1
|
Zhong C, Luo S, Liu C, Zhang G, Ye J. Eco-friendly one-pot preparation of starch smart labels based on natural deep eutectic solvents self-assembly system for monitoring the shrimp freshness. Food Chem 2025; 475:143366. [PMID: 39956071 DOI: 10.1016/j.foodchem.2025.143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/28/2024] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
Recently, smart labels for monitoring food freshness provided a powerful strategy to reduce food waste and foodborne diseases. Excellent performance, non-toxicity, and simple process were great challenges for large-scale production of smart labels. The present study proposed a one-pot approach of green preparation for smart labels integrated with curcumin/starch nanoparticles/natural deep eutectic solvents self-assembly system. The curcumin-loaded starch nanoparticles significantly improved the mechanical properties, water resistance and UV resistance of smart labels. The sensitivity to volatile amines was improved, resulting from an increase in the dispersibility of curcumin. In addition, during the monitor of shrimp freshness, the total volatile salt-based nitrogen in shrimp reached 13.23 mg/100 g after 18 h of storage, concomitant with a significant shift in the color of smart labels from yellow to orange. These results highlight the self-assembly system could be directly exploited as readily manufacturable modules to develop a simple industrial method for smart labels.
Collapse
Affiliation(s)
- Chengpeng Zhong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
2
|
Fazel R, Hassani B, Zare F, Jokar Darzi H, Khoshneviszadeh M, Poustforoosh A, Behrouz M, Sabet R, Sadeghpour H. Design, synthesis, in silico ADME, DFT, molecular dynamics simulation, anti-tyrosinase, and antioxidant activity of some of the 3-hydroxypyridin-4-one hybrids in combination with acylhydrazone derivatives. J Biomol Struct Dyn 2024; 42:9518-9528. [PMID: 37674457 DOI: 10.1080/07391102.2023.2252087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme in synthesizing melanin. Melanin is responsible for changing the color of fruits and vegetables and protecting against skin photo-carcinogenesis. Herein, some of the hybrids of 3-hydroxypyridine-4-one and acylhydrazones were designed and synthesized to study the anti-tyrosinase and antioxidant activities. The diphenolase activity of mushroom tyrosinase using L-DOPA assayed the inhibitory effects, and the antioxidant activity was assessed using DPPH free radical. The synthesized derivatives were confirmed using 1H-NMR, 13C-NMR, IR, and Mass spectroscopy. Among analogs, compound 5h bearing furan ring with IC50=8.94 μM was more potent than kojic acid (IC50=16.68 μM). The pharmacokinetic profile of the compounds showed that the tested compounds had suitable oral bioavailability and drug-likeness properties. The molecular docking studies showed that compound 5h was located in the tyrosinase-binding site. Also, the molecular dynamics simulation was performed on compound 5h, proving the obtained molecular docking results. At the B3LYP/6-31 + G** level of theory, the reactivity descriptors for 5 g and 5h were investigated using DFT calculations. Also, IR frequency was calculated to verify DFT results with experimental data. The electrostatic potential energy of the surface and the HOMO and LUMO molecular orbitals were also studied. It agrees with experimental results that the 5h is a soft molecule and ready for chemical reaction with other interacting molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habibollah Jokar Darzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Behrouz
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Huang X, Li J, He J, Luo J, Cai J, Wei J, Li P, Zhong H. Preparation of curcumin-loaded chitosan/polyvinyl alcohol intelligent active films for food packaging and freshness monitoring. Int J Biol Macromol 2024; 276:133807. [PMID: 38996887 DOI: 10.1016/j.ijbiomac.2024.133807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
To fulfill the current need for intelligent active food packaging. This study incorporated the curcumin inclusion complexes (CUR-CD) into chitosan/polyvinyl alcohol polymer to develop a new intelligent active film. The structures of films were analyzed by Fourier-transform infrared (FT-IR), scanning electron microscope (SEM), and so on. The CP-Cur150 film displays exceptional mechanical properties, water vapor barrier, and UV blocking capabilities as demonstrated by physical analysis. The CP-Cur150 film exhibited free radical scavenging rates on 2,2-diazo-di-3-ethylbenzothiazolin-6-sulfonic (ABTS) (98 %) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (87 %). Additionally, it showed inhibitory effects on Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), reducing live colony counts by approximately 2.7 and 1.3 Log10 CFU/mL, respectively. The films were used to monitor the shrimp's freshness in real time. With the spoilage of shrimp, the film exhibited clear color fluctuations, from light yellow to red. In addition, the evaluation of the impact of films on pork pH, total volatile basic nitrogen, and total bacterial counts demonstrated that the CP-Cur150 film displayed the most significant effectiveness in preserving freshness, thereby extending the shelf life of pork.
