1
|
Zinhoum RA, Negm AAKH, El-Shafei WKM. Vapour heat as a potential means of controlling insects in stored dates. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:48-55. [PMID: 39773680 DOI: 10.1017/s0007485324000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Post-harvest treatments are very critical in accepting the exported dates. However, stored dates are attacked by a wide range of stored pests causing serious damage to yield. Therefore, this study investigated the efficacy of treating stored dates variety Siwi with vapour heat on almond moth Ephestia cautella (Walker), the Indian meal moth Plodia interpunctella (Hübner), the saw-toothed grain beetle Oryzaephilus surinamensis Linnaeus, the red flour beetle Tribolium castaneum (Herbst), and the drugstore beetle Stegobium paniceum (L.) of stored dates. Additionally, the effects of vapour heat on the quality and microbial load of treated dates were examined. The tested insects were infested and randomly distributed to eight positions inside a vapour heat chamber at 46.5°C and 95% relative humidity for 30 min. The results showed that a 120 cm height from the vapour heat source led 100% mortality in all tested insects. Furthermore, the treatment of vapour heat had a great efficacy to eliminate infestations. Meanwhile, the vapour heat treatment slightly reduced the microbial load of stored dates, and non-significantly (P ≤ 0.05) affected the chemical and physical characteristics of the stored dates. Therefore, vapour heat is a safe and environmentally friendly insect pest control alternative for exported dates.
Collapse
Affiliation(s)
- Rasha A Zinhoum
- Stord Product Pest Department, Plant Protection Research Institute, Agriculture Research Center (ARC), Dokki, Egypt
| | - Amira A K H Negm
- Horticulture Pests Department, Plant Protection Research Institute, Agriculture Research Center (ARC), Dokki, Egypt
| | - W K M El-Shafei
- Department of Date Palm Pests and Diseases, Central Laboratory for Date Palm, Agricultural Research Centre (ARC), Giza, Egypt
| |
Collapse
|
2
|
Salazar JK, George J, Fay ML, Stewart DS, Ingram DT. Comparative growth kinetics of Listeria monocytogenes and Salmonella enterica on dehydrated enoki and wood ear mushrooms during rehydration and storage. Front Microbiol 2024; 15:1406971. [PMID: 39161606 PMCID: PMC11330785 DOI: 10.3389/fmicb.2024.1406971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Specialty mushrooms have been implicated in foodborne illness outbreaks in the U.S. in recent years. These mushrooms are available to consumers in both their fresh and dried states. Dehydrating mushrooms is a convenient way to increase shelf life. The dehydration process results in a lowered water activity (aw) of the commodity, creating an environment where both spoilage and pathogenic bacteria cannot proliferate. Prior to food preparation and consumption, these mushrooms are typically rehydrated and possibly stored for later use which could lead to increased levels of pathogens. This study examined the survival and growth of Listeria monocytogenes and Salmonella enterica on dehydrated enoki and wood ear mushrooms during rehydration and subsequent storage. Mushrooms were heat dehydrated, inoculated at 3 log CFU/g, and rehydrated at either 5 or 25°C for 2 h. Rehydrated mushrooms were stored at 5, 10, or 25°C for up to 14 d. L. monocytogenes and S. enterica survived on enoki and wood ear mushroom types during rehydration at 5 and 25°C, with populations often <2.39 log CFU/g. During subsequent storage, no growth was observed on wood ear mushrooms, regardless of the rehydration or storage temperature, with populations remaining <2.39 log CFU/g for both pathogens. When stored at 5°C, no growth was observed for either pathogen on enoki mushrooms. During storage at 10 and 25°C, pathogen growth rates and populations after 14 d were generally significantly higher on the enoki mushrooms rehydrated at 25°C; the highest growth rate (3.56 ± 0.75 log CFU/g/d) and population (9.48 ± 0.62 log CFU/g) after 14 d for either pathogen was observed by S. enterica at 25°C storage temperature. Results indicate a marked difference in pathogen survival and proliferation on the two specialty mushrooms examined in this study and highlight the need for individual product assessments. Data can be used to assist in informing guidelines for time and temperature control for the safety of rehydrated mushrooms.
Collapse
Affiliation(s)
- Joelle K. Salazar
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | - Josephina George
- Department of Food Science and Nutrition, Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, United States
| | - Megan L. Fay
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | - Diana S. Stewart
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, IL, United States
| | - David T. Ingram
- Division of Produce Safety, U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
3
|
Hua Z, Thapa BB, Younce F, Tang J, Zhu MJ. Impacts of water activity on survival of Listeria innocua and Enterococcus faecium NRRL B-2354 in almonds during steam treatments. Int J Food Microbiol 2024; 413:110592. [PMID: 38308878 DOI: 10.1016/j.ijfoodmicro.2024.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Raw almonds have been associated with Salmonella outbreaks and multiple recalls related to Listeria monocytogenes contamination. While steam treatment has been approved for pasteurizing both conventional and organic whole almonds, there is limited understanding of how water activity (aw) influences the effectiveness of steam treatments in decontaminating almonds. Hence, this study aimed to assess and compare the efficacy of steam treatments against Listeria innocua and Enterococcus faecium NRRL B-2354, the known non-pathogenic surrogates, on almonds. It also sought to investigate the impact of almond's aw on bacterial resistance during steam treatments. Almond kernels were inoculated with ~8 log10 CFU/g of either E. faecium or L. innocua and equilibrated to aw 0.25 or 0.45 before being subjected to steam treatments at temperatures of 100-135 °C. Our results revealed that L. innocua exhibited lower resistance to steam compared to E. faecium, with 1.2-2.6 log10 CFU/g reductions for L. innocua and 1.0-2.0 log10 CFU/g reductions for E. faecium when the surface temperature of almonds reached 100-130 °C, depending on the aw of the almonds. The obtained DL. innocua, 100-130°C-values were 2.0-16.6 s, and DE. faecium, 100-130°C-values were 4.0-21.8 s, depending on the aw of almonds. In general, elevating steam temperatures and almond aw decreased the tolerance of L. innocua and E. faecium during steam inactivation. In addition, the z-values indicated that E. faecium on almonds was less sensitive to change in steam temperature compared to L. innocua, especially at lower aw. The zL. innocua-values were 36.6 °C and 35.7 °C, while zE. faecium-values were 48.9 °C and 42.7 °C in almonds with aw 0.25 and 0.45, respectively. Results from this study suggest that steam treatments serve as effective interventions for controlling pathogen contaminations in raw almonds.
