1
|
Yang X, Sun Z, He Z, Xie X, Liu X. Combination of nanobody and peptidomimetic to develop novel immunoassay platforms for detecting ochratoxin A in cereals. Food Chem 2023; 429:137018. [PMID: 37517225 DOI: 10.1016/j.foodchem.2023.137018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Mimotope-based immunoassays for mycotoxins eliminate the requirement for large amounts of mycotoxin standards for the chemosynthesis of artificial antigens. Herein, the nanobody-based magnetic beads were used to screen the mimotope (peptidomimetic) of ochratoxin A (OTA) from the phage-displayed peptide library. The interactions between nanobody and the most sensitive Y4 peptidomimetic were investigated by computer-assisted simulation and compared with those between nanobody and OTA. By combining the nanobody, the phage-displayed Y4 and alkaline phosphatase-tagged Y4 fusion protein as the competing antigens, were used to develop two novel immunoassay platforms (PN-ELISA and APN-ELISA). The two methods are advantageous in the use of nontoxic substitutes of OTA and avoiding the use of monoclonal antibodies. Moreover, good analytical performances of both methods were obtained and confirmed by liquid chromatography tandem mass spectrometry. Therefore, the proposed novel methods based on nanobody and peptidomimetic were demonstrated to be highly reliable for detecting OTA in food.
Collapse
Affiliation(s)
- Xun Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan College of Economics and Business, Haikou 571127, China
| | - Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Yu G, Wang J, Zhang Y, Wu H, Wang Y, Cui Y, Yang Y, Tang X, Zhang Q, Wang J, Sun J, Chen R, Wang Y, Li P. Anti-Idiotypic Nanobody Alkaline Phosphatase Fusion Protein-Triggered On-Off-On Fluorescence Immunosensor for Aflatoxin in Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917663 DOI: 10.1021/acs.jafc.3c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Nanobodies (Nbs) are widely used in immunoassays with the advantages of small size and high stability. Here, the nanobody employed as the surrogate of aflatoxin antigen and the recognition mechanism of antiaflatoxin mAb with nanobody was studied by molecular modeling, which verified the feasibility of Nbs as antigen substitutes. On this basis, a nanobody-alkaline phosphatase fusion protein (Nb-AP) was constructed, and a highly sensitive "on-off-on" fluorescent immunosensor (OFO-FL immunosensor) based on the calcein/Ce3+ system was developed for aflatoxin quantification. Briefly, calcein serves as a signal transducer, and its fluorescence can be quenched after it is bound with Ce3+. In the presence of Nb-AP, AP catalyzed p-nitrophenyl phosphate to generate orthophosphate, which competes in binding with Ce3+, leading to fluorescence recovery. The method has a linearity range of 0.005-100 ng/mL, and the IC50 of the OFO-FL immunosensor was 0.063 ng/mL, which was 18-fold lower than that of conventional enzyme-linked immunosorbent assay. The assay was successfully applied in food samples with a recovery of 88-121%.
Collapse
Affiliation(s)
- Gege Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiamin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuefan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqian Tang
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ran Chen
- Sinograin Hubei Branch Quality Inspection Center Co, LTD., Wuhan 430062, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiwu Li
- , Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
3
|
Wang J, Liu S, Meng Z, Han XX, Cai L, Xu B, Liu R, Song L, He C, Cheng Z, Zhao B. Flexible SERS Biosensor Based on Core-Shell Nanotags for Sensitive and Multiple Detection of T1DM Biomarkers. Anal Chem 2023; 95:14203-14208. [PMID: 37656042 DOI: 10.1021/acs.analchem.3c01791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Sensitive and multiple detection of the biomarkers of type 1 diabetes mellitus (T1DM) is vital to the early diagnosis and clinical treatment of T1DM. Herein, we developed a SERS-based biosensor using polyvinylidene fluoride (PVDF) membranes as a flexible support for the detection of glutamic acid decarboxylase antibodies (GADA) and insulin autoantibodies (IAA). Two kinds of silver-gold core-shell nanotags embedded with Raman probes and attached with GADA or IAA antibodies were synthesized to capture the targets, enabling highly sensitive and highly selective detection of GADA and IAA. The embedded Raman probes sandwiched between silver and gold layers guaranteed spectral stability and reliability. Moreover, the utilization of two Raman probes enables simultaneous and multiplexing detection of both GADA and IAA, improving the detection accuracy for T1DM. The proposed SERS-based method has been proven feasible for clinical sample detection, demonstrating its great potential in sensitive, reliable, and rapid diagnosis of T1DM.
