1
|
Yang C, He C, Zhuo H, Wang J, Yong T, Gan L, Yang X, Nie L, Xi S, Liu Z, Liao G, Shi T. Cost-effective microfluidic flow cytometry for precise and gentle cell sorting. LAB ON A CHIP 2025; 25:698-713. [PMID: 39895391 DOI: 10.1039/d4lc00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Microfluidic flow cytometry (MFCM) is considered to be an effective substitute for traditional flow cytometry, because of its advantages in terms of higher integration, smaller device size, lower cost, and higher cell sorting activity. However, MFCM still faces challenges in balancing parameters such as sorting throughput, viability, sorting efficiency, and cost. Here, we demonstrate a cost-effective and high-performance microfluidic cytometry cell sorting system, along with a customized microfluidic chip that integrates hydrodynamic focusing, droplet encapsulation, and sorting for precise cell manipulation. An innovative photon incremental counting-based fluorescence detection method is proposed, which requires only one-fiftieth of the data compared to traditional methods. This significantly simplifies the structure of the system and substantially reduces costs. The system exhibits detection recoveries exceeding 95% across sample solution flow rates ranging from 10 to 80 μL min-1. Moreover, it accurately achieves individual droplet deflections at a droplet generation frequency of 1600 Hz. Ultimately, our cell sorting system offers an impressive sorting efficiency of 90.7% and a high cell viability of 94.3% when operating at a droplet generation frequency of 1316 Hz, highlighting its accuracy and gentleness throughout the entire process. Our work will enhance advances in the life sciences, thereby creating a boom in great applications in single-cell cloning, single-cell analysis, drug screening, etc.
Collapse
Affiliation(s)
- Canfeng Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chunhua He
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Huasheng Zhuo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jianxin Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Nie
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shuang Xi
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Zhao D, Hu M, Hu C, Wang D, Chen H, Ou Y, Liu R, Li X, Wu L, Liu P, Shen Z, Chen Q. Multivalent bifunctional nanobody to enhance the sensitivity of direct competitive chemiluminescence immunoassay for the detection of microcystin LR in lake water. Talanta 2025; 283:127080. [PMID: 39467444 DOI: 10.1016/j.talanta.2024.127080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Microcystin-LR (MC-LR), a toxic cyanobacterial toxin in freshwater, poses significant health and ecological risks due to its ability to induce cell apoptosis and liver damage. Sensitive detection of MC-LR is crucial for public health and water safety. In this work, we engineered a multivalent bifunctional nanobody (A2.3-C4-SBP) by fusing the anti-MC-LR nanobody gene (A2.3) with self-assembling peptides (C4) and a streptavidin-binding peptide (SBP). A2.3-C4-SBP was directionally immobilized on the ELISA microplate via streptavidin-mediated to develop a multivalent bifunctional nanobody-based chemiluminescent immunoassay (MBN-CLIA) for MC-LR detection in lake water. The IC50 of the A2.3-C4-SBP heptamer based CLIA was 5.80 ng/mL, and the LOD (IC10) was 0.33 ng/mL, which were 9.51-fold and 1.82-fold lower, respectively, than those of the A2.3-SBP monomer based CLIA. Additionally, the IC50 and LOD were 1.26-fold and 1.82-fold lower, respectively, than those of the A2.3-C4-SBP heptamer without streptavidin-mediated directional immobilization. In summary, this work developed a sensitive, rapid and simple immunoassay for the detection of MC-LR in lake water based on multivalent bifunctional nanobodies. Furthermore, the proposed combined strategy of nanobody multimerization and directed immobilization is simple to operate and has great potential to improve the sensitivity and signal amplification of various immunoassays.
Collapse
Affiliation(s)
- Danyi Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Mai Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Chenghao Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Di Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hailun Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yangwei Ou
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Rongli Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330031, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, 570228, China
| | - Peng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Zhengjie, Nanchang, 330006, China.
