1
|
Hamilton AN, Jones SL, Baker CA, Liang X, Siepielski A, Robinson A, Dhulappanavar GR, Gibson KE. A Systematic Review and Meta-Analysis of Chemical Sanitizer Efficacy Against Biofilms of Listeria monocytogenes, Salmonella enterica, and STEC on Food Processing Surfaces. J Food Prot 2025; 88:100495. [PMID: 40122344 DOI: 10.1016/j.jfp.2025.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Chemical sanitizers are applied to food processing surfaces to inactivate bacterial pathogens. Pathogen type, surface type along with sanitizer type, concentration, and contact time are important factors potentially impacting sanitation efficacy. Numerous studies on chemical agents and lab-generated biofilms have been published; however, cross-study comparisons can be difficult. A systematic literature review (SLR) and meta-analysis were conducted to evaluate chemical sanitizer efficacy against Listeria monocytogenes, Salmonella spp., and Shiga toxin-producing Escherichia coli (STEC) within lab-generated biofilms on food contact surfaces (FCSs). The SLR included 13 peer-reviewed articles published between 2000 and 2020. Sanitizer concentration, type, contact time, surface type, and bacteria type were explored using multilevel mixed effects models to determine their impact on bacterial log reduction on FCS. The overall estimated log reduction was 2.90 (effect size [ES]) with a 95% CI = 2.40, 3.39 (p < 0.0001). The multilevel mixed effects model estimated log reductions of 2.67-3.82 for peracetic acid (PAA), quaternary ammonium compounds, sodium hypochlorite, hydrogen peroxide + PAA, and calcium hypochlorite, with significant differences across sanitizers. No significant differences were found between L. monocytogenes and STEC; however, both pathogens were significantly different from Salmonella spp. All pathogens were significant predictors of mean log reduction (p < 0.0001). No significant differences were found between surface types, while all were significant predictors of mean log reduction (p < 0.0001). Neither sanitizer concentration (p = 0.5554) nor sanitizer contact time (p = 0.1800) were found to be significant predictors of estimated mean log reduction. These findings highlight the importance of specific sanitizers and tailored approaches based on surface types and pathogen considerations.
Collapse
Affiliation(s)
- Allyson N Hamilton
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Sarah L Jones
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Christopher A Baker
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Xinya Liang
- University of Arkansas, Educational Statistics and Research Methods, Fayetteville, AR 72701, USA
| | - Adam Siepielski
- University of Arkansas, Department of Biological Sciences, Fayetteville, AR 72701, USA
| | - Ashlynn Robinson
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Gayatri R Dhulappanavar
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- University of Arkansas System Division of Agriculture, Center for Food Safety, Department of Food Science, Fayetteville, AR 72704, USA.
| |
Collapse
|
2
|
Zhang Q, Fu J, Lin H, Xuan G, Zhang W, Chen L, Wang G. Shining light on carbon dots: Toward enhanced antibacterial activity for biofilm disruption. Biotechnol J 2024; 19:e2400156. [PMID: 38804136 DOI: 10.1002/biot.202400156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.
Collapse
Affiliation(s)
- Qingsong Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianxin Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Weiwei Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Guoqing Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Wijaya M, Delicia D, Waturangi DE. Control of pathogenic bacteria using marine actinobacterial extract with antiquorum sensing and antibiofilm activity. BMC Res Notes 2023; 16:305. [PMID: 37919800 PMCID: PMC10623884 DOI: 10.1186/s13104-023-06580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE The objectives of this research were to screen the anti-quorum sensing and antibiofilm activity of marine actinobacteria, isolated from several aquatic environments in Indonesia against several pathogenic bacteria, such as Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa. RESULTS Ten out of 40 actinobacteria were found to have anti-quorum sensing activity against wild-type Chromobacterium violaceum (ATCC 12472); however, the validation assay showed that only eight of 10 significantly inhibited the quorum sensing system of Chromobacterium violaceum CV026. The crude actinobacteria extracts inhibited and disrupted biofilm formation produced by pathogens. The highest antibiofilm inhibition was discovered in isolates 11AC (90%), 1AC (90%), CW17 (84%), TB12 (94%), 20PM (85%), CW01 (93%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. The highest biofilm destruction activity was observed for isolate 1AC (77%), 20PM (85%), 16PM (72%), CW01 (73%), 18PM (82%), 16PM (63%) against Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Vibrio cholerae, Salmonella Typhimurium, and Pseudomonas aeruginosa, respectively. Actinobacteria isolates demonstrated promising anti-quorum and/or antibiofilm activity, interfering with the biofilm formation of tested pathogens. Appropriate formulations of these extracts could be developed as effective disinfectants, eradicating biofilms in many industries.