Collapse
Affiliation(s)
- Xinghai Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianmin Li
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jingjin He
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianwei Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianhua Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| | - Haiyi Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| |
Collapse
|
4
|
Zhang L, Zhang M, Mujumdar AS, Wang D. Deep Learning Used with a Colorimetric Sensor Array to Detect Indole for Nondestructive Monitoring of Shrimp Freshness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37445-37455. [PMID: 38980942 DOI: 10.1021/acsami.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Intelligent colorimetric freshness indicator is a low-cost way to intuitively monitor the freshness of fresh food. A colorimetric strip sensor array was prepared by p-dimethylaminocinnamaldehyde (PDL)-doped poly(vinyl alcohol) (PVA) and chitosan (Chit) for the quantitative analysis of indole, which is an indicator of shrimp freshness. As a result of indole simulation, the array strip turned from faint yellow to pink or mulberry color with the increasing indole concentration, like a progress bar. The indicator film exhibited excellent permeability, mechanical and thermal stability, and color responsiveness to indole, which was attributed to the interactions between PDL and Chit/PVA. Furthermore, the colorimetric strip sensor array provided a good relationship between the indole concentration and the color intensity within a range of 50-350 ppb. The pathogens and spoilage bacteria of shrimp possessed the ability to produce indole, which caused the color changes of the strip sensor array. In the shrimp freshness monitoring experiment, the color-changing progress of the strip sensor array was in agreement with the simulation and could distinguish the shrimp freshness levels. The image classification system based on deep learning were developed, the accuracies of four DCNN algorithms are above 90%, with VGG16 achieving the highest accuracy at 97.89%. Consequently, a "progress bar" strip sensor array has the potential to realize nondestructive, more precise, and commercially available food freshness monitoring using simple visual inspection and intelligent equipment identification.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal H3A 0G4, Quebec, Canada
| | - Dayuan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Feng H, Jiao L, Zhang X, Benjakul S, Zhang B. Food-grade silica-loaded gallic acid nanocomposites: Synthesis and mechanism for enhancing water-based biological activity. Food Chem X 2024; 21:101207. [PMID: 38370300 PMCID: PMC10869746 DOI: 10.1016/j.fochx.2024.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
As the low water solubility of gallic acid (GA), its biological activities such as water-based antioxidant effect may be greatly reduced. Therefore, GA-loaded nanocomposites (F-SiO2@GA) with high water solubility were synthesized via solvent evaporation using food-grade silica (F-SiO2) as carriers in this work. The assessment of antioxidant capacity revealed that F-SiO2@GA exhibited considerably greater free-radical scavenging ability than free GA and the physical mixture of F-SiO2 and GA. In the photooxidation experiment of food-grade gardenia yellow pigment (GYP), F-SiO2@GA showed a notable antioxidant effect on GYP solution. Additionally, in the storage experiment on chilled whiteleg shrimp (Litopenaeus vannamei) treated with F-SiO2@GA, pH, total volatile basic nitrogen (TVBN), and thiobarbituric acid reactive substance (TBARS) values were effectively inhibited. In conclusion, the internal encapsulation of GA effectively prevented the self-aggregation phenomenon, thereby facilitating the exposure of its active phenolic hydroxyl group and significantly enhancing its water-based biological activity.