Collapse
Affiliation(s)
- Zi Hua
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America
| | - Bhim Bahadur Thapa
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America
| | - Frank Younce
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America
| | - Juming Tang
- Biological Systems Engineering, Washington State University, Pullman, WA 99164, United States of America
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, United States of America.
| |
Collapse
|
4
|
Liu S, Xue R, Qin W, Yang X, Ye Q, Wu Q. Performance and transcriptome analysis of Salmonella enterica serovar Enteritidis PT 30 under persistent desiccation stress: Cultured by lawn and broth methods. Food Microbiol 2023; 115:104323. [PMID: 37567618 DOI: 10.1016/j.fm.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/β value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Ruimin Xue
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Hessel V, Escribà-Gelonch M, Schmidt S, Tran NN, Davey K, Al-Ani LA, Muhd Julkapli N, Abdul Wahab Y, Khalil I, Woo MW, Gras S. Nanofood Process Technology: Insights on How Sustainability Informs Process Design. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:11437-11458. [PMID: 37564955 PMCID: PMC10410668 DOI: 10.1021/acssuschemeng.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.
Collapse
Affiliation(s)
- Volker Hessel
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | | | - Svenja Schmidt
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Nam Nghiep Tran
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Kenneth Davey
- School
of Chemical Engineering, The University
of Adelaide, Adelaide 5005, SA, Australia
| | - Lina A. Al-Ani
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurhidayatullaili Muhd Julkapli
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology
and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Ibrahim Khalil
- Healthcare
Pharmaceuticals Limited, Rajendrapur, Gazipur 1741, Bangladesh
| | - Meng Wai Woo
- Department
of Chemical & Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Sally Gras
- Department
of Chemical Engineering and Bio21 Molecular Science and Biotechnology
Institute, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
6
|
Fay ML, Salazar JK, Ren Y, Wu Z, Mate M, Khouja BA, Lingareddygari P, Liggans G. Growth Kinetics of Listeria monocytogenes and Salmonella enterica on Dehydrated Vegetables during Rehydration and Subsequent Storage. Foods 2023; 12:2561. [PMID: 37444299 DOI: 10.3390/foods12132561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Dehydrated vegetables have low water activities and do not support the proliferation of pathogenic bacteria. Once rehydrated, vegetables can be incorporated into other foods or held for later use. The aim of this study was to examine the survival and proliferation of Listeria monocytogenes and Salmonella enterica on dehydrated vegetables during rehydration and subsequent storage. Carrots, corn, onion, bell peppers, and potatoes were heat dehydrated, inoculated at 4 log CFU/g, and rehydrated at either 5 or 25 °C for 24 h. Following rehydration, vegetables were stored at 5, 10, or 25 °C for 7 d. Both L. monocytogenes and S. enterica survived on all vegetables under all conditions examined. After 24 h of rehydration at 5 °C, pathogen populations on the vegetables were generally <1.70 log CFU/g, whereas rehydration at 25 °C resulted in populations of 2.28 to 6.25 log CFU/g. The highest growth rates during storage were observed by L. monocytogenes on potatoes and S. enterica on carrots (2.37 ± 0.61 and 1.63 ± 0.18 log CFU/g/d, respectively) at 25 °C when rehydration occurred at 5 °C. Results indicate that pathogen proliferation on the vegetables is both rehydration temperature and matrix dependent and highlight the importance of holding rehydrated vegetables at refrigeration temperatures to hinder pathogen proliferation. Results from this study inform time and temperature controls for the safety of these food products.
Collapse
Affiliation(s)
- Megan L Fay
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA
| | - Joelle K Salazar
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA
| | - Yuying Ren
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Zihui Wu
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Madhuri Mate
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, IL 60501, USA
| | - Bashayer A Khouja
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA
| | - Pravalika Lingareddygari
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL 60501, USA
| | - Girvin Liggans
- Office of Food Safety, U. S. Food and Drug Administration, College Park, MD 20740, USA
| |
Collapse
|
7
|
Fay ML, Salazar JK, Zhang X, Zhou X, Stewart D. Long-Term Survival of Listeria monocytogenes in Nut, Seed, and Legume Butters. J Food Prot 2023; 86:100094. [PMID: 37086973 DOI: 10.1016/j.jfp.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Nut, seed, and legume butters have become increasingly popular with consumers. Listeria monocytogenes contamination of a variety of butters has resulted in several recalls, although no known outbreaks have been identified. L. monocytogenes has been shown to survive on a variety of seeds for up to 6 months, legumes and nuts for over 12 months, and in peanut butter and peanut-chocolate spreads for 21 to 60 weeks depending on formulation; however, long-term survival in other butters has not yet been characterized. In this study, the survival of L. monocytogenes in various nut, seed, legume, and chocolate-containing butters (n=10) based on inoculation level, storage temperature, and the pH, aw, and nutrient contents of the butters, was examined. First, butters were inoculated with L. monocytogenes at 4 log CFU/g and stored at either 5 or 25°C with enumeration and/or enrichment at intervals over 12 months. L. monocytogenes survived in all butters examined with no significant change in population after storage at 5°C, whereas the population was reduced to <1.70 log CFU/g in as little as 3 months at 25°C; the only exception was for sunflower butter, where L. monocytogenes decreased approximately 1 log CFU/g. Subsequently, all butters were inoculated at 1 log CFU/g and stored at 25°C for 6 months with enrichment during storage. L. monocytogenes was detected in all butters, except pecan butter, after 6-month storage. Butters containing chocolate did not inhibit L. monocytogenes survival, regardless of the inoculation level. Results indicate there may be association between high fat and carbohydrate level and survivability of L. monocytogenes in various types of butters. This work highlights the need to mitigate the potential for cross-contamination of L. monocytogenes into nut, seed, and legume butters due to the potential for long-term survival. Running title: Listeria survival in butters.
Collapse
Affiliation(s)
- Megan L Fay
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| | - Joelle K Salazar
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA.
| | - Xinyuan Zhang
- Illinois Institute of Technology, Institute for Food Safety and Health, Bedford Park, IL, USA
| | - Xinyi Zhou
- Illinois Institute of Technology, Institute for Food Safety and Health, Bedford Park, IL, USA
| | - Diana Stewart
- Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park, IL, USA
| |
Collapse
|
8
|
Practice and Progress: Updates on Outbreaks, Advances in Research, and Processing Technologies for Low-moisture Food Safety. J Food Prot 2023; 86:100018. [PMID: 36916598 DOI: 10.1016/j.jfp.2022.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 12/31/2022]
Abstract
Large, renowned outbreaks associated with low-moisture foods (LMFs) bring to light some of the potential, inherent risks that accompany foods with long shelf lives if pathogen contamination occurs. Subsequently, in 2013, Beuchat et al. (2013) noted the increased concern regarding these foods, specifically noting examples of persistence and resistance of pathogens in low-water activity foods (LWAFs), prevalence of pathogens in LWAF processing environments, and sources of and preventive measures for contamination of LWAFs. For the last decade, the body of knowledge related to LMF safety has exponentially expanded. This growing field and interest in LMF safety have led researchers to delve into survival and persistence studies, revealing that some foodborne pathogens can survive in LWAFs for months to years. Research has also uncovered many complications of working with foodborne pathogens in desiccated states, such as inoculation methods and molecular mechanisms that can impact pathogen survival and persistence. Moreover, outbreaks, recalls, and developments in LMF safety research have created a cascading feedback loop of pushing the field forward, which has also led to increased attention on how industry can improve LMF safety and raise safety standards. Scientists across academia, government agencies, and industry have partnered to develop and evaluate innovate thermal and nonthermal technologies to use on LMFs, which are described in the presented review. The objective of this review was to describe aspects of the extensive progress made by researchers and industry members in LMF safety, including lessons-learned about outbreaks and recalls, expansion of knowledge base about pathogens that contaminate LMFs, and mitigation strategies currently employed or in development to reduce food safety risks associated with LMFs.
