1
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
2
|
Wang Y, Cao J, Du P, Wang W, Hu P, Liu Y, Ma Y, Wang X, Abd El-Aty AM. Portable detection of Salmonella in food of animal origin via Cas12a-RAA combined with an LFS/PGM dual-signaling readout biosensor. Mikrochim Acta 2024; 191:631. [PMID: 39340568 DOI: 10.1007/s00604-024-06708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
A highly specific and sensitive rapid two-signal assay was developed for the detection of Salmonella typhimurium in foods of animal origin. The invA gene of Salmonella was used as the biorecognition element and recombinase-assisted amplification (RAA) technology for signal amplification. By utilizing the specific recognition and efficient trans-cleavage activity of CRISPR/Cas12a, point-of-care testing (POCT) for S. typhimurium was achieved via lateral flow strips (LFS) and personal glucometer (PGM) biosensors as dual signal readout systems, with sensitivities of 33 CFU/mL and 20 CFU/mL, respectively. Users can select the appropriate test system on the basis of specific application requirements: LFSs are ideal for rapid onsite screening, whereas glucometer biosensors offer precise quantitative determination. This approach simplifies the use of large instruments and overcomes site constraints, demonstrating good accuracy and applicability in animal-derived samples, with significant potential for the detection of other pathogens and for use in restricted environments.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
Guo M, Yi Z, Li H, Liu Y, Ding L, Babailov SP, Xiong C, Huang G, Zhang J. NMR Immunosensor Based on a Targeted Gadolinium Nanoprobe for Detecting Salmonella in Milk. Anal Chem 2024; 96:11334-11342. [PMID: 38943569 DOI: 10.1021/acs.analchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.
Collapse
Affiliation(s)
- Mengdi Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Huo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Liping Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sergey P Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Avenue Lavrentyev 3, Novosibirsk 630090, Russian Federation
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | | |
Collapse
|
4
|
Rapid identification and absolute quantitation of zero tolerance-Salmonella enterica subsp. enterica serovar Thompson using droplet digital polymerase chain reaction. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Xu Q, Xie G, Shi Q, Liu J, Zhou B, Tong P, Aguilar ZP, Xu H. The dual nucleic acid amplification with dynamic light scattering strategy for ultrasensitive detection of Salmonella in milk. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Hu Q, Wang S, Duan H, Liu Y. A Fluorescent Biosensor for Sensitive Detection of Salmonella Typhimurium Using Low-Gradient Magnetic Field and Deep Learning via Faster Region-Based Convolutional Neural Network. BIOSENSORS 2021; 11:bios11110447. [PMID: 34821663 PMCID: PMC8615454 DOI: 10.3390/bios11110447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
In this study, a fluorescent biosensor was developed for the sensitive detection of Salmonella typhimurium using a low-gradient magnetic field and deep learning via faster region-based convolutional neural networks (R-CNN) to recognize the fluorescent spots on the bacterial cells. First, magnetic nanobeads (MNBs) coated with capture antibodies were used to separate target bacteria from the sample background, resulting in the formation of magnetic bacteria. Then, fluorescein isothiocyanate fluorescent microspheres (FITC-FMs) modified with detection antibodies were used to label the magnetic bacteria, resulting in the formation of fluorescent bacteria. After the fluorescent bacteria were attracted against the bottom of an ELISA well using a low-gradient magnetic field, resulting in the conversion from a three-dimensional (spatial) distribution of the fluorescent bacteria to a two-dimensional (planar) distribution, the images of the fluorescent bacteria were finally collected using a high-resolution fluorescence microscope and processed using the faster R-CNN algorithm to calculate the number of the fluorescent spots for the determination of target bacteria. Under the optimal conditions, this biosensor was able to quantitatively detect Salmonella typhimurium from 6.9 × 101 to 1.1 × 103 CFU/mL within 2.5 h with the lower detection limit of 55 CFU/mL. The fluorescent biosensor has the potential to simultaneously detect multiple types of foodborne bacteria using MNBs coated with their capture antibodies and different fluorescent microspheres modified with their detection antibodies.
Collapse
Affiliation(s)
- Qiwei Hu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (Q.H.); (S.W.); (H.D.)
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (Q.H.); (S.W.); (H.D.)
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Hong Duan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (Q.H.); (S.W.); (H.D.)
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (Q.H.); (S.W.); (H.D.)
- Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62737914
| |
Collapse
|
7
|
McDougall F, Power M. Occurrence of Salmonella enterica in grey-headed flying foxes from New South Wales. Aust Vet J 2021; 99:517-521. [PMID: 34490611 DOI: 10.1111/avj.13116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Salmonella enterica and Campylobacter jejuni are significant foodborne zoonotic pathogens causing gastroenteritis in humans. Domestic animals are commonly implicated as reservoirs of S. enterica and C. jejuni, but both are also detected in wild animals. Salmonella enterica serovar Typhimurium is the most common cause of human salmonellosis in Australia; however, Salmonella enterica serovar Wangata is associated with sporadic human outbreaks in New South Wales and wild animals may be a potential reservoir. To determine if wild grey-headed flying foxes (GHFF; Pteropus poliocephalus) are reservoirs of Salmonella and Campylobacter, faecal samples were collected from three GHFF colonies in New South Wales and cultured for the presence of Salmonella and Campylobacter. One Salmonella isolate was cultured from 254 GHFF faecal samples (0.39%). Whole genome sequencing was used to genetically characterise the Salmonella isolate and perform phylogenetic analysis. The GHFF isolate was determined to be Salmonella Typhimurium ST19. The GHFF isolate carried a virulence plasmid and other virulence factors, but did not exhibit antimicrobial resistance. Phylogenetic analysis determined that the GHFF isolate was most closely related to a cluster of six isolates: four from human salmonellosis cases in Queensland and two from Australian livestock. Neither Campylobacter nor Salmonella Wangata were cultured from the 254 GHFF faecal samples. This study concluded that wild GHFF in New South Wales are not major reservoirs for Salmonella, and the zoonotic risks associated with S. enterica carriage by urban GHFF are low for the general public.
Collapse
Affiliation(s)
- F McDougall
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - M Power
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
8
|
Yue X, Sun J, Yang T, Dong Q, Li T, Ding S, Liang X, Feng K, Gao X, Yang M, Huang G, Zhang J. Rapid detection of Salmonella in milk by a nuclear magnetic resonance biosensor based on the streptavidin-biotin system and O-carboxymethyl chitosan target gadolinium probe. J Dairy Sci 2021; 104:11486-11498. [PMID: 34454766 DOI: 10.3168/jds.2021-20716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Rapid and sensitive detection of foodborne pathogens is of great importance for food safety. Here, a set of nuclear magnetic resonance (NMR) biosensors based on a O-carboxymethyl chitosan target gadolinium (Gd) probe was developed to quickly detect Salmonella in milk by combining NMR technology and bioimmunotechnology with membrane filtration technology. First, O-carboxymethyl chitosan (O-CMC) was biotinylated to prepare biotinylated O-carboxymethyl chitosan (biotin-O-CMC) through amide reaction, and biotinylated magnetic complexes (biotin-O-CMC-Gd) were obtained by using O-CMC, which has strong chelating adsorption on Gd. The target probe was obtained by combining biotin-O-CMC-Gd with the biotinylated antibody (biotin-antibody) via streptavidin (SA) by introducing the SA-biotin system. Then, Salmonella was captured by the target probe through antigen-antibody interaction. Finally, NMR was used to measure the longitudinal relaxation time (T1) of the filtrate collected by membrane filtration. This NMR biosensor with good specificity and high efficiency can detect Salmonella with the sensitivity of 1.8 × 103 cfu/mL within 2 h; in addition, it can realize the detection of complex samples because of its strong anti-interference capability and may open up a new method for rapid detection of Salmonella, which has a great application potential.
