with the bactericidal kinetics model followed by HPP in certain food samples, have been reviewed. In addition, the effects of different factors such as microorganism species and growth stage, process parameters and pressurization mode, and food composition on microbial inactivation under the combined high-pressure and moderate/low-temperature treatment were discussed. KEY FINDINGS AND CONCLUSIONS The establishment of a reliable bactericidal kinetic model and accurate prediction of microbial inactivation will be helpful for industrial design, development, and optimization of safe HPP and HPTP treatment conditions.
Collapse
Affiliation(s)
- Sinan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lihui Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
- Hangzhou Jiangnan Talent Service Co., Ltd., 681 Qingchun East Road, Hangzhou 310000, China
| | - Junde Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, St-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982181
| |
Collapse
|
5
|
Ribeiro AM, Paiva AD, Cruz AM, Vanetti MC, Ferreira SO, Mantovani HC. Bovicin HC5 and nisin reduce cell viability and the thermal resistance of Alicyclobacillus acidoterrestris endospores in fruit juices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3994-4002. [PMID: 34997599 DOI: 10.1002/jsfa.11747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alicyclobacillus acidoterrestris is an important thermoacidophilic spore-forming bacterium in fruit-juice deterioration, and alternative non-thermal methods have been investigated to control fruit juice spoilage. This work aimed to evaluate the capacity of bovicin HC5 and nisin to inhibit the growth of vegetative cells and reduce the thermal resistance of endospores of A. acidoterrestris inoculated (107 CFU mL-1 ) in different fruit juices. The number of viable cells was determined after 12 h incubation at 43 °C in the presence and absence of nisin or bovicin HC5 (10-100 AU mL-1 ). The exposure time (min) required to kill 90% of the initial population (reduction of one log factor) at 90 ºC (D90ºC ) was used to assess the thermal resistance of A. acidoterrestris endospores exposed (80 AU mL-1 ) or non-exposed to the bacteriocins. Additionally, the effect of bovicin and nisin on the morphology and cell structure of A. acidoterrestris was evaluated by atomic force microscopy (AFM). RESULTS Bovicin HC5 and nisin were bactericidal against A. acidoterrestris inoculated in fruit juices and reduced the D90°C values up to 30-fold. AFM topographical images revealed substantial structural changes in the cellular framework of vegetative cells upon treatment with bovicin HC5 or nisin. CONCLUSIONS These results emphasize the potential application of lantibiotics as additional hurdles in food processing to control thermoacidophilic spoilage bacteria in fruit juices. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aryádina M Ribeiro
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Aline D Paiva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alexandra Mo Cruz
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Maria Cd Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Hilário C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
6
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
7
|
Houška M, Silva FVM, Evelyn, Buckow R, Terefe NS, Tonello C. High Pressure Processing Applications in Plant Foods. Foods 2022; 11:223. [PMID: 35053954 PMCID: PMC8774875 DOI: 10.3390/foods11020223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/04/2023] Open
Abstract
High pressure processing (HPP) is a cold pasteurization technology by which products, prepacked in their final package, are introduced to a vessel and subjected to a high level of isostatic pressure (300-600 MPa). High-pressure treatment of fruit, vegetable and fresh herb homogenate products offers us nearly fresh products in regard to sensorial and nutritional quality of original raw materials, representing relatively stable and safe source of nutrients, vitamins, minerals and health effective components. Such components can play an important role as a preventive tool against the start of illnesses, namely in the elderly. An overview of several food HPP products, namely of fruit and vegetable origin, marketed successfully around the world is presented. Effects of HPP and HPP plus heat on key spoilage and pathogenic microorganisms, including the resistant spore form and fruit/vegetable endogenous enzymes are reviewed, including the effect on the product quality. Part of the paper is devoted to the industrial equipment available for factories manufacturing HPP treated products.