Collapse
Affiliation(s)
- Marco Wijaya
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Dea Delicia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia.
| |
Collapse
|
4
|
Luna-Solorza JM, Ayala-Zavala JF, Cruz-Valenzuela MR, González-Aguilar GA, Bernal-Mercado AT, Gutierrez-Pacheco MM, Silva-Espinoza BA. Oregano Essential Oil versus Conventional Disinfectants against Salmonella Typhimurium and Escherichia coli O157:H7 Biofilms and Damage to Stainless-Steel Surfaces. Pathogens 2023; 12:1245. [PMID: 37887761 PMCID: PMC10609779 DOI: 10.3390/pathogens12101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
This study compared the effect of oregano essential oil versus sodium hypochlorite, hydrogen peroxide, and benzalkonium chloride against the viability of adhered Salmonella Typhimurium and Escherichia coli O157:H7 on 304 stainless steel. Oregano essential oil was effective in disrupting the biofilms of both bacteria at concentrations ranging from 0.15 to 0.52 mg mL-1. In addition, damage to stainless-steel surfaces following disinfection treatments was assessed by weight loss analysis and via visual inspection using light microscopy. Compared to the other treatments, oregano oil caused the least damage to stainless steel (~0.001% weight loss), whereas sodium hypochlorite caused the most severe damage (0.00817% weight loss) when applied at 0.5 mg mL-1. Moreover, oregano oil also had an apparent protective impact on the stainless steel as weight losses were less than for the control surfaces (distilled water only). On the other hand, sodium hypochlorite caused the most severe damage to stainless steel (0.00817% weight loss). In conclusion, oregano oil eliminated monoculture biofilms of two important foodborne pathogens on 304 stainless-steel surfaces, while at the same time minimizing damage to the surfaces compared with conventional disinfectant treatments.
Collapse
Affiliation(s)
- Jesus M. Luna-Solorza
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - M. Reynaldo Cruz-Valenzuela
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| | - Ariadna T. Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora. Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico;
| | - M. Melissa Gutierrez-Pacheco
- Ciencias de la Salud, Universidad Estatal de Sonora, Campus San Luis Rio Colorado, Carretera San Luis Rio Colorado-Sonoyta Km 6.5. Col. Industrial CP, San Luis Río Colorado 83430, Sonora, Mexico;
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, Asociación Civil, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico (J.F.A.-Z.); (M.R.C.-V.); (G.A.G.-A.)