Collapse
Affiliation(s)
- Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Junru Sun
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Tan Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuehua Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
10
|
Rajagopal R, Barnes CA, David JM, Goseland J, Goseland J. Evaluation of a commercial loop-mediated isothermal amplification assay, 3M TM Molecular Detection Assay 2 - Campylobacter, for the detection of Campylobacter from poultry matrices. Br Poult Sci 2021; 62:404-413. [PMID: 33517711 DOI: 10.1080/00071668.2021.1879992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. The objective of this study was to evaluate performance of a commercial loop-mediated isothermal amplification (LAMP) method as an alternative method for the detection of Campylobacter spp. in primary production samples, poultry rinses and raw poultry products, as compared to the US Department of Agriculture Food Inspection Service Microbiology Laboratory Guide Book PCR reference method, MLG 41A.2. The Campylobacter spp. LAMP was used in conjunction with a ready-to-use enrichment broth that does not require microaerophilic incubation. After enrichment, boot swabs from poultry farms, carcase rinses and raw poultry products were tested by the LAMP method and the MLG 41A PCR method.3. The ready-to-use enrichment broth enabled the growth of Campylobacter spp. within 22 to 28 hours under aerobic incubation conditions. The LAMP method enabled Campylobacter detection in the enriched samples of various poultry matrices and had equivalent sensitivity and specificity to the MLG 41A PCR method.4. No significant difference (95% confidence interval) was found between the alternative and the MLG 41A PCR method, as determined by probability of detection analysis, except for neutralising buffered peptone water post-chill rinsates. For the post-chill neutralising buffered peptone water rinsates, the LAMP method had significantly higher confirmed portions.
Collapse
Affiliation(s)
| | | | | | - J Goseland
- WBA Analytical Laboratories, Inc., Springdale, AR, USA
| | - J Goseland
- WBA Analytical Laboratories, Inc., Springdale, AR, USA
| |
Collapse
|
11
|
SANTOS PHCD, FIGUEIREDO HM, SILVA LHMD, SILVA RSOD, CARDOSO GVF, MORAES CM, RODRIGUES AMDC. Evaluation of a rapid detection method of Salmonella in comparison with the culture method and microbiological quality in fish from the Brazilian Amazon. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.38719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Bergamo G, Gandra EA. Detection of Salmonella by the 3M Molecular Detection Assays: MDS ® Method. Methods Mol Biol 2021; 2182:33-38. [PMID: 32894484 DOI: 10.1007/978-1-0716-0791-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developed by 3M Company, 3M ™ Molecular Detection Assays-3M MDS-enable detection of Salmonella from advanced isothermal DNA amplification and bioluminescence detection technology. It can be used for a wide variety of products, including poultry, eggs, pet foods, and environmental samples, and results are obtained within about 24 h. In this chapter, all steps of the 3M MDS™ method for detection of Salmonella are described and detailed.
Collapse
Affiliation(s)
- Greici Bergamo
- Laboratory of Food Science and Molecular Biology (LACABIM), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Room 53, Building 04 - Capão do Leão Campus, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Eliezer Avila Gandra
- Laboratory of Food Science and Molecular Biology (LACABIM), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Room 53, Building 04 - Capão do Leão Campus, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
13
|
The Antibacterial Efficacy and Mechanism of Plasma-Activated Water Against Salmonella Enteritidis (ATCC 13076) on Shell Eggs. Foods 2020; 9:foods9101491. [PMID: 33086594 PMCID: PMC7603095 DOI: 10.3390/foods9101491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
Eggs are one of the most commonly consumed food items. Currently, chlorine washing is the most common method used to sanitize shell eggs. However, chlorine could react with organic matters to form a potential carcinogen, trihalomethanes, which can have a negative impact on human health. Plasma-activated water (PAW) has been demonstrated to inactivate microorganisms effectively without compromising the sensory qualities of shell eggs. For this study, various amounts (250, 500, 750, or 1000 mL) of PAW were generated by using one or two plasma jet(s) at 60 watts for 20 min with an air flow rate at 6 or 10 standard liters per minute (slm). After being inoculated with 7.0 log CFU Salmonella Enteritidis, one shell egg was placed into PAW for 30, 60, or 90 s with 1 or 2 acting plasma jet(s). When 2 plasma jets were used in a large amount of water (1000 mL), populations of S. Enteritidis were reduced from 7.92 log CFU/egg to 2.84 CFU/egg after 60 s of treatment. In addition, concentrations of ozone, hydrogen peroxide, nitrate, and nitrite in the PAW were correlated with the levels of antibacterial efficacy. The highest concentrations of ozone (1.22 ppm) and nitrate (55.5 ppm) were obtained with a larger water amount and lower air flow rate. High oxidation reduction potential (ORP) and low pH values were obtained with longer activation time, more plasma jet, and a lower air flow rate. Electron paramagnetic resonance (EPR) analyses demonstrated that reactive oxygen species (ROS) were generated in the PAW. The observation under the scanning electron microscope (SEM) revealed that bacterial cells were swollen, or even erupted after treatment with PAW. These results indicate that the bacterial cells lost control of cell permeability after the PAW treatment. This study shows that PAW is effective against S. Enteritidis on shell eggs in a large amount of water. Ozone, nitrate, and ROS could be the main causes for the inactivation of bacterial cells.