Collapse
Affiliation(s)
- Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Filipa Vinagre Marques Silva
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Evelyn
- Department of Chemical Engineering, University of Riau, Pekanbaru 28293, Indonesia;
| | - Roman Buckow
- Faculty of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2006, Australia;
| | | | - Carole Tonello
- Hiperbaric, S. A., Condado de Trevino, 6, 09001 Burgos, Spain;
| |
Collapse
|
8
|
Ribeiro LR, Cristianini M. Effect of high pressure combined with temperature on the death kinetics of Alicyclobacillus acidoterrestris spores and on the quality characteristics of mango pulp. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Biosynthesis of selenium nanoparticles of Monascus purpureus and their inhibition to Alicyclobacillus acidoterrestris. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Emerging Non-Thermal Technologies as Alternative to SO 2 for the Production of Wine. Foods 2021; 10:foods10092175. [PMID: 34574285 PMCID: PMC8469166 DOI: 10.3390/foods10092175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
SO2 is an antioxidant and selective antimicrobial additive, inhibiting the growth of molds in the must during the early stages of wine production, as well as undesirable bacteria and yeasts during fermentation, thus avoiding microbial spoilage during wine production and storage. The addition of SO2 is regulated to a maximum of 150–350 ppm, as this chemical preservative can cause adverse effects in consumers such as allergic reactions. Therefore, the wine industry is interested in finding alternative strategies to reduce SO2 levels, while maintaining wine quality. The use of non-thermal or cold pasteurization technologies for wine preservation was reviewed. The effect of pulsed electric fields (PEF), high pressure processing (HPP), power ultrasound (US), ultraviolet irradiation (UV), high pressure homogenization (HPH), filtration and low electric current (LEC) on wine quality and microbial inactivation was explored and the technologies were compared. PEF and HPP proved to be effective wine pasteurization technologies as they inactivate key wine spoilage yeasts, including Brettanomyces, and bacteria in short periods of time, while retaining the characteristic flavor and aroma of the wine produced. PEF is a promising technology for the beverage industry as it is a continuous process, requiring only microseconds of processing time for the inactivation of undesirable microbes in wines, with commercial scale, higher throughput production potential.
Collapse
|
11
|
Evelyn, Utami SP, Chairul. Effect of temperature and soluble solid on Bacillus subtilis and Bacillus licheniformis spore inactivation and quality degradation of pineapple juice. FOOD SCI TECHNOL INT 2021; 28:285-296. [PMID: 34018829 DOI: 10.1177/10820132211019143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis and Bacillus licheniformis spores can survive processing temperatures used in the thermal processes of high-acid foods. Therefore, this study investigated the thermal inactivation of B. subtilis and B. licheniformis spores in pineapple juice at different temperatures (85-100°C) and soluble solids (SS, 11-30°Brix). The quality of juices and microbial loads after the thermal treatments during storage at 4 °C for 35 days was then checked. A linear decrease in D-value was observed with increasing temperature of treatment. Furthermore, the D-values determined in pineapple juice were: D90°C=13.2 ± 0.5 mins, D95°C = 6.8 ± 0.9 mins and D100°C = 2.1 ± 1.7 mins for B. subtilis spores, and D85°C = 16.6 ± 0.4 mins, D90°C = 7.6 ± 0.5 mins and D95°C = 3.6 ± 1.5 min, for B. licheniformis. Generally, the susceptibility of the bacteria to soluble solid change was affected by the interaction between temperature, SS and strain. In addition, pasteurization processes of ≥95°C for ≥33.8 mins was needed to ensure a recommended 5-log reduction of B. subtilis spores and limit vitamin C degradation of pineapple juice within three-week of storage at 4 °C.