Collapse
Affiliation(s)
- Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songlin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhen Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Baofeng Xu
- Department of Stroke Center, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Lina Song
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Wang X, Liu W, Zuo H, Shen W, Zhang Y, Liu R, Geng L, Wang W, Shao C, Sun T. Development of a magnetic separation immunoassay with high sensitivity and time-saving for detecting aflatoxin B1 in agricultural crops using nanobody. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Zhang R, Yan C, Zong Z, Qu W, Yao L, Xu J, Zhu Y, Yao B, Chen W. Taking glucose as intermediate bridge-signal-molecule for on-site and convenient detection of ochratoxin A in rice with portable glucose meter. Food Chem 2023; 400:134007. [DOI: 10.1016/j.foodchem.2022.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
|
6
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Rahi S, Lanjekar V, Ghormade V. Development of a rapid dot-blot assay for ochratoxin A (OTA) detection using peptide conjugated gold nanoparticles for bio-recognition and detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Simultaneous heptamerization of nanobody and alkaline phosphatase by self-assembly and its application for ultrasensitive immunodetection of small molecular contaminants in agro-products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Chen ZJ, Zhang YF, Chen JL, Lin ZS, Wu MF, Shen YD, Luo L, Wang H, Wen XW, Hammock B, Lei HT, Xu ZL. Production and Characterization of Biotinylated Anti-fenitrothion Nanobodies and Development of Sensitive Fluoroimmunoassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4102-4111. [PMID: 35333506 PMCID: PMC9484545 DOI: 10.1021/acs.jafc.2c00826] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A simple and sensitive fluoroimmunoassay (FIA) based on a heavy-chain antibody (VHH) for rapid detection of fenitrothion was developed. A VHH library was constructed from an immunized alpaca, and one clone recognizing fenitrothion (namely, VHHjd8) was achieved after careful biopanning. It was biotinylated by fusing with the Avi tag and biotin ligase to obtain a fusion protein (VHHjd8-BT), showing both binding capacity to fenitrothion and the streptavidin poly-horseradish peroxidase conjugate (SA-polyHRP). Based on a competitive assay format, the absorbance spectrum of oxidized 3,3',5,5'-tetramethylbenzidine generated by SA-polyHRP overlapped the emission spectrum of carbon dots, which resulted in quenching of signals due to the inner-filter effect. The developed FIA showed an IC50 value of 1.4 ng/mL and a limit of detection of 0.03 ng/mL, which exhibited 15-fold improvement compared with conventional enzyme-linked immunosorbent assay. The recovery test of FIA was validated by standard GC-MS/MS, and the results showed good consistency, indicating that the assay is an ideal tool for rapid screening of fenitrothion in bulk food samples.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Feng Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Lin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Shan Lin
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Min-Fu Wu
- Department of Food Science, Foshan Polytechnic, Foshan 528137, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Wei Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/ Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Su B, Zhang Z, Sun Z, Tang Z, Xie X, Chen Q, Cao H, Yu X, Xu Y, Liu X, Hammock BD. Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126838. [PMID: 34411960 PMCID: PMC8889937 DOI: 10.1016/j.jhazmat.2021.126838] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Ochratoxin A (OTA) contamination in food is a serious threat to public health. There is an urgent need for development of rapid and sensitive methods for OTA detection, to minimize consumer exposure to OTA. In this study, we constructed two OTA-specific fluonanobodies (FluoNbs), with a nanobody fused at the carboxyl-terminal (SGFP-Nb) or the amino-terminal (Nb-SGFP) of superfolder green fluorescence protein. SGFP-Nb, which displayed better fluorescence performance, was selected as the tracer for OTA, to develop a FluoNb-based nanosensor (FN-Nanosens) via the fluorescence resonance energy transfer, where the SGFP-Nb served as the donor and the chemical conjugates of OTA-quantum dots served as the acceptor. After optimization, FN-Nanosens showed a limit of detection of 5 pg/mL, with a linear detection range of 5-5000 pg/mL. FN-Nanosens was found to be highly selective for OTA and showed good accuracy and repeatability in recovery experiments using cereals with various complex matrix environments. Moreover, the contents of OTA in real samples measured using FN-Nanosens correlated well with those from the liquid chromatography with tandem mass spectrometry. Therefore, this work illustrated that the FluoNb is an ideal immunosensing tool and that FN-Nanosens is reliable for rapid detection of OTA in cereals with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Benchao Su