| | - Zhiwei Shen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Qi Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Shi SJ, Ji MQ, Huang RF, Fan ZY. Highly sensitive time-resolved fluorescent microspheres lateral flow immunoassay for the quantitative detection of triadimefon and its metabolite residues in fruits and vegetables. Mikrochim Acta 2024; 191:670. [PMID: 39402286 DOI: 10.1007/s00604-024-06755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
A general one-step lateral flow immunochromatographic assay (LFIA) for the quantitative detection of triadimefon (TDF) and triadimenol (TDN) in fruit and vegetable samples was developed using time-resolved fluorescence microspheres (TRFM) as labels. A specific anti-triadimefon monoclonal antibody (mAb) was conjugated with TRFM to fabricate LFIA test strips. A time-resolved fluorometer as an LFIA reader was applied to obtain quantitative results and assess risk ranges for the LFIA test strips. Under the optimized experimental conditions, the limits of detection (LODs) in buffer/cucumbers/tomatoes/oranges were 0.046 ng/mL, 0.135 µg/kg, 1.047 µg/kg, and 5.811 µg/kg, respectively, which are ca. 1000 times lower than that of colloidal gold-labeled strips. The recovery in cucumber/tomato/orange samples was 109.4-116.7%, 87.7-110.9%, and 88.0-111.9%, respectively, indicating that the test strips had good reliability. Coupled with the easily customizable pretreatment procedures for various samples, the LFIA results were obtained within 18 min without the need for professional personnel or complicated equipment. TRFM-LFIA for TDF and TDN also shows remarkable specificity and precision. The test strips were also low-cost, portable, and convenient to use. These results indicate the test strips could be utilized as a novel strategy for on-site detection of TDF and TDN, which has the potential to expand and detect other pesticide or insecticide residues in food.
Collapse
Affiliation(s)
- San-Jun Shi
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Mei-Qi Ji
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Rong-Fu Huang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Zi-Yan Fan
- China National Tobacco Quality Supervision and Test Center , Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Du Y, Jiang S, Han Y, Liu Q, Cui L, Zhang CY. Synthesis of silica-encapsulated tetraphenylethylene with aggregation-induced electrochemiluminescence resonance energy transfer for sensitively sensing microcystin-LR. Talanta 2024; 272:125752. [PMID: 38354543 DOI: 10.1016/j.talanta.2024.125752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The reported organic electrochemiluminescence (ECL) luminophors for the detection of various markers often suffer from intermolecular π-π stacking-induced luminophore quenching. Herein, we demonstrate one-pot synthesis of a new aggregation-induced electrochemiluminescence (AIECL) emitter (i.e., TPE@SiO2/rGO composite) for sensitive measurement of microcystin-leucine arginine (MC-LR). The TPE@SiO2/rGO composite is constructed by embedding the silica-encapsuled 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) in the reduced graphene oxide. In comparison with the monomer TPE, this composite exhibit high luminescence efficiency and strong ECL emission, because the AIECL phenomenon triggered by the spatial confinement effect in the SiO2 cage induces the restriction of the internal motion and vibration of molecules. Notably, this composite has distinct advantages of easy preparation, simple functionalization, and stable luminescence. Especially, the TPE@SiO2/rGO-based ECL-RET system exhibits a high quenching efficiency (ΦET) of 69.7%. When target MC-LR is present, it triggers DNA strand displacement reaction (SDR), inducing the quenching of the ECL signal of TPE@SiO2/rGO composite due to ECL resonance energy transfer between TPE@SiO2/rGO composite and methylene blue (MB). The proposed biosensor enables highly sensitive, low-cost, and robust measurement of MC-LR with a large dynamic range of 7 orders of magnitude and a detection limit of 3.78 fg/mL, and it displays excellent detection performance in complex biological matrices, holding potential applications in food safety and water monitoring.
Collapse
Affiliation(s)
- Yu Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Yang J, Li Z, Zhang D, Yamaguchi Y, Xiao W. Direct count of fluorescent microspheres in a microfluidic chip based on the capillary electrophoresis method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37334474 DOI: 10.1039/d3ay00710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Fluorescent microspheres (FMs) are tiny particles with special functions that are widely employed in biological research. Counting of microscale FMs is a great challenge by capillary electrophoresis. Herein we developed a method to count 2 μm FMs based on a microfluidic chip with a gradual change in inner size. Such a microfluidic chip can inhibit sample blocking at the inlet of the capillary. The results showed that FMs migrated in the wide part of the microchannel side by side, and then passed through the narrow part one by one. There was a linear relationship between the number of peaks in the electropherogram and concentration of FMs if they were running in the microchannel for more than 20 min. A high separation voltage may lead to aggregation of FMs in the microchannels, and about 2 × 104 FMs can be counted within 30 min by this microfluidic chip.