Collapse
Affiliation(s)
- Evelyn
- Department of Chemical Engineering, University of Riau, Pekanbaru, Indonesia
| | - Syelvia Putri Utami
- Department of Chemical Engineering, University of Riau, Pekanbaru, Indonesia
| | - Chairul
- Department of Chemical Engineering, University of Riau, Pekanbaru, Indonesia
| |
Collapse
|
12
|
Prado-Silva LD, Alvarenga VO, Braga GÚ, Sant’Ana AS. Inactivation kinetics of Bacillus cereus vegetative cells and spores from different sources by antimicrobial photodynamic treatment (aPDT). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Shi Y, Zhou L, Qu X, Yue T, Yuan Y. Targeting the cell wall: Preparation of monoclonal antibody for accurate identification of Alicyclobacillus acidoterrestris in apple juice. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Effects of combination shear stress, moderate electric field (MEF), and nisin on kinetics and mechanisms of inactivation of Escherichia coli K12 and Listeria innocua in fresh apple-kale blend juice. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Cubeddu A, Fava P, Pulvirenti A, Haghighi H, Licciardello F. Suitability Assessment of PLA Bottles for High-Pressure Processing of Apple Juice. Foods 2021; 10:foods10020295. [PMID: 33540544 PMCID: PMC7912795 DOI: 10.3390/foods10020295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study is to assess the use of polylactic acid (PLA) bottles as an alternative to polyethylene terephthalate (PET) ones for high-pressure processing (HPP) of apple juice. The treatment of PLA bottles at 600 MPa for 3 min did not cause alterations in the packaging shape and content, confirming the suitability of PLA bottles to withstand HPP conditions as well as PET bottles. Quantification of total mesophilic bacterial and fungal load suggested HPP treatment can be effectively applied as an alternative to pasteurization for apple juice packed in PLA bottles since it guarantees microbial stability during at least 28 days of refrigerated storage. The headspace gas level did not change significantly during 28 days of refrigerated storage, irrespective of the bottle material. Color parameters (L*, a*, and b*) of the HPP-treated juice were similar to those of the fresh juice. Irrespective of the packaging type, the total color variation significantly changed during storage, showing an exponential increase in the first 14 days, followed by a steady state until the end of observations. Overall, PLA bottles proved to offer comparable performances to PET both in terms of mechanical resistance and quality maintenance.
Collapse
Affiliation(s)
- Arianna Cubeddu
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
| | - Patrizia Fava
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Hossein Haghighi
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (A.C.); (P.F.); (A.P.); (H.H.)
- Interdepartmental Research Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
- Correspondence:
| |
Collapse
|
16
|
do Prado-Silva L, Gomes ATPC, Mesquita MQ, Neri-Numa IA, Pastore GM, Neves MGPMS, Faustino MAF, Almeida A, Braga GÚL, Sant'Ana AS. Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. Int J Food Microbiol 2020; 333:108803. [PMID: 32798958 DOI: 10.1016/j.ijfoodmicro.2020.108803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Alicyclobacillus acidoterrestris is a cause of major concern for the orange juice industry due to its thermal and chemical resistance, as well as its spoilage potential. A. acidoterrestris spoilage of orange juice is due to off-flavor taints from guaiacol production and some halophenols. The present study aimed to evaluate the effectiveness of antimicrobial Photodynamic Treatment (aPDT) as an emerging technology to inactivate the spores of A. acidoterrestris. The aPDT efficiency towards A. acidoterrestris was evaluated using as photosensitizers the tetracationic porphyrin (Tetra-Py+-Me) and the phenothiazinium dye new methylene blue (NMB) in combination with white light-emitting diode (LED; 400-740 nm; 65-140 mW/cm2). The spores of A. acidoterrestris were cultured on YSG agar plates (pH 3.7 ± 0.1) at 45 °C for 28 days and submitted to the aPDT with Tetra-Py+-Me and NMB at 10 μM in phosphate-buffered saline (PBS) in combination with white light (140 mW/cm2). The use of Tetra-Py+-Me at 10 μM resulted in a 7.3 ± 0.04 log reduction of the viability of A. acidoterrestris spores. No reductions in the viability of this bacterium were observed with NMB at 10 μM. Then, the aPDT with Tetra-Py+-Me and NMB at 10 μM in orange juice (UHT; pH 3.9; 11°Brix) alone and combined with potassium iodide (KI) was evaluated. The presence of KI was able to potentiate the aPDT process in orange juice, promoting the inactivation of 5 log CFU/mL of A. acidoterrestris spores after 10 h of white light exposition (140 mW/cm2). However, in the absence of KI, both photosensitizers did not promote a significant reduction in the spore viability. The inactivation of A. acidoterrestris spores artificially inoculated in orange peels (105 spores/mL) was also assessed using Tetra-Py+-Me at 10 and 50 μM in the presence and absence of KI in combination with white light (65 mW/cm2). No significant reductions were observed (p < .05) when Tetra-Py+-Me was used at 10 μM, however at the highest concentration (50 μM) a significant spore reduction (≈ 2.8 log CFU/mL reductions) in orange peels was observed after 6 h of sunlight exposition (65 mW/cm2). Although the color, total phenolic content (TPC), and antioxidant capacity of orange juice and peel (only color evaluation) seem to have been affected by light exposition, the impact on the visual and nutritional characteristics of the products remains inconclusive so far. Besides that, the results found suggest that aPDT can be a potential method for the reduction of A. acidoterrestris spores on orange groves.