| |
Collapse
|
5
|
Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, Khairil Mokhtar NF, Sharples GJ. Effect of natural antibacterial clays against single biofilm formation by Staphylococcus aureus and Salmonella Typhimurium bacteria on a stainless-steel surface. Int J Food Microbiol 2023; 394:110184. [PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
Collapse
Affiliation(s)
- Wan Hasyera Wan Omar
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Ainy Mahyudin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Naqiyah Azmi
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor-Khaizura Mahmud Ab Rashid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Roslan Ismail
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | | | - Gary J Sharples
- Department of Biosciences, Durham University, Durham DHI 3LE, United Kingdom
| |
Collapse
|
6
|
Lim ES, Nam SJ, Koo OK, Kim JS. Protective role of Acinetobacter and Bacillus for Escherichia coli O157:H7 in biofilms against sodium hypochlorite and extracellular matrix-degrading enzymes. Food Microbiol 2023; 109:104125. [DOI: 10.1016/j.fm.2022.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
|
7
|
Genomic characterization and application of a novel bacteriophage STG2 capable of reducing planktonic and biofilm cells of Salmonella. Int J Food Microbiol 2023; 385:109999. [DOI: 10.1016/j.ijfoodmicro.2022.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
8
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Compr Rev Food Sci Food Saf 2022; 21:3346-3375. [PMID: 35762651 DOI: 10.1111/1541-4337.12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023]
Abstract
Food fermentation is driven by microorganisms, which usually coexist as multispecies biofilms. The activities and interactions of functional microorganisms and pathogenic bacteria in biofilms have important implications for the quality and safety of fermented foods. It was verified that the biofilm lifestyle benefited the fitness of microorganisms in harsh environments and intensified the cooperation and competition between biofilm members. This review focuses on multispecies biofilm formation, microbial interactions and communication in biofilms, and the application of multispecies biofilms in food fermentation. Microbial aggregation and adhesion are important steps in the early stage of multispecies biofilm formation. Different biofilm-forming abilities and strategies among microorganisms lead to several types of multispecies biofilm formation. The spatial distribution of multispecies biofilms reflects microbial interactions and biofilm function. Then, we discuss the intrinsic factors and external manifestations of multispecies biofilm system succession. Several typical interspecies cooperation and competition modes and mechanisms of microbial communication were reviewed in this review. The main limitations of the studies included in this review are the relatively small number of studies of biofilms formed by functional microorganisms during fermentation and the lack of direct evidence for the formation process of multispecies biofilms and microbial interactions and communication within biofilms. This review aims to provide the food industry with a sufficient understanding of multispecies biofilms in food fermentation. Practical Application: Meanwhile, it offers a reference value for better controlling and utilizing biofilms during food fermentation process, and the improvement of the yield, quality, and safety of fermented products including Chinese Baijiu, cheeese,kefir, soy sauce, kombucha, and fermented olive.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Tadielo LE, Bellé TH, Rodrigues dos Santos EA, Schmiedt JA, Cerqueira-Cézar CK, Nero LA, Yamatogi RS, Pereira JG, Bersot LDS. Pure and mixed biofilms formation of Listeria monocytogenes and Salmonella Typhimurium on polypropylene surfaces. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Cai S, Snyder AB. Thermoresistance in Black Yeasts Is Associated with Halosensitivity and High Pressure Processing Tolerance but Not with UV Tolerance or Sanitizer Tolerance. J Food Prot 2022; 85:203-212. [PMID: 34614188 DOI: 10.4315/jfp-21-314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Black yeasts can survive extreme conditions in food production because of their polyextremotolerant character. However, significant strain-to-strain variation in black yeast thermoresistance has been observed. In this study, we assessed the variability in tolerance to nonthermal interventions among a collection of food-related black yeast strains. Variation in tolerance to UV light treatment, high pressure processing (HPP), sanitizers, and osmotic pressure was observed within each species. The two strains previously shown to possess high thermotolerance, Exophiala phaeomuriformis FSL-E2-0572 and Exophiala dermatitidis YB-734, were also the most HPP tolerant but were the least halotolerant. Meanwhile, Aureobasidium pullulans FSL-E2-0290 was the most UV and sanitizer tolerant but had been shown to have relatively low thermoresistance. Fisher's exact tests showed that thermoresistance in black yeasts was associated with HPP tolerance and inversely with halotolerance, but no association was found with UV tolerance or sanitizer tolerance. Collectively, the relative stress tolerance among strains varied across interventions. Given this variation, different food products are susceptible to black yeast spoilage. In addition, different strains should be selected in challenge studies specific to the intervention. HIGHLIGHTS
Collapse
Affiliation(s)
- Shiyu Cai
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
11
|