Collapse
|
9
|
Sun S, Anderson NM, Walker L, Thippareddi H. A comparative study for determination of thermal inactivation parameters of Salmonella in high gel and standard egg white powder using three methods. Lebensm Wiss Technol 2022; 172:114185. [DOI: 10.1016/j.lwt.2022.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Jung J, Schaffner DW. Thermal Inactivation of Salmonella enterica and Nonpathogenic Bacterial Surrogates in Wheat Flour by Baking in a Household Oven. J Food Prot 2022; 85:1431-1438. [PMID: 35880899 DOI: 10.4315/jfp-22-107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Wheat flour has been implicated in recalls and outbreaks linked to Salmonella and pathogenic Escherichia coli. An instructional online video posted on a popular YouTube channel with over 20 million subscribers claimed that safe raw cookie dough could be made from flour baked in a household oven at 177°C (350°F) for 5 min, but no evidence in support of that claim was provided. This study was conducted to assess thermal inactivation of two Salmonella strains, as well as Enterobacter aerogenes and Pantoea dispersa in wheat flour during home oven baking. Wheat flour was inoculated with Salmonella Enteritidis PT 30, Salmonella Typhimurium PT 42, or their potential surrogates at high concentrations (4.8 to 6.1 log CFU/g) before baking in a consumer-style convection oven (toaster oven) at 149, 177, and 204°C (300, 350, or 400°F) for up to 7 min. Flour was heated in an aluminum tray, with a maximum depth of ∼2 cm. Heated wheat flour samples (5 g each) were enumerated in triplicate, and the microbial concentration was expressed in log CFU per gram. Thermal profiles of the geometric center of the wheat flour pile and air in the oven during the baking were recorded. Water activity of wheat flour samples was also measured before and after baking. The water activity of wheat flour decreased, as baking temperature and time increased. Water activity values ranged from 0.30 to 0.06 after 7 min, as oven temperature increased from 149 to 204°C. Thermal inactivation kinetics were linear until counts approached the limit of detection for all microorganisms. D-values for Salmonella and potential surrogate strains ranged from 1.86 to 2.13 min at 149°C air temperature, 1.66 to 1.92 min at 177°C air temperature, and 1.12 to 1.38 min at 204°C air temperature. Both Salmonella strains and surrogates showed similar inactivation patterns. Baking of wheat flour in household toaster ovens has potential as an inactivation treatment of pathogenic bacteria in consumer homes, despite its low water activity. HIGHLIGHTS
Collapse
Affiliation(s)
- Jiin Jung
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
11
|
Alves Â, Santos-Ferreira N, Magalhães R, Ferreira V, Teixeira P. From chicken to salad: Cooking salt as a potential vehicle of Salmonella spp. and Listeria monocytogenes cross-contamination. Food Control 2022; 137:108959. [PMID: 35783559 PMCID: PMC9025383 DOI: 10.1016/j.foodcont.2022.108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
Epidemiological studies show that improper food handling practices at home account for a significant portion of foodborne illness cases. Mishandling of raw meat during meal preparation is one of the most frequent hazardous behaviours reported in observational research studies that potentially contributes to illness occurrence, particularly through the transfer of microbial pathogens from the raw meat to ready-to-eat (RTE) foods. This study evaluated the transfer of two major foodborne pathogens, Salmonella enterica and Listeria monocytogenes, from artificially contaminated chicken meat to lettuce via cooking salt (used for seasoning) during simulated domestic handling practices. Pieces of chicken breast fillets were spiked with five different loads (from ca. 1 to 5 Log CFU/g) of a multi-strain cocktail of either S. enterica or L. monocytogenes. Hands of volunteers (gloved) contaminated by handling the chicken, stirred the cooking salt that was further used to season lettuce leaves. A total of 15 events of cross-contamination (three volunteers and five bacterial loads) were tested for each pathogen. Immediately after the events, S. enterica was isolated from all the cooking salt samples (n = 15) and from 12 samples of seasoned lettuce; whereas L. monocytogenes was isolated from 13 salt samples and from all the seasoned lettuce samples (n = 15). In addition, S. enterica and L. monocytogenes were able to survive in artificially contaminated salt (with a water activity of 0.49) for, at least, 146 days and 126 days, respectively. The ability of these foodborne pathogens to survive for a long time in cooking salt, make it a good vehicle for transmission and cross-contamination if consumers do not adopt good hygiene practices when preparing meals.
Collapse
Affiliation(s)
- Ângela Alves
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Nânci Santos-Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Vânia Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
12
|
Xie Y, Zhang S, Sun S, Zhu MJ, Sablani S, Tang J. Survivability of Salmonella and Enterococcus faecium in chili, cinnamon and black pepper powders during storage and isothermal treatments. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Novel Approaches to Environmental Monitoring and Control of Listeria monocytogenes in Food Production Facilities. Foods 2022; 11:foods11121760. [PMID: 35741961 PMCID: PMC9222551 DOI: 10.3390/foods11121760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a serious public health hazard responsible for the foodborne illness listeriosis. L. monocytogenes is ubiquitous in nature and can become established in food production facilities, resulting in the contamination of a variety of food products, especially ready-to-eat foods. Effective and risk-based environmental monitoring programs and control strategies are essential to eliminate L. monocytogenes in food production environments. Key elements of the environmental monitoring program include (i) identifying the sources and prevalence of L. monocytogenes in the production environment, (ii) verifying the effectiveness of control measures to eliminate L. monocytogenes, and (iii) identifying the areas and activities to improve control. The design and implementation of the environmental monitoring program are complex, and several different approaches have emerged for sampling and detecting Listeria monocytogenes in food facilities. Traditional detection methods involve culture methods, followed by confirmation methods based on phenotypic, biochemical, and immunological characterization. These methods are laborious and time-consuming as they require at least 2 to 3 days to obtain results. Consequently, several novel detection approaches are gaining importance due to their rapidness, sensitivity, specificity, and high throughput. This paper comprehensively reviews environmental monitoring programs and novel approaches for detection based on molecular methods, immunological methods, biosensors, spectroscopic methods, microfluidic systems, and phage-based methods. Consumers have now become more interested in buying food products that are minimally processed, free of additives, shelf-stable, and have a better nutritional and sensory value. As a result, several novel control strategies have received much attention for their less adverse impact on the organoleptic properties of food and improved consumer acceptability. This paper reviews recent developments in control strategies by categorizing them into thermal, non-thermal, biocontrol, natural, and chemical methods, emphasizing the hurdle concept that involves a combination of different strategies to show synergistic impact to control L. monocytogenes in food production environments.