Collapse
Affiliation(s)
- Leonardo do Prado-Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana T P C Gomes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Mariana Q Mesquita
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Iramaia A Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Glaucia M Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria G P M S Neves
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Maria A F Faustino
- Department of Chemistry and LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Gilberto Ú L Braga
- Department of Clinical, Toxicological and Bromatological Analyses, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
17
|
Alicyclobacillus acidoterrestris Strain Variability in the Inactivation Kinetics of Spores in Orange Juice by Temperature-Assisted High Hydrostatic Pressure. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, the inactivation kinetics of Alicyclobacillus acidoterrestris spores by temperature-assisted high hydrostatic pressure was assessed by means of the Weibull model. Spores from two A. acidoterrestris strains (a wild-type strain and a reference strain) were inoculated in commercial orange juice and subjected to high pressure levels (500 and 600 MPa) combined with four temperature regimes (25, 45, 60 and 70 °C) for time up to 30 min. Results showed that for a given high-pressure level spore inactivation was higher as temperature progressively increased. Furthermore, the Weibull model consistently produced satisfactory fit to the inactivation data based on the values of the root mean squared error (RMSE < 0.54 log colony-forming units (CFU)/mL) and the coefficient of determination (R2 > 0.90 in most cases). The shape of inactivation curves was concave upward (p < 1) for all temperature/high pressure levels tested, indicating rapid inactivation of the sensitive cells of the bacterium whereas the remaining ones adapted to high hydrostatic pressure (HHP) treatment. The values of the shape (p) and scale (δ) parameters of the Weibull model were dependent on the applied temperature for a given high pressure level and they were further described in a secondary model using first-order fitting curves to provide predictions of the surviving spore population at 55 and 65 °C. Results revealed a systematic over-prediction for the wild-type strain regardless of temperature and high pressure applied, whereas for the reference strain under-prediction was evident after 3 log-cycles reduction of the surviving bacteria spores. Overall, the results obtained indicate that the effectiveness of high hydrostatic pressure against A. acidoterrestris spores is strain-dependent and also underline the need for temperature-assisted HPP for effective spore inactivation during orange juice processing.
Collapse
|
18
|
Morales-de la Peña M, Welti-Chanes J, Martín-Belloso O. Novel technologies to improve food safety and quality. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Xiang Q, Wang W, Zhao D, Niu L, Li K, Bai Y. Synergistic inactivation of Escherichia coli O157:H7 by plasma-activated water and mild heat. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106741] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Song Z, Niu C, Wu H, Wei J, Zhang Y, Yue T. Transcriptomic Analysis of the Molecular Mechanisms Underlying the Antibacterial Activity of IONPs@pDA-Nisin Composites toward Alicyclobacillus acidoterrestris. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21874-21886. [PMID: 31185568 DOI: 10.1021/acsami.9b02990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple and no-drug resistance antibacterial method was developed by the synthesis of heat-stable and pH-tolerant nisin-loaded iron oxide nanoparticles polydopamine (IONPs@pDA) composites. The composites had a crystal structure and diameters of 25 ± 3 nm, with a saturation magnetization ( Ms) of 43.7995 emu g-1. Nisin was successfully conjugated onto the IONPs@pDA nanoparticles, as evinced by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses. The novel synthesized material showed good performance in reducing Alicyclobacillus acidoterrestris, a common food spoilage bacterium that represents a significant problem for the food industry. Treatment of A. acidoterrestris cells with composites resulted in membrane damage, as observed by live/dead staining and scanning electron microscopy and transmission electron microscopy analyses. Further, the composites exhibited highly efficient antibacterial activity against cells in only 5 min. Transcriptomic sequencing of culture RNA pools after exposure to composites resulted in a total of 334 differentially expressed genes that were primarily associated with transcriptional regulation, energy metabolism, membrane transporters, membrane and cell wall syntheses, and cell motility. Thus, these results suggested that changes in transcriptional regulation caused by aggregated composites on target cells led to major changes in homeostasis that manifested by decreased energy metabolism, pore formation in the membrane, and repressed cell wall synthesis. Concomitantly, cell motility and sporulation activities were both repressed, and finally, intracellular substances flowed out of leaky cells. The proposed biocontrol method represents a novel means to control microorganisms without inducing drug resistance. Further, these results provide novel insights into the molecular mechanisms underlying the antibacterial activity of composites against microorganisms.