Li Q, Liu L, Guo A, Zhang X, Liu W, Ruan Y. Formation of Multispecies Biofilms and Their Resistance to Disinfectants in Food Processing Environments: A Review. J Food Prot 2021; 84:2071-2083. [PMID: 34324690 DOI: 10.4315/jfp-21-071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT In food processing environments, various microorganisms can adhere and aggregate on the surface of equipment, resulting in the formation of multispecies biofilms. Complex interactions among microorganisms may affect the formation of multispecies biofilms and resistance to disinfectants, which are food safety and quality concerns. This article reviews the various interactions among microorganisms in multispecies biofilms, including competitive, cooperative, and neutral interactions. Then, the preliminary mechanisms underlying the formation of multispecies biofilms are discussed in relation to factors, such as quorum-sensing signal molecules, extracellular polymeric substances, and biofilm-regulated genes. Finally, the resistance mechanisms of common contaminating microorganisms to disinfectants in food processing environments are also summarized. This review is expected to facilitate a better understanding of interspecies interactions and provide some implications for the control of multispecies biofilms in food processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Qun Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Ling Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China.,National Research and Development Center for Egg Processing, Wuhan, Hubei 430070, People's Republic of China
| | - Xinshuai Zhang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Wukang Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Yao Ruan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
12
|
Pablos C, Govaert M, Angarano V, Smet C, Marugán J, Van Impe JFM. Photocatalytic inactivation of dual- and mono-species biofilms by immobilized TiO 2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112253. [PMID: 34271411 DOI: 10.1016/j.jphotobiol.2021.112253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Biofilms formed by different bacterial species are likely to play key roles in photocatalytic resistance. This study aims to evaluate the efficacy of a photocatalytic immobilized nanotube system (TiO2-NT) (IS) and suspended nanoparticles (TiO2-NP) (SS) against mono- and dual-species biofilms developed by Gram-negative and Gram-positive strains. Two main factors were corroborated to significantly affect the biofilm resistance during photocatalytic inactivation, i.e., the biofilm-growth conditions and biofilm-forming surfaces. Gram-positive bacteria showed great photosensitivity when forming dual-species biofilms in comparison with the Gram-positive bacteria in single communities. When grown onto TiO2-NT (IS) surfaces for immobilized photocatalytic systems, mono- and dual-species biofilms did not exhibit differences in photocatalytic inactivation according to kinetic constant values (p > 0.05) but led to a reduction of ca. 3-4 log10. However, TiO2-NT (IS) surfaces did affect biofilm colonization as the growth of mono-species biofilms of Gram-negative and Gram-positive bacteria is significantly (p ≤ 0.05) favored compared to co-culturing; although, the photocatalytic inactivation rate did not show initial bacterial concentration dependence. The biofilm growth surface (which depends on the photocatalytic configuration) also favored resistance of mono-species biofilms of Gram-positive bacteria compared to that of Gram-negative in immobilized photocatalytic systems, but opposite behavior was confirmed with suspended TiO2 (p ≤ 0.05). Successful efficacy of immobilized TiO2 for inactivation of mono- and dual-species biofilms was accomplished, making it feasible to transfer this technology into real scenarios in water treatment and food processing.
Collapse
Affiliation(s)
- C Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| | - M Govaert
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
| | - V Angarano
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
| | - C Smet
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
| | - J Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - J F M Van Impe
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium.
| |
Collapse
|
13
|
All Treatment Parameters Affect Environmental Surface Sanitation Efficacy, but Their Relative Importance Depends on the Microbial Target. Appl Environ Microbiol 2020; 87:AEM.01748-20. [PMID: 33097504 PMCID: PMC7755260 DOI: 10.1128/aem.01748-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Environmental sanitation in food manufacturing plants promotes food safety and product microbial quality. However, the development of experimental models remains a challenge due to the complex nature of commercial cleaning processes, which include spraying water and sanitizer on equipment and structural surfaces within manufacturing space. Although simple in execution, the physical driving forces are difficult to simulate in a controlled laboratory environment. Here, we present a bench-scale bioreactor system which mimics the flow conditions in environmental sanitation programs. We applied computational fluid dynamic (CFD) simulations to obtain fluid flow parameters that better approximate and predict industrial outcomes. According to the CFD model, the local wall shear stress achieved on the target surface ranged from 0.015 to 5.00 Pa. Sanitation efficacy on six types of environmental surface materials (hydrophobicity, 57.59 to 88.61°; roughness, 2.2 to 11.9 μm) against two different microbial targets, the bacterial pathogen Listeria monocytogenes and Exophiala species spoilage fungi, were evaluated using the bench-scale bioreactor system. The relative reduction ranged from 0.0 to 0.82 for Exophiala spp., which corresponded to a 0.0 to 2.21 log CFU/coupon reduction, and the relative reduction ranged from 0.0 to 0.93 in L. monocytogenes which corresponded to a 0.0 to 6.19 log CFU/coupon reduction. Although most treatment parameters were considered statistically significant against either L. monocytogenes or Exophiala spp., contact time was ranked as the most important predictor for L. monocytogenes reduction. Shear stress contributed the most to Exophiala spp. removal on stainless steel and Buna-N rubber, while contact time was the most important factor on HDPE (high-density polyethylene), cement, and epoxy.IMPORTANCE Commercial food manufacturers commonly employ a single sanitation program that addresses both bacterial pathogen and fungal spoilage microbiota, despite the fact that the two microbial targets respond differently to various environmental sanitation conditions. Comparison of outcome-based clusters of treatment combinations may facilitate the development of compensatory sanitation regimes where longer contact time or greater force are applied so that lower sanitizer concentrations can be used. Determination of microbiological outcomes related to sanitation program efficacy against a panel of treatment conditions allows food processors to balance tradeoffs between quality and safety with cost and waste stream management, as appropriate for their facility.