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhong Zhang
- Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shanxi 710119, China
| | - Zhichang Sun
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zongwen Tang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaoxia Xie
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Zhang Z, Su B, Xu H, He Z, Zhou Y, Chen Q, Sun Z, Cao H, Liu X. Enzyme cascade-amplified immunoassay based on the nanobody-alkaline phosphatase fusion and MnO 2 nanosheets for the detection of ochratoxin A in coffee. RSC Adv 2021; 11:21760-21766. [PMID: 35478809 PMCID: PMC9034093 DOI: 10.1039/d1ra03615g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) is a common food contaminant with multiple toxicities and thus rapid and accurate detection of OTA is indispensable to minimize the threat of OTA to public health. Herein a novel enzyme cascade-amplified immunoassay (ECAIA) based on the mutated nanobody-alkaline phosphatase fusion (mNb-AP) and MnO2 nanosheets was established for detecting OTA in coffee. The detection principle is that the dual functional mNb-AP could specifically recognize OTA and dephosphorylate the ascorbic acid-2-phosphate (AAP) into ascorbic acid (AA), and the MnO2 nanosheets mimicking the oxidase could be reduced by AA into Mn2+ and catalyze the 3,3',5,5'-tetramethyl benzidine into blue oxidized product for quantification. Using the optimal conditions, the ECAIA could be finished within 132.5 min and shows a limit of detection of 3.38 ng mL-1 (IC10) with an IC50 of 7.65 ng mL-1 and a linear range (IC20-IC80) of 4.55-12.85 ng mL-1. The ECAIA is highly selective for OTA. Good recovery rates (84.3-113%) with a relative standard deviation of 1.3-3% were obtained and confirmed by high performance liquid chromatography with a fluorescence detector. The developed ECAIA was demonstrated to be a useful tool for the detection of OTA in coffee which provides a reference for the analysis of other toxic small molecules.
Collapse
Affiliation(s)
- Zeling Zhang
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Benchao Su
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Huan Xu
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Zhenyun He
- Hainan College of Economics and Business Haikou 571129 China
| | - Yuling Zhou
- Hainan Institute for Food Control Haikou 570314 China
| | - Qi Chen
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Xing Liu
- School of Food Science and Engineering, Hainan University 58 Renmin Avenue Haikou 570228 China
| |
Collapse
|
12
|
Li P, Deng S, Zech Xu Z. Toxicant substitutes in immunological assays for mycotoxins detection: A mini review. Food Chem 2020; 344:128589. [PMID: 33246689 DOI: 10.1016/j.foodchem.2020.128589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Recurring mycotoxins contamination has posedaseriousthreatto food safety worldwide. Competitive immunoassays are widely used techniques for high-throughput mycotoxins detection in agricultural products and foods. However, the inevitable introduction of mycotoxin conjugates produced by chemical conjugation usually results in complicated by-products, large batch errors and threats to operators and environment. Biologically derived surrogates of mycotoxin conjugates or mycotoxin standards are renewable immunoreagents. They can serve the same function as the responding counterparts in the immunoassays. The substitute-based immunoassays exhibit satisfactory sensitivity, pose less health threats to operators and environment, and contribute to the standardization of immunoassays for mycotoxins. This review focuses on the current applications of substitute-based immunoassays, clarifies their underlying mechanisms and provides a careful comparison. Challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang 330096, China.