Collapse
Affiliation(s)
- Jing Yang
- Anhui Sanlian University, Hefei 230000, China
| | - Zhenqing Li
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, Shanghai Key Lab of Modern Optical System, Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yoshinori Yamaguchi
- Picotecbio-Waseda Joint Research Lab, Faculty of Science and Engineering, Waseda University, Saitama, 367-0035, Japan.
| | - Wen Xiao
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
6
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
7
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Zhai P, Liu C, Feng G, Cao Y, Xiang L, Zhou K, Guo P, Li J, Jiang W. Aggregation-Induced Emission Luminogens-Encoded Microspheres Preparation and Flow-Through Immunoaffinity Chromatographic Assay Development for Microcystin-LR Analysis. Food Chem 2022; 402:134398. [DOI: 10.1016/j.foodchem.2022.134398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
|
9
|
Huo B, Xia L, Gao Z, Li G, Hu Y. ATP-Responsive Strand Displacement Coupling with DNA Origami/AuNPs Strategy for the Determination of Microcystin-LR Using Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:11889-11897. [PMID: 35973129 DOI: 10.1021/acs.analchem.2c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA origami-mediated self-assembly strategy has emerged as a powerful tool in surface-enhanced Raman spectroscopy (SERS). However, these self-assembly approaches typically do not possess high detection specificity. Herein, a novel strategy based on adenosine triphosphate (ATP)-responsive strand displacement (ARSD) coupling with DNA origami/AuNPs for SERS analysis of microcystin-LR (MC-LR) is presented. In the presence of MC-LR and ATP molecules, nucleic acid sensing structures fabricated with anti-MC-LR aptamer (T1) and ATP aptamer (T2) were triggered to release the remaining ATP. In addition, DNA origami-assisted assembly results in the formation of homogeneous plasmonic nanostructures for Raman enhancement via strong plasmonic coupling. After the binding in the gaps of functionalized DNA origami/AuNPs, the Raman shift of the ATP molecules becomes detectable, leading to increased SERS intensity in 734 cm-1. A linear response to MC-LR was obtained in the concentration range of 1.56-50 μg·L-1, and the limit of detection (LOD) was 0.29 μg·L-1. Combined with the solid-phase extraction sample pretreatment for extraction and 10-fold concentration, this proposed method was successfully used to detect MC-LR type in real lake-water samples with good recoveries of 98.4-116% and relative standard deviations of 1.9-6.7%. Furthermore, for the detection of MC-LR in contaminated lake-water samples, the results of the developed method and ultrahigh-performance liquid chromatography-tandem mass spectrometry were found to be in agreement with relative errors between -12 and 2.4%. The proposed strategy provides a sensitive recognition and signal amplification platform for trace MC-LR analysis as well as innovative nucleic acid sensing structures for toxin analysis more generally.
Collapse
Affiliation(s)
- Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Chai F, Wang D, Zhu L, Zheng W, Jiang X. Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Anal Chem 2022; 94:6628-6634. [PMID: 35452227 DOI: 10.1021/acs.analchem.2c01177] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple antibiotics and mycotoxins usually simultaneously exist in foods, which poses a serious threat to human health. How to detect them in one test with high sensitivity and fidelity is challenging. In this study, we develop a dual readout lateral flow immunodetection platform that can quantitatively detect five kinds of antibiotics and five kinds of mycotoxins within one sample. The platform is composed of a chip and a portable readout instrument where gold nanoparticle (AuNP)-based and chemiluminescence immunoassays could be performed to reach a maximum throughput of 220 analytes in one setting. For a rapid screen, qualitative analysis by detecting the color change of the deposited AuNPs on the chip could be realized. For quantitative results, chemiluminescence imaging and analysis can be completed within 15 min. Apart from the high throughput and high efficiency, this platform has a high detection sensitivity. For instance, the limit of detection (LOD) for thiamphenicol (a representative antibiotic) and fumonisins B1 (a representative mycotoxin) is 8 times and 40 times lower than those of the previously reported methods, respectively. Thus, this dual readout immunodetection platform is promising as a universal device for rapid and quantitative detection of multiple analytes with high throughput, high sensitivity, and high fidelity.