Collapse
Affiliation(s)
- Zihan Song
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Chen Niu
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| | - Hao Wu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Jianping Wei
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Yuxiang Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
| | - Tianli Yue
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling) , Ministry of Agriculture , Yangling 712100 , China
- National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling 712100 , China
- College of Food Science & Engineering , Northwest University Xian , Xian 710069 , Shaanxi , PR China
| |
Collapse
|
21
|
Evelyn, Silva FV. Heat assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: Log reductions and mathematical models. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
|
23
|
Menezes NMC, Tremarin A, Junior AF, de Aragão GMF. Effect of soluble solids concentration on Neosartorya fischeri inactivation using UV-C light. Int J Food Microbiol 2019; 296:43-47. [PMID: 30849705 DOI: 10.1016/j.ijfoodmicro.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/15/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Ascospores of Neosartorya fischeri are heat-resistant and can survive thermal commercial treatments normally applied to the juices, as apple juice. Non-thermal processing of food such as exposure to ultraviolet light (UV-C) is reported to induce minimal quality changes while reduces microbial load. The main objective of this study was to determine the effect at different soluble solids concentration (12, 25, 30, 40, 50, 60 and 70 °Brix) on N. fischeri ascospores inactivation in apple juice, using UV-C light intensity (38 W/m2). Weibull model was fitted to experimental data. Then, a secondary model was used to describe how the inactivation kinetic parameters varied with the changes in soluble solids concentration. Results showed that the UV-C light had influence on N. fischeri ascospores inactivation in apple juice even at the highest soluble solids concentrations used, reaching approximately 4 log reductions at all concentrations used. The inactivation parameters, obtained by Weibull model, were δ (dose for the first decimal reduction) and p (the shape factor). Exponential model was chosen to describe the influence of soluble solids concentration on δ and p parameters. It can be concluded that UV-C light is a promising treatment with a drastic impact on the loads of N. fischeri, especially when low soluble solids concentration is used and a model was obtained to describe Brix effect.
Collapse
Affiliation(s)
- Natielle Maria Costa Menezes
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Andréia Tremarin
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Agenor Furigo Junior
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil
| | - Glaúcia Maria Falcão de Aragão
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Center of Technology, Florianopolis, SC 88040-901, Brazil.
| |
Collapse
|
24
|
Pinto CA, Martins AP, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA. Growth inhibition and inactivation of Alicyclobacillus acidoterrestris endospores in apple juice by hyperbaric storage at ambient temperature. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Shi Y, Yue T, Zhang Y, Wei J, Yuan Y. Surface Immunoproteomics Reveals Potential Biomarkers in Alicyclobacillus acidoterrestris. Front Microbiol 2018; 9:3032. [PMID: 30564227 PMCID: PMC6288362 DOI: 10.3389/fmicb.2018.03032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
Alicyclobacillus acidoterrestris is a major putrefying bacterium that can cause pecuniary losses in the global juice industry. Current detection approaches are time-consuming and exhibit reduced specificity and sensitivity. In this study, an immunoproteomic approach was utilized to identify specific biomarkers from A. acidoterrestris for the development of new detection methods. Cell surface-associated proteins were extracted and separated by 2-D (two-dimensional) gel electrophoresis. Immunogenic proteins were detected by Western blot analysis using antisera against A. acidoterrestris. Twenty-two protein spots exhibiting immunogenicity were excised and eighteen of the associated spots were successfully identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS). These proteins were observed to be involved in energy and carbohydrate metabolism, transmembrane transport, response to oxidative stress, polypeptide biosynthesis, and molecule binding activity. This is the first report detailing the identification of cell surface-associated antigens of A. acidoterrestris. The identified immunogenic proteins could serve as potential targets for the development of novel detection methods.