Collapse
|
14
|
Chen S, Yang X, Fu S, Qin X, Yang T, Man C, Jiang Y. A novel AuNPs colorimetric sensor for sensitively detecting viable Salmonella typhimurium based on dual aptamers. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107281] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Ripolles-Avila C, Martínez-Garcia M, Capellas M, Yuste J, Fung DYC, Rodríguez-Jerez JJ. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry. Compr Rev Food Sci Food Saf 2020; 19:1877-1907. [PMID: 33337076 DOI: 10.1111/1541-4337.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The prevention of foodborne diseases is one of the main objectives of health authorities. To this effect, analytical techniques to detect and/or quantify the microbiological contamination of foods prior to their release onto the market are required. Management and control of foodborne pathogens have generally been based on conventional detection methodologies, which are not only time-consuming and labor-intensive but also involve high consumable materials costs. However, this management perspective has changed over time given that the food industry requires efficient analytical methods that obtain rapid results. This review covers the historical context of traditional methods and their passage in time through to the latest developments in rapid methods and their implementation in the food sector. Improvements and limitations in the detection of the most relevant pathogens are discussed from a perspective applicable to the current situation in the food industry. Considering efforts that are being done and recent developments, rapid and accurate methods already used in the food industry will be also affordable and portable and offer connectivity in near future, which improves decision-making and safety throughout the food chain.
Collapse
Affiliation(s)
- Carolina Ripolles-Avila
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Martínez-Garcia
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Capellas
- Area of Food Technology, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Yuste
- Area of Food Technology, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Y C Fung
- Call Hall, Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - José-Juan Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Jin L, Li T, Wu B, Yang T, Zou D, Liang X, Hu L, Huang G, Zhang J. Rapid detection of Salmonella in milk by nuclear magnetic resonance based on membrane filtration superparamagnetic nanobiosensor. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Rapid and Sensitive Detection of Viable but Non-culturable Salmonella Induced by Low Temperature from Chicken Using EMA-Rti-LAMP Combined with BCAC. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
The Optimization of Plasma-Activated Water Treatments to Inactivate Salmonella Enteritidis (ATCC 13076) on Shell Eggs. Foods 2019; 8:foods8100520. [PMID: 31640162 PMCID: PMC6836110 DOI: 10.3390/foods8100520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
Egg is a regularly consumed food item. Currently, chlorinated water washing is the most common practice used to disinfect eggs, but this process has a negative environmental impact. A new physical technique, plasma-activated water (PAW), has been demonstrated to possess effective antibacterial activities without long-term chemical residue. In this study, air PAW was used to inactivate Salmonella enterica serovar Enteritidis on shell eggs. Different combinations of activation parameters, including water sources (reverse osmotic (RO) water, tap water), power (40 W, 50 W, 60 W) and activation time (10 min, 20 min, 30 min), were evaluated. The oxidation–reduction potential (ORP) and pH values of each combination were measured, and their antibacterial activity was tested in a bacterial suspension. Higher antibacterial activities, higher ORP values, and lower pH values were obtained with higher power, longer activation time, and lower water hardness. The antibacterial activities of PAW decreased rapidly by increasing the storage time both at room and refrigeration temperatures. Afterwards, RO water was pre-activated for 20 min at 60 W, and then the eggs inoculated with S. enteritidis were placed into PAW for 30 s, 60 s, 90 s, or 120 s with a plasma on-site treatment in the water. More than a 4 log reduction was obtained with 60-s and 120-s treatments. The results showed that the freshness indexes of the eggs treated with PAW were similar to those of the untreated controls and better than those of the eggs treated with commercial processes. In addition, observation under a scanning electron microscope also showed less surface damage of the cuticle on the PAW-treated eggs than on the commercially treated eggs. The results of this study indicate that PAW could be an effective antibacterial agent with less damage to the freshness of shell eggs than commercial methods.
Collapse
|
19
|
Li Z, Guo R, Wang F, Geng S, Kang X, Meng C, Gu D, Jiao X, Pan Z. Inactivation of Salmonella Enteritidis on eggshells by lactic acid spray. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|