Collapse
Affiliation(s)
- Fengli Chai
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.,Beijing Engineering Research Center for BioNanotechnology, CAS key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Dou Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
11
|
Liu Y, Li B, Zhang H, Liu Y, Xie P. Participation of fluorescence technology in the cross-disciplinary detection of microcystins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Ultrasensitive lateral flow immunoassay of phycotoxin microcystin-LR in seafood based on magnetic particles and peroxidase signal amplification. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Zhang H, Li B, Liu Y, Chuan H, Liu Y, Xie P. Immunoassay technology: Research progress in microcystin-LR detection in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127406. [PMID: 34689091 DOI: 10.1016/j.jhazmat.2021.127406] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Increasing global warming and eutrophication have led to frequent outbreaks of cyanobacteria blooms in freshwater. Cyanobacteria blooms cause the death of aquatic and terrestrial organisms and have attracted considerable attention since the 19th century. Microcystin-LR (MC-LR) is one of the most typical cyanobacterial toxins. Therefore, the fast, sensitive, and accurate determination of MC-LR plays an important role in the health of humans and animals. Immunoassay refers to a method that uses the principle of immunology to determine the content of the tested substance in a sample using the tested substance as an antigen or antibody. In analytical applications, the immunoassay technology could use the specific recognition of antibodies for MC-LR detection. In this review, we firstly highlight the immunoassay detection of MC-LR over the past two decades, including classical enzyme-link immunosorbent assay (ELISA), modern immunoassay with optical signal, and modern immunoassay with electrical signal. Among these detection methods, the water environment was used as the main detection system. The advantages and disadvantages of the different detection methods were compared and analyzed, and the principles and applications of immunoassays in water samples were elaborated. Furthermore, the current challenges and developmental trends in immunoassay were systematically introduced to enhance MC-LR detection performance, and some critical points were given to deal with current challenges. This review provides novel insight into MC-LR detection based on immunoassay method.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
14
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
15
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Li X, Chen X, Wu J, Liu Z, Wang J, Song C, Zhao S, Lei H, Sun Y. Portable, Rapid, and Sensitive Time-Resolved Fluorescence Immunochromatography for On-Site Detection of Dexamethasone in Milk and Pork. Foods 2021; 10:foods10061339. [PMID: 34200690 PMCID: PMC8229924 DOI: 10.3390/foods10061339] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is widely used because of its anti-inflammatory, anti-endotoxin, anti-shock, and stress-enhancing response activities. It can increase the risk of diabetes and hypertension if it is abused or used improperly. However, there is a lack of sensitive and rapid screening methods for DEX in food. In this study, a time-resolved fluorescent microspheres immunochromatographic assay (TRFM-ICA) integrated with a portable fluorescence reader was developed for the quantitative detection of DEX in milk and pork. The cut-off values of the TRFM-ICA were 0.25 ng/mL and 0.7 µg/kg, respectively. The limits of quantitation (LOQs) were 0.003 ng/mL and 0.062 µg/kg, respectively. The recovery rates were 80.0–106.7%, and 78.6–83.6%, respectively, with the coefficients of variation ranging 6.3–12.5%, and 7.5–10.3%, respectively. A parallel experiment for 20 milk and 10 pork samples with LC-MS/MS was carried out to confirm the performance of the on-site application of the developed TRFM-ICA. The results of the two methods are basically the same; the correlation (R2) was >0.98. The establishment of TRFM-ICA will provide a new sensitive and efficient technical support for the rapid screening of DEX in food.
Collapse
Affiliation(s)
- Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.L.); (X.C.); (Z.L.); (J.W.)
| | - Xiaomin Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.L.); (X.C.); (Z.L.); (J.W.)
| | - Jinxiao Wu
- Shanxi Institute of Feed and Veterinary Drug control, No. 5 Shengli West Street, Jiancaoping District, Taiyuan 030000, China;
| | - Zhiwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.L.); (X.C.); (Z.L.); (J.W.)
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.L.); (X.C.); (Z.L.); (J.W.)
| | - Cuiping Song
- China Animal Health and Epidemiology Center, 369 Nanjing Rd, Si Fang Qu, Qingdao 266032, China; (C.S.); (S.Z.)
| | - Sijun Zhao
- China Animal Health and Epidemiology Center, 369 Nanjing Rd, Si Fang Qu, Qingdao 266032, China; (C.S.); (S.Z.)
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.L.); (X.C.); (Z.L.); (J.W.)
- Correspondence: (H.L.); (Y.S.); Tel.: +86-20-8528-3925 (H.L.); +86-20-8528-3448 (Y.S.); Fax: +86-20-8528-0270 (H.L.); +86-20-8528-3448 (Y.S.)
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (X.L.); (X.C.); (Z.L.); (J.W.)