Collapse
|
14
|
Recent development in low-moisture foods: Microbial safety and thermal process. Food Res Int 2022; 155:111072. [DOI: 10.1016/j.foodres.2022.111072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
|
15
|
Kragh ML, Obari L, Caindec AM, Jensen HA, Truelstrup Hansen L. Survival of Listeria monocytogenes, Bacillus cereus and Salmonella Typhimurium on sliced mushrooms during drying in a household food dehydrator. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Michael M, Acuff JC, Vega D, Sekhon AS, Channaiah LH, Phebus RK. Survivability and thermal resistance of Salmonella and Escherichia coli O121 in wheat flour during extended storage of 360 days. Int J Food Microbiol 2022; 362:109495. [PMID: 34872756 DOI: 10.1016/j.ijfoodmicro.2021.109495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Foodborne pathogens like Salmonella and Escherichia coli O121 can endure the harsh low water activity (aw) environment of wheat flour for elongated periods of time and can proliferate when hydrated for baking or other purposes. This study determined the survivability and thermal tolerance (D- and z-values) of Salmonella and Escherichia coli O121 in wheat flour and muffin batter (prepared from inoculated flour on the days of analyses) during the storage period of 360 days. The Salmonella and E. coli O121 studies were conducted as two independent experiments. Both studies were designed as randomized complete block with three replications as blocks. All experimental data were analyzed using one-way ANOVA and Tukey's test in Minitab® software, and P ≤ 0.05 was considered significant. The wheat flour was spray inoculated individually with 7-isolate Salmonella or 3-isolate E. coli O121 cocktail and then dried back to the original aw levels. On each analysis day, inoculated wheat flour (~5 g) or muffin batter (~2.5 g) was placed inside the TDT disks, heat treated at set temperatures in hot water baths, and sampled at predetermined time intervals for determining the survival microbial population. The population of E. coli O121 and Salmonella cocktails in wheat flour at day 1 were 7.6 ± 0.18 and 7.8 ± 0.07 log CFU/g, respectively, which decreased to 2.0 ± 0.40 and 2.8 ± 0.59 log CFU/g on day 360, respectively. The D-values of Salmonella and E. coli O121 cocktails in inoculated flour and muffin batter prepared from inoculated flour (on the day of analysis) were determined on days 1, 30, 90, 180, 270, and 360 [given enough surviving bacterial population (~3 to 4 log CFU/g) was present in the flour]. The population of Salmonella and E. coli O121 in wheat flour decreased by 5.0 and 5.6 log CFU/g, respectively, during the storage period of 360 days. The D70°C, D75°C, and D80°C values of Salmonella in wheat flour remained similar during the storage period. Whereas, for E. coli O157:H7 in wheat flour, the D70°C value decreased from 20.3 ± 2.82 to 7.1 ± 2.82 min, and D75°C decreased from 10.2 ± 2.14 to 2.7 ± 0.27 min, during the storage period of 180 days. The z-values of Salmonella or E. coli O157:H7 remained similar during the storage period. The D- and z-values from this research can be employed for validation of thermal process to ensure safety of wheat flour.
Collapse
Affiliation(s)
- Minto Michael
- School of Food Science, Food Science and Human Nutrition Building, Washington State University, Pullman, WA 99164, USA.
| | - Jennifer C Acuff
- Food Science Department, University of Arkansas, Fayetteville, AR 72704, USA
| | - Daniel Vega
- Food Science Institute, Call Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Amninder S Sekhon
- School of Food Science, Food Science and Human Nutrition Building, Washington State University, Pullman, WA 99164, USA
| | | | - Randall K Phebus
- Food Science Institute, Call Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
17
|
Liu S, Wei X, Tang J, Qin W, Wu Q. Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34927484 DOI: 10.1080/10408398.2021.2016601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.
Collapse
Affiliation(s)
- Shuxiang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Wen Qin
- Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
18
|
Bourdichon F, Betts R, Dufour C, Fanning S, Farber J, McClure P, Stavropoulou DA, Wemmenhove E, Zwietering MH, Winkler A. Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms? Int J Food Microbiol 2021; 356:109351. [PMID: 34500287 DOI: 10.1016/j.ijfoodmicro.2021.109351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
Processing environment monitoring is gaining increasing importance in the context of food safety management plans/HACCP programs, since past outbreaks have shown the relevance of the environment as contamination pathway, therefore requiring to ensure the safety of products. However, there are still many open questions and a lack of clarity on how to set up a meaningful program, which would provide early warnings of potential product contamination. Therefore, the current paper aims to summarize and evaluate existing scientific information on outbreaks, relevant pathogens in low moisture foods, and knowledge on indicators, including their contribution to a "clean" environment capable of limiting the spread of pathogens in dry production environments. This paper also outlines the essential elements of a processing environment monitoring program thereby supporting the design and implementation of better programs focusing on the relevant microorganisms. This guidance document is intended to help industry and regulators focus and set up targeted processing environment monitoring programs depending on their purpose, and therefore provide the essential elements needed to improve food safety.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France; Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy.