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
13
|
Huang X, Tang X, Jallow A, Qi X, Zhang W, Jiang J, Li H, Zhang Q, Li P. Development of an Ultrasensitive and Rapid Fluorescence Polarization Immunoassay for Ochratoxin A in Rice. Toxins (Basel) 2020; 12:toxins12110682. [PMID: 33138019 PMCID: PMC7693749 DOI: 10.3390/toxins12110682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 01/01/2023] Open
Abstract
Ochratoxin A (OTA) is a known food contaminant that affects a wide range of food and agricultural products. The presence of this fungal metabolite in foods poses a threat to human health. Therefore, various detection and quantification methods have been developed to determine its presence in foods. Herein, we describe a rapid and ultrasensitive tracer-based fluorescence polarization immunoassay (FPIA) for the detection of OTA in rice samples. Four fluorescent tracers OTA-fluorescein thiocarbamoyl ethylenediamine (EDF), OTA-fluorescein thiocarbamoyl butane diamine (BDF), OTA-amino-methyl fluorescein (AMF), and OTA-fluorescein thiocarbamoyl hexame (HDF) with fluorescence polarization values (δFP = FPbind-FPfree) of 5, 100, 207, and 80 mP, respectively, were synthesized. The tracer with the highest δFP value (OTA-AMF) was selected and further optimized for the development of an ultrasensitive FPIA with a detection range of 0.03-0.78 ng/mL. A mean recovery of 70.0% to 110.0% was obtained from spiked rice samples with a relative standard deviation of equal to or less than 20%. Good correlations (r2 = 0.9966) were observed between OTA levels in contaminated rice samples obtained by the FPIA method and high-performance liquid chromatography (HPLC) as a reference method. The rapidity of the method was confirmed by analyzing ten rice samples that were analyzed within 25 min, on average. The sensitivity, accuracy, and rapidity of the method show that it is suitable for screening and quantification of OTA in food samples without the cumbersome pre-analytical steps required in other mycotoxin detection methods.
Collapse
Affiliation(s)
- Xiaorong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Xiaoqian Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Abdoulie Jallow
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
| | - Xin Qi
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Wen Zhang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Jun Jiang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Hui Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
- Correspondence: (Q.Z.); (P.L.); Tel.: +86-27-8681-2943 (P.L.)
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.H.); (X.T.); (A.J.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China;
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan 430062, China; (X.Q.); (W.Z.); (J.J.)
- Correspondence: (Q.Z.); (P.L.); Tel.: +86-27-8681-2943 (P.L.)
| |
Collapse
|
14
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|
15
|
Chen Q, Wang Y, Mao F, Su B, Bao K, Zhang Z, Xie G, Liu X. Development of a horseradish peroxidase-nanobody fusion protein for visual detection of ochratoxin A by dot immunoassay. RSC Adv 2020; 10:33700-33705. [PMID: 35519041 PMCID: PMC9056725 DOI: 10.1039/d0ra06576e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/06/2020] [Indexed: 12/28/2022] Open
Abstract
Ochratoxin A (OTA) is a common cereal mycotoxin that seriously threatens food safety and public health. Herein a horseradish peroxidase-nanobody fusion protein (HRP-Nb) retaining antibody and enzyme activity was obtained after inclusion body denaturation and renaturation and enzyme reconstitution, which served both as the primary antibody and reporter enzyme and was applied to develop a membrane-based dot immunoassay (HN-DIA) for OTA visual detection. Based on the optimal experimental conditions, the HN-DIA could be finished in 10 min with a cut-off limit of 50 μg kg-1 in rice and oat samples by eye. The HN-DIA showed high selectivity for OTA and had good accuracy and reproducibility in the recovery experiments. Spiked sample analysis results of the HN-DIA and high performance liquid chromatography (HPLC) correlated well with each other. Therefore, the proposed HN-DIA has the potential for rapid screening of OTA and other small molecule pollutants in food and the environment by naked eye.