Collapse
Affiliation(s)
- Yiheng Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yipei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| |
Collapse
|
26
|
Roobab U, Aadil RM, Madni GM, Bekhit AED. The Impact of Nonthermal Technologies on the Microbiological Quality of Juices: A Review. Compr Rev Food Sci Food Saf 2018; 17:437-457. [DOI: 10.1111/1541-4337.12336] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Ume Roobab
- Natl. Inst. of Food Science and Technology; Univ. of Agriculture; Faisalabad Pakistan
| | - Rana Muhammad Aadil
- Natl. Inst. of Food Science and Technology; Univ. of Agriculture; Faisalabad Pakistan
| | - Ghulam Muhammad Madni
- Natl. Inst. of Food Science and Technology; Univ. of Agriculture; Faisalabad Pakistan
| | | |
Collapse
|
27
|
van Wyk S, Silva FV. High pressure processing inactivation of Brettanomyces bruxellensis in seven different table wines. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Rozali SNM, Milani EA, Deed RC, Silva FVM. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations. Int J Food Microbiol 2017; 263:17-25. [PMID: 29024903 DOI: 10.1016/j.ijfoodmicro.2017.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
Abstract
Spores are the most resistant form of microbial cells, thus difficult to inactivate. The pathogenic or food spoilage effects of certain spore-forming microorganisms have been the primary basis of sterilization and pasteurization processes. Thermal sterilization is the most common method to inactivate spores present on medical equipment and foods. High pressure processing (HPP) is an emerging and commercial non-thermal food pasteurization technique. Although previous studies demonstrated the effectiveness of thermal and non-thermal spore inactivation, the in-depth mechanisms of spore inactivation are as yet unclear. Live and dead forms of two food spoilage bacteria, a mould and a yeast were examined using scanning electron microscopy before and after the inactivation treatment. Alicyclobacillus acidoterrestris and Geobacillus stearothermophilus bacteria are indicators of acidic foods pasteurization and sterilization processes, respectively. Neosartorya fischeri is a phyto-pathogenic mould attacking fruits. Saccharomyces cerevisiae is a yeast with various applications for winemaking, brewing, baking and the production of biofuel from crops (e.g. sugar cane). Spores of the four microbial species were thermally inactivated. Spores of S. cerevisiae were observed in the ascus and free form after thermal and HPP treatments. Different forms of damage and cell destruction were observed for each microbial spore. Thermal treatment inactivated bacterial spores of A. acidoterrestris and G. stearothermophilus by attacking the inner core of the spore. The heat first altered the membrane permeability allowing the release of intracellular components. Subsequently, hydration of spores, physicochemical modifications of proteins, flattening and formation of indentations occurred, with subsequent spore death. Regarding N. fischeri, thermal inactivation caused cell destruction and leakage of intracellular components. Both thermal and HPP treatments of S. cerevisiae free spores attacked the inner membrane, altering its permeability, and allowing in final stages the transfer of intracellular components to the outside. The spore destruction caused by thermal treatment was more severe than HPP, as HPP had less effect on the spore core. All injured spores have undergone irreversible volume and shape changes. While some of the leakage of spore contents is visible around the deformed but fully shaped spore, other spores exhibited large indentations and were completely deformed, apparently without any contents inside. This current study contributed to the understanding of spore inactivation by thermal and non-thermal processes.
Collapse
Affiliation(s)
- Siti N M Rozali
- Chemical and Materials Engineering Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Elham A Milani
- Chemical and Materials Engineering Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Biological Sciences, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Filipa V M Silva
- Chemical and Materials Engineering Department, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
29
|
Evelyn, Silva FV. Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|