| | - Roy Betts
- Campden BRI, Chipping Campden, Gloucestershire, United Kingdom
| | - Christophe Dufour
- Mérieux NutriSciences, 25 Boulevard de la Paix, 95891 Cergy Pontoise, France
| | - Séamus Fanning
- UCD - Centre for Food Safety, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Peter McClure
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom
| | | | | | - Marcel H Zwietering
- Food Microbiology, Wageningen University, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Anett Winkler
- Cargill Germany GmbH, Cerestar str. 2, D-47809 Krefeld, Germany
| |
Collapse
|
19
|
|
20
|
Thermal inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in desiccated shredded coconut. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Xie T, Yuan X, Wen D, Shi H. Growth and thermal inactivation of
Listeria monocytogenes
and
Escherichia coli
O157:H7 in four kinds of traditionally non‐fermented soya bean products. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tianhui Xie
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| | - Xue Yuan
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| | - Dingyuan Wen
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| | - Hui Shi
- College of Food Science Southwest University 1 Rd Tiansheng Beibei, Chongqing400715China
| |
Collapse
|
22
|
Aaliya B, Valiyapeediyekkal Sunooj K, Navaf M, Parambil Akhila P, Sudheesh C, Ahmad Mir S, Sabu S, Sasidharan A, Theingi Hlaing M, George J. Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and non-thermal processing techniques. Food Res Int 2021; 147:110514. [PMID: 34399492 DOI: 10.1016/j.foodres.2021.110514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023]
Abstract
Researchers are continuously discovering varied technologies for microbial control to ensure worldwide food safety from farm-to-fork. The microbial load and virulence of spoilage causing microorganisms, including bacteria, fungi, yeasts, virus, and protozoa, determines the extent of microbial contamination in a food product. Certain pathogenic microbes can cause food poisoning and foodborne diseases, and adversely affect consumers' health. To erade such food safety-related problems, various traditional and novel food processing methods have been adopted for decades. However, some decontamination techniques bring undesirable changes in food products by affecting their organoleptic and nutritional properties. Combining various thermal and non-thermal food processing methods is an effective way to impart a synergistic effect against food spoilage microorganisms and can be used as an alternative way to combat certain limitations of food processing technologies. The combination of different techniques as hurdles put the microorganisms in a hostile environment and disturbs the homeostasis of microorganisms in food temporarily or permanently. Optimization and globalization of these hurdle combinations is an emerging field in the food processing sector. This review gives an overview of recent inventions in hurdle technology for bacterial decontamination, combining different thermal and non-thermal processing techniques in various food products.
Collapse
Affiliation(s)
- Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | - Cherakkathodi Sudheesh
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Shabir Ahmad Mir
- Department of Food Science and Technology, Government College for Women, M. A. Road, Srinagar, Jammu and Kashmir 190001, India
| | - Sarasan Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Kochi 682016, India
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| | | | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Mysore 570011, India
| |
Collapse
|
23
|
Harada AM, Nascimento MS. Efficacy of dry sanitizing methods on Listeria monocytogenes biofilms. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ballom K, Dhowlaghar N, Tsai HC, Yang R, Tang J, Zhu MJ. Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Cheng T, Tang J, Yang R, Xie Y, Chen L, Wang S. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Thermal inactivation of Salmonella Enteritidis PT30 in ground cinnamon as influenced by water activity and temperature. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Feng Y, Archila-Godínez JC. Consumer Knowledge and Behaviors Regarding Food Safety Risks Associated with Wheat Flour. J Food Prot 2021; 84:628-638. [PMID: 33211855 DOI: 10.4315/jfp-19-562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
ABSTRACT Consumers do not consider flour, a low-moisture food product, a high risk for microbial contamination. In the past 10 years, however, flour has been identified as a source of pathogenic bacteria, including Salmonella and Escherichia coli. Online surveys were conducted to study consumers' flour handling practices and knowledge about food safety risks related to flour. The survey also evaluated message impact on three food safety messages in communicating information and convincing consumers to adopt safe flour handling practices. Flour-using consumers (n = 1,045) from the United States reported they used flour to make cakes, cookies, and bread. Most consumers stored flour in sealed containers. Less than 1% kept a record of product identification numbers, such as lot numbers, and less than 11% kept brand and use-by date information. Many consumers (85%) were unaware of flour recalls, or outbreaks, and few (17%) believed they would be affected by flour recalls or outbreaks. If the recall affected the flour they bought, nearly half of the consumers (47%) would buy the same product from a different brand for a few months before they returned to the recalled brand. Among consumers who use flour to bake, 66% said they ate raw cookie dough or batter. Raw dough "eaters" were more difficult to convince to avoid eating and playing with raw flour than "noneaters." Food safety messages were less impactful on those raw dough eaters than noneaters. Compared with the food safety message with only recommendations, those messages with recommendations and an explanation as to the benefits of the practice were more effective in convincing consumers to change their practices. These findings provide insight into effective consumer education about safe flour handling practices and could assist in the accurate development of risk assessment models related to flour handling. HIGHLIGHTS
Collapse
Affiliation(s)
- Yaohua Feng
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA.,(ORCID: https://orcid.org/0000-0003-3012-1930 [Y.F.])
| | | |
Collapse
|
28
|
Igo MJ, Schaffner DW. Models for factors influencing pathogen survival in low water activity foods from literature data are highly significant but show large unexplained variance. Food Microbiol 2021; 98:103783. [PMID: 33875211 DOI: 10.1016/j.fm.2021.103783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
Factors that control pathogen survival in low water activity foods are not well understood and vary greatly from food to food. A literature search was performed to locate data on the survival of foodborne pathogens in low-water activity (<0.70) foods held at temperatures <37 °C. Data were extracted from 67 publications and simple linear regression models were fit to each data set to estimate log linear rates of change. Multiple linear stepwise regression models for factors influencing survival rate were developed. Subset regression modeling gave relatively low adjusted R2 values of 0.33, 0.37, and 0.48 for Salmonella, E. coli and L. monocytogenes respectively, but all subset models were highly significant (p < 1.0e-9). Subset regression models showed that Salmonella survival was significantly (p < 0.05) influenced by temperature, serovar and strain type, water activity, inoculum preparation method, and inoculation method. E. coli survival was significantly influenced by temperature, water activity, and inoculum preparation. L. monocytogenes survival was significantly influenced by temperature, serovar and strain type, and inoculum preparation method. While many factors were highly significant (p < 0.001), the high degrees of variability show that there is still much to learn about the factors which govern pathogen survival in low water activity foods.