Collapse
Affiliation(s)
- Qi Chen
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Fujing Mao
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Benchao Su
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Kunlu Bao
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Zeling Zhang
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Guifang Xie
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| |
Collapse
|
16
|
Wang X, Chen Q, Sun Z, Wang Y, Su B, Zhang C, Cao H, Liu X. Nanobody affinity improvement: Directed evolution of the anti-ochratoxin A single domain antibody. Int J Biol Macromol 2020; 151:312-321. [DOI: 10.1016/j.ijbiomac.2020.02.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/17/2023]
|
17
|
Tang Z, Liu X, Su B, Chen Q, Cao H, Yun Y, Xu Y, Hammock BD. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121678. [PMID: 31753666 PMCID: PMC7990105 DOI: 10.1016/j.jhazmat.2019.121678] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 05/04/2023]
Abstract
Ochratoxin A (OTA) is a major concern for public health and the rapid detection of trace OTA in food is always a challenge. To minimize OTA exposure to consumers, a nanobody (Nb)-mediated förster resonance energy transfer (FRET)-based immunosensor using quantum dots (Nb-FRET immunosensor) was proposed for ultrasensitive, single-step and competitive detection of OTA in agro-products at present work. QDs of two sizes were covalently labeled with OTA and Nb, acting as the energy donor and acceptor, respectively. The free OTA competed with the donor to bind to acceptor, thus the FRET efficiency increased with the decrease of OTA concentration. The single-step assay could be finished in 5 min with a limit of detection of 5 pg/mL, which was attributed to the small size of Nb for shortening the effective FRET distance and improving the FRET efficiency. The Nb-FRET immunosensor exhibited high selectivity for OTA. Moreover, acceptable accuracy and precision were obtained in the analysis of cereals and confirmed by the liquid chromatography-tandem mass spectrometry. Thus the developed Nb-FRET immunosensor was demonstrated to be an efficient tool for ultrasensitive and rapid detection of OTA in cereals and provides a detection model for other toxic small molecules in food and environment.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China.
| | - Benchao Su
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yonghuan Yun
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, PR China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| |
Collapse
|
18
|
Development of sandwich chemiluminescent immunoassay based on an anti-staphylococcal enterotoxin B Nanobody–Alkaline phosphatase fusion protein for detection of staphylococcal enterotoxin B. Anal Chim Acta 2020; 1108:28-36. [DOI: 10.1016/j.aca.2020.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023]
|
19
|
Wang X, Wang Y, Wang Y, Chen Q, Liu X. Nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay for ochratoxin a detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117617. [PMID: 31605970 DOI: 10.1016/j.saa.2019.117617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/09/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA) is a kind of mycotoxin that seriously harms the health of humans and animals. In this study, a nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay (Nb-AP-mediated PT-FIA) was developed for detecting OTA. Based on the constructed phosphate-triggered fluorescence sensing system for Nb-AP and the optimal working conditions, the Nb-AP-mediated PT-FIA has a half maximal inhibition concentration (IC50) of 0.46 ng/mL, a limit of detection (IC10) of 0.12 ng/mL, and a linear range (IC20-80) of 0.2-1.26 ng/mL, respectively. The recovery experiment indicated acceptable accuracy and precision of the Nb-AP-mediated PT-FIA, and the results were validated by high performance liquid chromatography with fluorescence detector. Thus this proposed method is applicable to sensitive, rapid, and low-cost detection of OTA and other toxic analytes with low molecular weight in food and environment.