- Correspondence: (H.L.); (Y.S.); Tel.: +86-20-8528-3925 (H.L.); +86-20-8528-3448 (Y.S.); Fax: +86-20-8528-0270 (H.L.); +86-20-8528-3448 (Y.S.)
| |
Collapse
|
18
|
Zvereva EA, Hendrickson OD, Zherdev AV, Dzantiev BB. Immunochromatographic Test Systems for Detection of Microcystin-LR in Seafood. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Non-CTAB synthesized gold nanorods-based immunochromatographic assay for dual color and on-site detection of aflatoxins and zearalenones in maize. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Liu C, Fang S, Tian Y, Ma J, Wang Z, Xu D, Li Y, Hou D, Liu Q. Rapid detection of
Escherichia coli
O157
:
H7
in milk, bread, and jelly by lac dye
coloration‐based
bidirectional lateral flow immunoassay strip. J Food Saf 2020. [DOI: 10.1111/jfs.12862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cheng Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Shuiqin Fang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Zheng Wang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
| | - Ying Li
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Dongjun Hou
- Animal Product Quality Control Department China Animal Disease Control Centre Beijing China
| | - Qing Liu
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
22
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107107] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Wu P, Li S, Ye X, Ning B, Bai J, Peng Y, Li L, Han T, Zhou H, Gao Z, Ding P. Cu/Au/Pt trimetallic nanoparticles coated with DNA hydrogel as target-responsive and signal-amplification material for sensitive detection of microcystin-LR. Anal Chim Acta 2020; 1134:96-105. [PMID: 33059870 DOI: 10.1016/j.aca.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022]
Abstract
Sensitive and reliable analytical methods for monitoring of microcystin-LR (MC-LR) are urgently necessary due to its great harm to human health and aquatic organisms. In this work, a novel Cu/Au/Pt trimetallic nanoparticles (Cu/Au/Pt TNs)-encapsulated DNA hydrogel was prepared for colorimetric detection of MC-LR. The Cu/Au/Pt TNs were captured and released with precise control by the target-responsive 3D DNA hydrogels, which combined dual advantages of the target responsive DNA hydrogel and Cu/Au/Pt TNs of enhanced peroxidase-like activity. The DNA hydrogel network was constructed by hybridizing MC-LR aptamer with two complementary DNA strands on linear polyacrylamide chains. As long as MC-LR presented, the aptamer competitively binds with the MC-LR, causing the hydrogel to dissolve and release the preloaded Cu/Au/Pt TNs which could catalyze the reaction between H2O2 and TMB to produce color changes. In view of this sensitive strategy, this Cu/Au/Pt TNs-encapsulated DNA hydrogel-based colorimetric biosensor can achieve quantitative determination of MC-LR. The results showed that as-proposed colorimetric biosensor could sensitively detect MC-LR with a linear range of 4.0-10000 ng L-1 and a detection limit of 3.0 ng L-1. This work proved that the sensor had great potential to be applied in MC-LR detection and also provided the opportunity to develop colorimetric biosensor for other targets using this target-responsive and signal-amplification strategy.
Collapse
Affiliation(s)
- Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Xiaosheng Ye
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin, 300050, PR China.
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
25
|
Cheng Y, Liu L, Liu H, Xu L, Kuang H. Rapid and sensitive detection of ochratoxin A in rice flour using a fluorescent microsphere immunochromatographic test strip assay. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1745157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yuan Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
| | - Haiying Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s People’s Republic of China
| |
Collapse
|
26
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
27
|
Abnous K, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Lavaee P, Taghdisi SM. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase. Biosens Bioelectron 2019; 144:111674. [PMID: 31518788 DOI: 10.1016/j.bios.2019.111674] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
This study develops a novel electrochemical sensing platform for microcystin-LR (MC-LR) detection. This aptasensor comprises the hybridization of double aptamer to its complementary strand (CS) on the surface of electrode and generation of an Infinity-shaped DNA structure in the absence of target by terminal deoxynucleotidyl transferase (TdT). The formation of Infinity-shaped construction leads to the development of an ultrasensitive aptasensor for MC-LR detection. In the presence of MC-LR, double aptamer is dissociated from its CS because of its high affinity for MC-LR and leaves the surface of electrode. Subsequently, no Infinity-shaped structure is formed following the introduction of TdT and a strong current signal is observed. The proposed method was employed for specific detection of MC-LR in the range from 60 pM to 1000 nM with a detection limit of 15 pM. The credibility of the approach was confirmed by detection of MC-LR in real samples like serum and tap water samples. This study provides a new aptasensor for detection of MC-LR as well as other toxin analysis.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research, Research Institute for Industrial Biotechnology, Industrial Biotechnology on Microorganisms, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Zhang Y, Zhu Z, Teng X, Lai Y, Pu S, Pang P, Wang H, Yang C, Barrow CJ, Yang W. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator. Talanta 2019; 202:279-284. [DOI: 10.1016/j.talanta.2019.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|