Collapse
Affiliation(s)
- Matthew J Igo
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
29
|
Isothermal inactivation of Salmonella, Listeria monocytogenes, and Enterococcus faecium NRRL B-2354 in peanut butter, powder infant formula, and wheat flour. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Unger P, Channaiah LH, Singh A, Singh Sekhon A, Babb M, Yang Y, Michael M. Validation of brownie baking step for controlling Salmonella and Listeria monocytogenes. Food Sci Nutr 2021; 9:1574-1583. [PMID: 33747470 PMCID: PMC7958536 DOI: 10.1002/fsn3.2132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/25/2023] Open
Abstract
Pathogens, such as Salmonella and Listeria monocytogenes, can survive under the dry environment of flour for extended periods of time and could multiply when flour is hydrated to prepare batter or dough. Therefore, inactivation of these pathogens during the cooking/baking step is vital to ensure the microbiological safety of bakery products such as brownies. The aim of this research was to validate a simulated commercial baking process as a kill-step for controlling Salmonella and L. monocytogenes in brownies and to determine thermal inactivation parameters of these pathogens in brownie batter. Independent studies were conducted in a completely randomized design for each pathogen. All-purpose flour was inoculated with a 5-serovar Salmonella and 3-strain L. monocytogenes cocktails. For baking validation, brownie batters were prepared from inoculated flour, and cooked in the oven set at 350°F (176.7°C) for 40 min followed by 15 min of ambient air cooling. For calculating D-values, brownie batter was transferred into thermal-death-time disks, sealed, and placed in hot-water baths. The samples were held for pre-determined time intervals in hot-water baths and immediately transferred to cold-water baths. Microbial populations were enumerated using injury-recovery media. At the end of baking, Salmonella and L. monocytogenes populations decreased by 6.3 and 5.9 log CFU/g, respectively. D-values of Salmonella and L. monocytogenes cocktails were 53.4 and 37.5 min at 64°C; 27.2 and 16.9 min at 68°C; 10.7 and 9.1 min at 72°C; and 4.6 and 7.3 min at 76°C; respectively. The z-values of Salmonella and L. monocytogenes cocktails were 11.1 and 16.4°C, respectively. This study can be used as a supporting document for the validation of similar brownie baking processes to control Salmonella and L. monocytogenes. The data from this study can also be employed for developing basic prediction models for the survival and thermal resistance of these pathogens during brownie baking step.
Collapse
Affiliation(s)
- Phoebe Unger
- School of Food ScienceWashington State UniversityPullmanWAUSA
| | | | - Arshdeep Singh
- School of Food ScienceWashington State UniversityPullmanWAUSA
| | | | - Monipel Babb
- School of Food ScienceWashington State UniversityPullmanWAUSA
| | - Yaeseol Yang
- School of Food ScienceWashington State UniversityPullmanWAUSA
| | - Minto Michael
- School of Food ScienceWashington State UniversityPullmanWAUSA
| |
Collapse
|
31
|
Grasso-Kelley EM, Liu X, Halik LA, Douglas B. Evaluation of Hot-Air Drying To Inactivate Salmonella and Enterococcus faecium on Apple Pieces. J Food Prot 2021; 84:240-248. [PMID: 33497441 DOI: 10.4315/jfp-20-167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Hot-air drying processes are used to provide specific quality attributes to products, such as dehydrated apple pieces. To comply with the U.S. Food and Drug Administration Food Safety Modernization Act, there is a need to understand microbial lethality during these processes. The objective of this study was to determine the level of inactivation provided by hot-air drying on a Salmonella cocktail inoculated onto apple cubes and to evaluate the performance of Enterococcus faecium as a surrogate. A cocktail of Salmonella serovars (Agona, Tennessee, Montevideo, Mbandaka, and Reading) and E. faecium were individually inoculated onto cored, peeled Gala apple cubes at 9.2 ± 0.3 and 8.8 ± 0.1 log CFU per sample, respectively. Apple cubes were dried at 104 or 135°C in ∼1.5-kg batches using a hot-air dryer with a vertically directed heat source and without mixing. Three subsamples, consisting of four inoculated cubes, were enumerated at each time point (n ≥ 5) from multiple product bed depths. Water activity decreased throughout the duration of the study, with samples drying faster at 135 than 104°C. Samples at the bottom bed depth, closer to the heat source, dried faster than those at the higher bed depth, regardless of temperature. Significant microbial inactivation was not seen immediately. It took >10 min at the bottom bed depth or >40 min of drying at the top bed depth, regardless of temperature (P < 0.05). By the end of drying, average Salmonella inactivation of greater than 5 log CFU per sample was achieved. At temperature conditions evaluated, E. faecium inactivation was slower than Salmonella, indicating that it would likely serve as a good surrogate for in-plant validation studies. Case hardening did not inhibit microbial inactivation in the conditions tested. Hot-air drying under the conditions evaluated may provide a preventive control in the production of dehydrated products, such as apples. HIGHLIGHTS
Collapse
Affiliation(s)
- Elizabeth M Grasso-Kelley
- Department of Food Science and Nutrition/Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501.,(ORCID: https://orcid.org/0000-0003-0850-2964 [E.M.G.K.])
| | - Xiyang Liu
- Department of Food Science and Nutrition/Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501
| | - Lindsay A Halik
- Department of Food Science and Nutrition/Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501
| | - Becky Douglas
- Tree Top, Inc., 220 East Second Avenue, Selah, Washington 98942, USA
| |
Collapse
|
32
|
Ricci A, Alinovi M, Martelli F, Bernini V, Garofalo A, Perna G, Neviani E, Mucchetti G. Heat Resistance of Listeria monocytogenes in Dairy Matrices Involved in Mozzarella di Bufala Campana PDO Cheese. Front Microbiol 2021; 11:581934. [PMID: 33488535 PMCID: PMC7815519 DOI: 10.3389/fmicb.2020.581934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of Listeria monocytogenes in Mozzarella di Bufala Campana Protected Designation of Origin cheeses may depend on curd stretching conditions and post contaminations before packaging. To avoid cross-contamination, thermal treatment of water, brines and covering liquid may become necessary. The present study aimed to improve knowledge about L. monocytogenes thermal resistance focusing on the influence of some cheese making operations, namely curd stretching and heat treatment of fluids in contact with cheese after molding, in order to improve the safety of the cheese, optimize efficacy and sustainability of the processes. Moreover, the role that cheese curd stretching plays in L. monocytogenes inactivation was discussed. The 12 tested strains showed a very heterogeneous heat resistance that ranged from 7 to less than 1 Log10 Cfu/mL reduction after 8 min at 60°C. D-values (decimal reduction times) and z-values (thermal resistance constant) calculated for the most heat resistant strain among 60 and 70°C were highly affected by the matrix and, in particular, heat resistance noticeably increased in drained cheese curd. As cheese curd stretching is not an isothermal process, to simulate the overall lethal effect of an industrial process a secondary model was built. The lethal effect of the process was estimated around 4 Log10 reductions. The data provided may be useful for fresh pasta filata cheese producers in determining appropriate processing durations and temperatures for producing safe cheeses.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | - Alessandro Garofalo
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Giampiero Perna
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
33
|
Lin B, Zhu Y, Zhang L, Xu R, Guan X, Kou X, Wang S. Effect of Physical Structures of Food Matrices on Heat Resistance of Enterococcus faecium NRRL-2356 in Wheat Kernels, Flour and Dough. Foods 2020; 9:foods9121890. [PMID: 33352900 PMCID: PMC7765854 DOI: 10.3390/foods9121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonpathogenic surrogate microorganisms, with a similar or slightly higher thermal resistance of the target pathogens, are usually recommended for validating practical pasteurization processes. The aim of this study was to explore a surrogate microorganism in wheat products by comparing the thermal resistance of three common bacteria in wheat kernels and flour. The most heat-resistant Enterococcus faecium NRRL-2356 rather than Salmonella cocktail and Escherichia coli ATCC 25922 was determined when heating at different temperature-time combinations at a fixed heating rate of 5 °C/min in a heating block system. The most heat-resistant pathogen was selected to investigate the influences of physical structures of food matrices. The results indicated that the heat resistance of E. faecium was influenced by physical structures of food matrices and reduced at wheat kernel structural conditions. The inactivation of E. faecium was better fitted in the Weibull distribution model for wheat dough structural conditions while in first-order kinetics for wheat kernel and flour structural conditions due to the changes of physical structures during heating. A better pasteurization effect could be achieved in wheat kernel structure in this study, which may provide technical support for thermal inactivation of pathogens in wheat-based food processing.