Collapse
Affiliation(s)
- Xuerou Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Yidan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| |
Collapse
|
20
|
Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 2019; 300:125176. [DOI: 10.1016/j.foodchem.2019.125176] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022]
|
21
|
Tang Z, Liu X, Wang Y, Chen Q, Hammock BD, Xu Y. Nanobody-based fluorescence resonance energy transfer immunoassay for noncompetitive and simultaneous detection of ochratoxin a and ochratoxin B. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:238-245. [PMID: 31082608 PMCID: PMC7103568 DOI: 10.1016/j.envpol.2019.04.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
A noncompetitive and homogeneous fluorescence resonance energy transfer (FRET) immunoassay was developed using a nanobody (Nb) for highly sensitive and simultaneous detection of ochratoxin A (OTA) and ochratoxin B (OTB). The promoted intrinsic fluorescence (λex: 280 nm) of tryptophan residues (donor) in Nb can excite the fluorescence of OTA and OTB (acceptor) for detection (λem: 430 nm). Using optimal conditions, the limits of detection of the Nb-based FRET immunoassay were 0.06 and 0.12 ng/mL for OTA and OTB, respectively. Minimal cross reactivity was detected for several analogues of OTA and OTB as well as nonspecific proteins and antibodies. Acceptable accuracy and precision were obtained in the spike and recovery study, and the results correlated well with those by HPLC. These results demonstrated that the developed method could be a useful tool for noncompetitive, homogeneous, and simultaneous detection of OTA and OTB as well as other environmental analytes with similar fluorescence properties.
Collapse
Affiliation(s)
- Zongwen Tang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China.
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, PR China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, PR China
| |
Collapse
|
22
|
Akter S, Kustila T, Leivo J, Muralitharan G, Vehniäinen M, Lamminmäki U. Noncompetitive Chromogenic Lateral-Flow Immunoassay for Simultaneous Detection of Microcystins and Nodularin. BIOSENSORS 2019; 9:E79. [PMID: 31216673 PMCID: PMC6627203 DOI: 10.3390/bios9020079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 01/29/2023]
Abstract
Cyanobacterial blooms cause local and global health issues by contaminating surface waters. Microcystins and nodularins are cyclic cyanobacterial peptide toxins comprising numerous natural variants. Most of them are potent hepatotoxins, tumor promoters, and at least microcystin-LR is possibly carcinogenic. In drinking water, the World Health Organization (WHO) recommended the provisional guideline value of 1 µg/L for microcystin-LR. For water used for recreational activity, the guidance values for microcystin concentration varies mostly between 4-25 µg/L in different countries. Current immunoassays or lateral flow strips for microcystin/nodularin are based on indirect competitive method, which are generally more prone to sample interference and sometimes hard to interpret compared to two-site immunoassays. Simple, sensitive, and easy to interpret user-friendly methods for first line screening of microcystin/nodularin near water sources are needed for assessment of water quality and safety. We describe the development of a two-site sandwich format lateral-flow assay for the rapid detection of microcystins and nodularin-R. A unique antibody fragment capable of broadly recognizing immunocomplexes consisting of a capture antibody bound to microcystins/nodularin-R was used to develop the simple lateral flow immunoassay. The assay can visually detect the major hepatotoxins (microcystin-LR, -dmLR, -RR, -dmRR, -YR, -LY, -LF -LW, and nodularin-R) at and below the concentration of 4 µg/L. The signal is directly proportional to the concentration of the respective toxin, and the use of alkaline phosphatase activity offers a cost efficient alternative by eliminating the need of toxin conjugates or other labeling system. The easy to interpret assay has the potential to serve as a microcystins/nodularin screening tool for those involved in water quality monitoring such as municipal authorities, researchers, as well as general public concerned of bathing water quality.