Collapse
|
14
|
Yuan L, Sadiq FA, Wang N, Yang Z, He G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit Rev Food Sci Nutr 2020; 61:3876-3891. [DOI: 10.1080/10408398.2020.1809345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Faizan A. Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Rodríguez-Melcón C, Alonso-Hernando A, Riesco-Peláez F, García-Fernández C, Alonso-Calleja C, Capita R. Biovolume and spatial distribution of foodborne Gram-negative and Gram-positive pathogenic bacteria in mono- and dual-species biofilms. Food Microbiol 2020; 94:103616. [PMID: 33279059 DOI: 10.1016/j.fm.2020.103616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to characterize the biofilms formed by Salmonella enterica serotype Agona, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) after 12, 48, 72, 120 and 240 h of incubation at 10 °C. Biofilms containing a single species, together with dual-species biofilms in which S. enterica and a Gram-positive bacterium existed in combination, were formed on polystyrene and evaluated by using confocal laser scanning microscopy (CLSM). All strains were able to form biofilm. The greatest biovolume in the observation field of 14,161 μm2 was observed for mono-species biofilms after 72 h, where biovolumes of 94,409.0 μm3 ± 2131.0 μm3 (S. enterica), 58,418.3 μm3 ± 5944.9 μm3 (L. monocytogenes), 68,020.8 μm3 ± 5812.3 μm3 (MRSA) and 59,280.0 μm3 ± 4032.9 μm3 (VRE) were obtained. In comparison with single-species biofilms, the biovolume of S. enterica was higher in the presence of MRSA or VRE after 48, 72 and 120 h. In dual-species biofilms, the bacteria showed a double-layer distribution pattern, with S. enterica in the top layer and Gram-positive bacteria in the bottom layer. This spatial disposition should be taken into account when effective strategies to eliminate biofilms are being developed.