Collapse
Affiliation(s)
- Biying Lin
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Yufei Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Ruzhen Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; (B.L.); (L.Z.); (R.X.); (X.G.); (X.K.)
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
- Correspondence: ; Tel.: +86-29-87092391; Fax: +86-29-87091737
| |
Collapse
|
34
|
Ly V, Parreira VR, Sanchez-Maldonado AF, Farber JM. Survival and Virulence of Listeria monocytogenes during Storage on Chocolate Liquor, Corn Flakes, and Dry-Roasted Shelled Pistachios at 4 and 23°C. J Food Prot 2020; 83:1852-1862. [PMID: 32556209 DOI: 10.4315/jfp-20-129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
ABSTRACT The survival and virulence of Listeria monocytogenes was assessed during storage on three low-moisture foods (LMFs): chocolate liquor, corn flakes, and shelled, dry-roasted pistachios (water activity [aw] of 0.18, 0.27, and 0.20, respectively). The LMFs were inoculated with a four-strain cocktail of L. monocytogenes at 8 log CFU/g, dried, held until the aw stabilized, and then stored at 4°C and 25 to 81% relative humidity (RH) and at 23°C and 30 to 35% RH for at least 336 days. At 4°C, L. monocytogenes remained stable on the LMFs for at least 336 days. At 23°C, L. monocytogenes levels declined on the chocolate liquor, corn flakes, and pistachios at initial rates of 0.84, 0.88, and 0.32 log CFU/g/month, respectively. After 8 months at 23°C, L. monocytogenes levels on the chocolate liquor and corn flakes decreased to below the limit of detection (i.e., 0.48 log CFU/g). Relative populations of each strain were assessed before storage (i.e., day 0) and after 6 and 12 months of storage at 23 and 4°C, respectively. Generally, a decline in the relative level of the serotype 1/2a strain was observed during storage, coupled with the relative increase in other strains, depending on the LMF and storage temperature. The total viable populations of L. monocytogenes determined by the PMAxx quantitative PCR method after >12 months of storage at 4°C were significantly (1.8- to 3.7-log) higher than those obtained by plating on tryptic soy agar with yeast extract. Decreases in the culturable population of L. monocytogenes during storage on the LMFs were the result of both cellular inactivation and transition to a viable-but-nonculturable state. The surviving cells, specifically after long-term storage at 4°C on the chocolate liquor and pistachios, remained infectious and capable of intracellular replication in Caco-2 enterocytes. These results are relevant for predictive modeling used in microbial health risk assessments and support the addition of LMFs to food safety questionnaires conducted during listeriosis outbreaks. HIGHLIGHTS
Collapse
Affiliation(s)
- Vivian Ly
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Valeria R Parreira
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.,(ORCID: https://orcid.org/0000-0002-7073-1955 [V.R.P.])
| | - Alma Fernanda Sanchez-Maldonado
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
35
|
Hasani M, Wu F, Hu K, Farber J, Warriner K. Inactivation of Salmonella and Listeria monocytogenes on dried fruit, pistachio nuts, cornflakes and chocolate crumb using a peracetic acid-ethanol based sanitizer or Advanced Oxidation Process. Int J Food Microbiol 2020; 333:108789. [DOI: 10.1016/j.ijfoodmicro.2020.108789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
|
36
|
Furtado MM, Silva BS, Faviero C, Alvarenga VO, Sant’Ana AS. Impact of carrier agents and temperature during storage of dry inocula of Salmonella enterica: A contribution to the validation of low water activity foods processing interventions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Zhu M, Song X, Shen X, Tang J. Listeria monocytogenes in Almond Meal: Desiccation Stability and Isothermal Inactivation. Front Microbiol 2020; 11:1689. [PMID: 32849354 PMCID: PMC7427469 DOI: 10.3389/fmicb.2020.01689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Almond are among the most consumed tree nuts and used in a variety of food products. Recent almond butter recalls due to potential contamination of Listeria monocytogenes highlight the need to control L. monocytogenes in almond products. The objectives of this study were to examine the stability of L. monocytogenes in almond meal during extended storage and analyze thermal resistance of L. monocytogenes in almond meal of controlled moisture contents or water activity (aw) using thermal death time (TDT) cells and thermal water activity (TWA) cells, respectively. L. monocytogenes maintained a stable population in almond meal for 44–48 weeks at 4°C regardless of aw; however, we observed about 1.69 and 2.14 log10 colony-forming units (CFU)/g reduction of L. monocytogenes in aw 0.25 and 0.45 almond meal over 44 to 48 weeks of storage at 22°C. Under all test conditions using either TDT or TWA cells, the inactivation kinetics of L. monocytogenes in almond meal fitted the log-linear model well; thermal resistance of L. monocytogenes in almond meal was inversely related to the aw of samples. D75-/D80-values of L. monocytogenes in aw 0.25 and 0.45 almond meal obtained using TDT cells were 47.6/22.0 versus 17.2/11.0 min, respectively. D80-, D85-, and D90-values of L. monocytogenes in aw 0.25 almond meal obtained using TWA cells were 59.5 ± 2.1, 27.7 ± 0.7, and 13.2 ± 1.1 min, respectively, in contrast to 22.0 ± 1.1, 10.6 ± 0.2, and 4.6 ± 0.4 min obtained using TDT cells. The z-value of L. monocytogenes in aw 0.25 almond meal was not affected by TWA and TDT cell type (15.4–15.5°C), whereas z-value of L. monocytogenes in aw 0.45 almond meal was 10°C higher than that in aw 0.25 almond meal. This study contributes to our understanding of L. monocytogenes in nuts and impacts of aw on the development of thermal resistance in low-moisture foods.