Collapse
Affiliation(s)
- Sultana Akter
- Molecular Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland.
| | - Teemu Kustila
- Molecular Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland.
| | - Janne Leivo
- Molecular Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland.
| | - Gangatharan Muralitharan
- Molecular Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland.
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620024, Tamilnadu, India.
| | - Markus Vehniäinen
- Molecular Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland.
| | - Urpo Lamminmäki
- Molecular Biotechnology and Diagnostics, Department of Biochemistry, University of Turku, FIN-20520 Turku, Finland.
| |
Collapse
|
23
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
24
|
Wang C, Tan R, Li J, Zhang Z. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Anal Bioanal Chem 2019; 411:2405-2414. [PMID: 30828760 DOI: 10.1007/s00216-019-01684-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
In this paper, a fluorescent method was developed for ochratoxin A (OTA) detection that uses iron-doped porous carbon (MPC) and aptamer-functionalized nitrogen-doped graphene quantum dots (NGQDs-Apt) as probes. In this method, the adsorbance of the NGQDs-Apt on the MPC due to a π-π interaction between the aptamer and the MPC results in the quenching of the fluorescence of the NGQDs-Apt. However, since OTA interacts strongly with the aptamer, the presence of OTA leads to the detachment of the NGQDs-Apt from the MPC, resulting in the resumption of fluorescence from the NGQDs-Apt. When exonuclease I (Exo I) is also added to the solution, this exonuclease specifically digests the aptamer, leading to the release of the OTA back into the solution. This free OTA then interacts with another MPC-NGQDs-Apt system, inducing the release of more NGQDs into the solution, which enhances the fluorescent intensity compared to that of the system with no Exo I. Utilizing this behavior of OTA in the presence of NGQDs-Apt, it was possible to detect concentrations of OTA ranging from 10 to 5000 nM, with a limit of detection of 2.28 nM. Our method was tested by applying it to the detection of OTA in wheat and corn samples. This method has four advantages: (1) the magnetic porous carbon is easy to prepare, its porosity enhances its loading capacity for NGQDs, it highly efficiently quenches the fluorescence of the NGQDs, and its magnetic properties facilitate the separation of the MPC from other species in solution; (2) applying double magnetic separation decreases the background signal; (3) Exo I digests the free aptamer effectively, which allows the resulting free OTA to induce the release of more NGQDs-Apt, ultimately enhancing the fluorescent signal; and (4) the proposed method presented high sensitivity and a wide linear detection range. This method may prove helpful in food safety analysis and new biosensor development (achieved by using different aptamer sequences to that used in the present work). Graphical abstract Exonuclease I (Exo I)-assisted fluorescent method for ochratoxin A (OTA) detection using magnetic porous carbon (MPC), nitrogen-doped graphene quantum dots (NGQDs), and double magnetic separation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rong Tan
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangyu Li
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zexiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
25
|
Nanobody-Alkaline Phosphatase Fusion Protein-Based Enzyme-Linked Immunosorbent Assay for One-Step Detection of Ochratoxin A in Rice. SENSORS 2018; 18:s18114044. [PMID: 30463338 PMCID: PMC6263964 DOI: 10.3390/s18114044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/23/2023]
Abstract
Ochratoxin A (OTA) has become one a focus of public concern because of its multiple toxic effects and widespread contamination. To monitor OTA in rice, a sensitive, selective, and one-step enzyme-linked immunosorbent assay (ELISA) using a nanobody-alkaline phosphatase fusion protein (Nb28-AP) was developed. The Nb28-AP was produced by auto-induction expression and retained an intact antigen-binding capacity and enzymatic activity. It exhibited high thermal stability and organic solvent tolerance. Under the optimal conditions, the developed assay for OTA could be finished in 20 min with a half maximal inhibitory concentration of 0.57 ng mL-1 and a limit of detection of 0.059 ng mL-1, which was 1.1 times and 2.7 times lower than that of the unfused Nb28-based ELISA. The Nb28-AP exhibited a low cross-reactivity (CR) with ochratoxin B (0.92%) and ochratoxin C (6.2%), and an ignorable CR (<0.10%) with other mycotoxins. The developed Nb-AP-based one-step ELISA was validated and compared with a liquid chromatography-tandem mass spectrometry method. The results show the reliability of Nb-AP-based one-step ELISA for the detection of OTA in rice.