Collapse
Affiliation(s)
- Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Alicia Alonso-Hernando
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Facultad de Ciencias de la Salud, Universidad Isabel I, E-09003, Burgos, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems Engineering and Automatic Control, University of León, E-24071, León, Spain
| | - Camino García-Fernández
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
16
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
17
|
Ripolles‐Avila C, Ríos‐Castillo AG, Fontecha‐Umaña F, Rodríguez‐Jerez JJ. Removal of
Salmonella enterica
serovar Typhimurium and
Cronobacter sakazakii
biofilms from food contact surfaces through enzymatic catalysis. J Food Saf 2020. [DOI: 10.1111/jfs.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carolina Ripolles‐Avila
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Abel G. Ríos‐Castillo
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Fabio Fontecha‐Umaña
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - José J. Rodríguez‐Jerez
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| |
Collapse
|
18
|
Lamas A, Regal P, Vázquez B, Cepeda A, Franco CM. Short Chain Fatty Acids Commonly Produced by Gut Microbiota Influence Salmonella enterica Motility, Biofilm Formation, and Gene Expression. Antibiotics (Basel) 2019; 8:E265. [PMID: 31847278 PMCID: PMC6963744 DOI: 10.3390/antibiotics8040265] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Short chain fatty acids (SCFAs) are commonly produced by healthy gut microbiota and they have a protective role against enteric pathogens. SCFAs also have direct antimicrobial activity against bacterial pathogens by diffusion across the bacterial membrane and reduction of intracellular pH. Due to this antimicrobial activity, SCFAs have promising applications in human health and food safety. In this study, the minimum inhibitory concentrations (MICs) of four SCFAs (acetic acid, butyric acid, propionic acid, and valeric acid) in Salmonella strains isolated from poultry were determined. The effect of subinhibitory concentrations of SCFAs in Salmonella biofilm formation, motility, and gene expression was also evaluated. Butyric acid, propionic acid, and valeric acid showed a MIC of 3750 µg/mL in all strains tested, while the MIC of acetic acid was between 1875 and 3750 µg/mL. Subinhibitory concentrations of SCFAs significantly (p < 0.05) reduced the motility of all Salmonella strains, especially in the presence of acetic acid. Biofilm formation was also significantly (p < 0.05) lower in the presence of SCFAs in some of the Salmonella strains. Salmonella strain. Salmonella Typhimurium T7 showed significant (p < 0.05) upregulation of important virulence genes, such as invA and hilA, especially in the presence of butyric acid. Therefore, SCFAs are promising substances for the inhibition of the growth of foodborne pathogens. However, it is important to avoid the use of subinhibitory concentrations that could increase the virulence of foodborne pathogen Salmonella.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (P.R.); (B.V.); (A.C.); (C.M.F.)
| | | | | | | | | |
Collapse
|
19
|
Visvalingam J, Zhang P, Ells TC, Yang X. Dynamics of Biofilm Formation by Salmonella Typhimurium and Beef Processing Plant Bacteria in Mono- and Dual-Species Cultures. MICROBIAL ECOLOGY 2019; 78:375-387. [PMID: 30547194 DOI: 10.1007/s00248-018-1304-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to determine the impact of bacteria from a beef plant conveyor belt on the biofilm formation of Salmonella in dual-species cultures. Beef plant isolates (50) including 18 Gram-negative aerobes (GNA), 8 Gram-positive aerobes (GPA), 5 lactic acid bacteria (LAB), 9 Enterobacteriaceae (EB), and 10 generic Escherichia coli (GEC) were included for developing biofilms in mono- and co-culture with S. Typhimurium at 15 °C for 6 days. Five selected cultures in planktonic form and in biofilms were tested for susceptibility to two commonly used sanitizers (i.e. E-San and Perox-E Plus). In mono-cultures, ≥ 80, 67, 61, 20, and 13% of GEC, EB, GNA, LAB, and GPA, respectively, developed measurable biofilms after 2 days, while all co-culture pairings with S. Typhimurium achieved some level of biofilm production. The predominant effect of EB and only effect of GEC strains on the biofilm formation of S. Typhimurium was antagonistic, while that of Gram-positive bacteria was synergistic, with the effect being more prominent on day 6. The effect was highly variable for the GNA isolates. Six aerobic isolates that formed moderate/strong biofilms by day 2 greatly boosted the co-culture biofilm formation. Seven Gram-negative bacteria were antagonistic against the biofilm formation of the co-cultures. Both sanitizers completely inactivated the selected planktonic cultures, but were largely ineffective against biofilms. In conclusion, all beef plant isolates assessed formed biofilms when paired with S. Typhimurium. Aerobic biofilm formers may create a more favorable condition for Salmonella biofilm formation, while some beef plant isolates have potential as a biocontrol strategy for Salmonella biofilms.