Collapse
Affiliation(s)
- Meijun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xia Song
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
38
|
Gautam B, Govindan BN, Gӓnzle M, Roopesh MS. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods. Int J Food Microbiol 2020; 334:108813. [PMID: 32841809 DOI: 10.1016/j.ijfoodmicro.2020.108813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/23/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Low-moisture foods (LMF with water activity, aw < 0.85) including pet foods and black pepper powder have consistently been associated with foodborne disease caused by Salmonella enterica. Increased heat resistance and prolonged survival at low-moisture conditions, however, remain major challenges to achieve effective inactivation of Salmonella in low-moisture foods. At low water activity (aw) conditions, heat resistance of Salmonella is greatly enhanced when compared to high aw conditions. This study aimed to quantify the effect of aw on the heat resistance of Salmonella enterica in pet food pellets and black pepper powder. Pet food pellets were inoculated with two strains of heat resistant S. enterica and black pepper powder was inoculated with a 5-strain cocktail of Salmonella. Both inoculated food samples were equilibrated at 0.33, 0.54, and 0.75 aw in controlled humidity chambers. Inoculated pet food pellets and black pepper powder in closed aluminum cells were heat treated at specific temperatures for selected times. The results showed that the Weibull model fitted well the inactivation data. At a specific temperature, the rate of inactivation increased with the increase in the aw from 0.33 to 0.75, and the 3-log reduction times decreased for Salmonella in both food samples with the increase in aw. Water adsorption isotherms of pet food pellets and black pepper powder at initial and treatment temperatures were developed to understand the change in aw during heat treatments. The change in aw during heat treatment was dependent on the type of food matrix, which possibly influenced the thermal inactivation of Salmonella in pet food pellets and black pepper powder. The quantitative analysis of heat reduction of Salmonella with respect to aw aids in selection of the appropriate initial aw to develop effective heat treatment protocols for adequate reduction of Salmonella in pet foods and black pepper powder.
Collapse
Affiliation(s)
- Bina Gautam
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Byju N Govindan
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, 219 Hodson Hall, St. Paul, MN 55108, USA
| | - Michael Gӓnzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
39
|
|
40
|
Stability of Listeria monocytogenes in non-fat dry milk powder during isothermal treatment and storage. Food Microbiol 2020; 87:103376. [DOI: 10.1016/j.fm.2019.103376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/17/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
|
41
|
Bahrami A, Moaddabdoost Baboli Z, Schimmel K, Jafari SM, Williams L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Improved design of aluminum test cell to study the thermal resistance of Salmonella enterica and Enterococcus faecium in low-water activity foods. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Jin Y, Tang J, Sablani SS. Food component influence on water activity of low-moisture powders at elevated temperatures in connection with pathogen control. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
|
45
|
Ling B, Cheng T, Wang S. Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Crit Rev Food Sci Nutr 2019; 60:2622-2642. [DOI: 10.1080/10408398.2019.1651690] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bo Ling
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Teng Cheng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
46
|
Thermal resistance of Listeria monocytogenes in natural unsweetened cocoa powder under different water activity. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Ly V, Parreira VR, Farber JM. Current understanding and perspectives on Listeria monocytogenes in low-moisture foods. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Forghani F, den Bakker M, Liao JY, Payton AS, Futral AN, Diez-Gonzalez F. Salmonella and Enterohemorrhagic Escherichia coli Serogroups O45, O121, O145 in Wheat Flour: Effects of Long-Term Storage and Thermal Treatments. Front Microbiol 2019; 10:323. [PMID: 30853953 PMCID: PMC6395439 DOI: 10.3389/fmicb.2019.00323] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/07/2019] [Indexed: 01/09/2023] Open
Abstract
Salmonella and enterohemorrhagic Escherichia coli (EHEC) are of serious concern in wheat flour and its related products but little is known on their survival and thermal death kinetics. This study was undertaken to determine their long-term viability and thermal inactivation kinetics in flour. Inoculation was performed using mixtures of EHEC serogroups O45, O121, O145 and Salmonella followed by storage at room temperature (23°C) or 35°C (for Salmonella). Plate counting on tryptic soy agar (TSA) and enrichment were used to assess long-term survival. For thermal studies, wheat flour samples were heated at 55, 60, 65, and 70°C and cell counts of EHEC and Salmonella were determined by plating. The δ-values were calculated using the Weibull model. At room temperature, EHEC serovars and Salmonella were quantifiable for 84 and 112 days, and were detectable for the duration of the experiment after 168 and 365 days, respectively. The δ-values were 2.0, 5.54, and 9.3 days, for EHEC O121, O45, and O145, respectively, and 9.7 days for Salmonella. However, the only significant difference among all values was the δ-value for Salmonella and serogroup O121 (p ≤ 0.05). At 35°C, Salmonella counts declined to unquantifiable levels after a week and were not detected upon enrichment after 98 days. Heat treatment of inoculated wheat flour at 55, 60, 65, and 70°C resulted in δ-value ranges of 20.0-42.9, 4.9-10.0, 2.4-3.2, and 0.2-1.6 min, respectively, for EHEC. The δ-values for Salmonella at those temperatures were 152.2, 40.8, 17.9, and 17.4 min, respectively. The δ-values obtained for Salmonella at each temperature were significantly longer than for EHEC (p ≤ 0.05). Weibull model was a good fit to describe the thermal death kinetics of Salmonella and EHEC O45, O121 and O145 in wheat flour. HIGHLIGHTS -EHEC and Salmonella can survive for extended periods of time in wheat flour.-Long-term storage inactivation curves of EHEC and Salmonella were similar.-EHEC was more sensitive to heat than Salmonella.-Weibull model was a good fit to describe thermal death kinetics of EHEC and Salmonella.-Flour storage at 35°C may be a feasible method for microbial reduction.
Collapse
Affiliation(s)
- Fereidoun Forghani
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, United States
| | | | | | | | | | | |
Collapse
|
49
|
Innovative technologies for producing and preserving intermediate moisture foods: A review. Food Res Int 2018; 116:90-102. [PMID: 30717022 DOI: 10.1016/j.foodres.2018.12.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022]
Abstract
Intermediate moisture foods (IMF) or semi-dried foods (SDF) have gained more attention worldwide having features very similar to fresh food products, but with a longer shelf life. This review presents the recent developments in novel technologies and methods for the production and preservation of IMF. These include new drying methods, using agents to reduce water-activity, innovative osmotic dehydration technologies, electro-osmotic dewatering, thermal pasteurization, plasma treatments (PT), high pressure processing (HPP), modified atmosphere packaging (MAP), edible coating, active packaging (and energy efficiency, improve quality and extend the shelf life of the final food AP) and hurdle technologies (HT). Innovative methods applied to producing and preserving IMF can enhance both drying products. Yet more systematic research is still needed to bridge knowledge gaps, in particular on inactivation kinetics and mechanisms related to thermal and non-thermal pasteurization technologies for control of pathogens and spoilage micro-organisms in IMF.
Collapse
|