Collapse
|
26
|
Huo J, Li Z, Wan D, Li D, Qi M, Barnych B, Vasylieva N, Zhang J, Hammock BD. Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11284-11290. [PMID: 30293433 PMCID: PMC6442738 DOI: 10.1021/acs.jafc.8b04521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
3-Phenoxybenzoic acid (3-PBA) is a human urinary metabolite of many pyrethroid insecticides and can be used as a biomarker to monitor human exposure to these pesticides. A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for detecting 3-PBA on the basis of a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The anti-3-PBA Nb-AP fusion protein was expressed and purified. The 50% inhibitory concentration (IC50) and linear range of dc-FEIA were 0.082 and 0.015-0.447 ng/mL, respectively, with a detection limit of 0.011 ng/mL. The IC50 of dc-FEIA was improved by nearly ten times compared with those of one-step and three-step direct competitive enzyme-linked immunosorbent assay (dc-ELISA). Spiked urine samples were detected by both dc-FEIA and liquid chromatography-mass spectrometry (LC-MS), and the results showed good consistency between the two analysis methods, indicating the reliability of dc-FEIA based on the Nb-AP fusion protein for detecting 3-PBA in urine.
Collapse
Affiliation(s)
- Jingqian Huo
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Zhenfeng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Debin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Dongyang Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Meng Qi
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
| | - Jinlin Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
- Corresponding author (Tel: +86-0312-7528575; Fax: +86-0312-7528575; )
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616
- Corresponding author (Tel: +86-0312-7528575; Fax: +86-0312-7528575; )
| |
Collapse
|
27
|
Sun Z, Lv J, Liu X, Tang Z, Wang X, Xu Y, Hammock BD. Development of a Nanobody-AviTag Fusion Protein and Its Application in a Streptavidin-Biotin-Amplified Enzyme-Linked Immunosorbent Assay for Ochratoxin A in Cereal. Anal Chem 2018; 90:10628-10634. [PMID: 30092629 DOI: 10.1021/acs.analchem.8b03085] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a common food contaminant that threatens consumers' safety and health. A sensitive and selective biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) for OTA using a nanobody-AviTag fusion protein (Nb-AviTag) was developed in this study. The prokaryotic expression vector Nb28-AviTag-pAC6 for Nb-AviTag was constructed, followed by transformation to the AVB101 cells for antibody expression and in vivo biotinylation. The purified Nb28-AviTag was used to establish the BA-ELISA and the procedures for this Nb-AviTag-based BA-ELISA were optimized. The Nb-AviTag-based BA-ELISA exhibited the half maximal inhibitory concentration (IC50) of 0.14 ng mL-1 and the limit of detection (LOD = IC10) of 0.028 ng mL-1 for OTA basing on the optimized experiment parameters. The assay sensitivity was improved 4.6 times and 4.3 times compared to Nb-based ELISA, respectively. This method had LODs of 1.4 μg kg-1 in barley, 0.56 μg kg-1 in oats, and 0.84 μg kg-1 in rice for OTA. The average recovery percent was in a range of 84-137%, and the relative standard derivation percent ranged from 0.64% to 7.8%. The content of OTA in contaminated cereal samples was determined by both the developed Nb-AviTag-based method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrated that the Nb-AviTag was a robust and promising bioreceptor in highly sensitive detection of OTA and other low molecular weight compounds using BA system.
Collapse
Affiliation(s)
- Zhichang Sun
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Jingwen Lv
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Xing Liu
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Zongwen Tang
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Xuerou Wang
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , P. R. China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center , University of California , Davis , California 95616 , United States
| |
Collapse
|