Collapse
Affiliation(s)
- Jeyachchandran Visvalingam
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
- Kane Biotech Inc, 196 Innovation Drive, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peipei Zhang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Timothy C Ells
- Agriculture and Agri-Food Canada Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada.
| |
Collapse
|
20
|
Parijs I, Steenackers HP. Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms. ISME JOURNAL 2018; 12:2061-2075. [PMID: 29858577 DOI: 10.1038/s41396-018-0146-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022]
Abstract
Genetic diversity often enhances the tolerance of microbial communities against antimicrobial treatment. However the sociobiology underlying this antimicrobial tolerance remains largely unexplored. Here we analyze how inter-species interactions can increase antimicrobial tolerance. We apply our approach to 17 industrially relevant multispecies biofilm models, based on species isolated from 58 contaminating biofilms in three breweries. Sulfathiazole was used as antimicrobial agent because it showed the highest activity out of 22 biofilm inhibitors tested. Our analysis reveals that competitive interactions dominate among species within brewery biofilms. We show that antimicrobial treatment can reduce the level of competition and therefore cause a subset of species to bloom. The result is a 1.2-42.7-fold lower percentage inhibition of these species and increased overall tolerance. In addition, we show that the presence of Raoultella can also directly enhance the inherent tolerance of Pseudomonas to antimicrobial treatment, either because the species protect each other or because they induce specific tolerance phenotypes as a response to competitors. Overall, our study emphasizes that the dominance of competitive interactions is central to the enhanced antimicrobial tolerance of the multispecies biofilms, and that the activity of antimicrobials against multispecies biofilms cannot be predicted based on their effect against monocultures.
Collapse
Affiliation(s)
- Ilse Parijs
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 - box 2460, B-3001, Leuven, Belgium
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 - box 2460, B-3001, Leuven, Belgium.
| |
Collapse
|
21
|
Iñiguez-Moreno M, Gutiérrez-Lomelí M, Guerrero-Medina PJ, Avila-Novoa MG. Biofilm formation by Staphylococcus aureus and Salmonella spp. under mono and dual-species conditions and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. Braz J Microbiol 2018; 49:310-319. [PMID: 29100930 PMCID: PMC5913829 DOI: 10.1016/j.bjm.2017.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/27/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was evaluated the biofilm formation by Staphylococcus aureus 4E and Salmonella spp. under mono and dual-species biofilms, onto stainless steel 316 (SS) and polypropylene B (PP), and their sensitivity to cetrimonium bromide, peracetic acid and sodium hypochlorite. The biofilms were developed by immersion of the surfaces in TSB by 10 d at 37°C. The results showed that in monospecies biofilms the type of surface not affected the cellular density (p>0.05). However, in dual-species biofilms on PP the adhesion of Salmonella spp. was favored, 7.61±0.13Log10CFU/cm2, compared with monospecies biofilms onto the same surface, 5.91±0.44Log10CFU/cm2 (p<0.05). The mono and dual-species biofilms were subjected to disinfection treatments; and the most effective disinfectant was peracetic acid (3500ppm), reducing by more than 5Log10CFU/cm2, while the least effective was cetrimonium bromide. In addition, S. aureus 4E and Salmonella spp. were more resistant to the disinfectants in mono than in dual-species biofilms (p<0.05). Therefore, the interspecies interactions between S. aureus 4E and Salmonella spp. had a negative effect on the antimicrobial resistance of each microorganism, compared with the monospecies biofilms.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Universidad de Guadalajara, Centro Universitario de la Ciénega, Departamento de Ciencias Médicas y de la Vida, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Universidad de Guadalajara, Centro Universitario de la Ciénega, Departamento de Ciencias Médicas y de la Vida, Ocotlán, Jalisco, Mexico
| | - Pedro Javier Guerrero-Medina
- Universidad de Guadalajara, Centro Universitario de la Ciénega, Departamento de Ciencias Médicas y de la Vida, Ocotlán, Jalisco, Mexico
| | - María Guadalupe Avila-Novoa
- Universidad de Guadalajara, Centro Universitario de la Ciénega, Departamento de Ciencias Médicas y de la Vida, Ocotlán, Jalisco, Mexico.
| |
Collapse
|
22
|
Koziróg A, Kręgiel D, Brycki B. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis. Molecules 2017; 22:molecules22112036. [PMID: 29165338 PMCID: PMC6150408 DOI: 10.3390/molecules22112036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6), synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.
Collapse
Affiliation(s)
- Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Bogumił Brycki
- Laboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|