Collapse
Affiliation(s)
- Huizhen Feng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Long Jiao
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Xiaoye Zhang
- School of Naval Architecture and Maritime, Zhejiang Ocean University, PR China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
- Pisa Marine Graduate School, Zhejiang Ocean University, PR China
| |
Collapse
|
6
|
Huang J, Hu Z, Li G, Chin Y, Pei Z, Yao Q, Li D, Hu Y. The stable co-pigmented roselle anthocyanin active film extended shelf life of Penaeus vannamei better: Mechanism revealed by the TMT-labeled proteomic strategy. Food Chem 2024; 432:137238. [PMID: 37651784 DOI: 10.1016/j.foodchem.2023.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
In order to investigate the influences of modified RAE-based film on shrimp quality, the proteomic approach was performed to elucidate preservation mechanism. Results showed that the modified RAE-based film kept better shrimp quality compared with natural RAE-based film in terms of determined biochemical parameters and estimated shelf-life. Totally, 49 differentially abundance proteins (DAPs) were identified compared with shrimp without packaging. Bioinformatics analysis demonstrated that the modified RAE-based film could maintain functional DAPs which were mainly distributed in the binding, catalytic activity, etc., and metabolic signaling pathways like melanogenesis signaling pathway were remarkably enriched. Meanwhile, there were 25 DAPs showing close relationship with quality traits, and some of them, such as myosin chains, troponin I and heat shock protein were considered as the potential biomarkers to evaluate shrimp quality deterioration. In conclusion, this study revealed the preservation mechanism of modified RAE-based active film on shrimp quality at the protein molecular level.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Gaoshang Li
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
7
|
Li H, Liu M, Li J, Zhang X, Zhang H, Zheng L, Xia N, We I A, Hua S. 3D Printing of smart labels with curcumin-loaded soy protein isolate. Int J Biol Macromol 2024; 255:128211. [PMID: 37989429 DOI: 10.1016/j.ijbiomac.2023.128211] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
A two-step method for preparing smart labels that can monitor food freshness through color change is presented. The conventional casting method for such labels is not cost-effective, as it uses organic solvents and requires additional cutting processes. Our method is more eco-friendly and customizable, as it uses water as the sole solvent and 3D printing as the fabrication technique. First, curcumin was encapsulated with soy protein isolate (SPI) by a pH-driven method involving hydrogen bonding and hydrophobic interactions. Subsequently, the SPI-curcumin complex was blended with gelatin to create a printable ink. The ink has suitable rheological properties for extrusion, with a yield stress of 400-600 Pa and a viscosity of 122.93-142.82 Pa·s at the optimal printing temperature. The complex modulus of the ink increases to above 2 × 103 Pa when cooled to 25 °C, indicating rapid gel formation. The application of these smart labels to minced meat demonstrated their ability to reflect its freshness by transitioning from yellow to red. Furthermore, the printability and mechanical properties of the labels can be adjusted by changing the glycerol/water ratio. This innovative approach is a promising solution for producing environmentally friendly and customizable smart labels for food freshness monitoring.
Collapse
Affiliation(s)
- Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jinghong Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiaohan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Afeng We I
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shihui Hua
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| |
Collapse
|
8
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
9
|
Zhang X, Wu YT, Wei XY, Xie YY, Zhou T. Preparation, antioxidant and tyrosinase inhibitory activities of chitosan oligosaccharide-hydroxypyridinone conjugates. Food Chem 2023; 420:136093. [PMID: 37062084 DOI: 10.1016/j.foodchem.2023.136093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Two novel chitosan oligosaccharide (COS)-hydroxypyridone (HPO) conjugates were prepared by reacting chitosan oligosaccharide with 2-chloromethyl-5-hydroxypyridone (HPO), which was synthesized by a series of reactions starting from kojic acid. The degree of substitution of COS-HPO2 reached 1.2, with a yield of 74.9%. The structure of the two conjugates (COS-HPO1 and COS-HPO2) was identified by NMR and FT-IR analysis. The two conjugates showed significantly higher free radical (DPPH•, ABTS+• and •OH) scavenging activity and reducing power than those of COS and HPO (p < 0.05). Both COS-HPO1 and COS-HPO2 possessed significantly stronger tyrosinase inhibitory activity than those of COS, with IC50 values of 0.67 and 0.28 mg/mL for monophenolase, 0.73 and 0.30 mg/mL for diphenolase, respectively. In addition, the conjugates were found to be non-toxic to RAW264.7 macrophages and MRC-5 human lung cells. This work proposes a facile method to enhance the oxidative and tyrosinase inhibitory properties of COS.
Collapse
Affiliation(s)
- Xu Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yun-Tao Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Yi Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai 200235, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
10
|
Peng Z, Wang G, Wang JJ, Zhao Y. Anti-browning and antibacterial dual functions of novel hydroxypyranone-thiosemicarbazone derivatives as shrimp preservative agents: Synthesis, bio-evaluation, mechanism, and application. Food Chem 2023; 419:136106. [PMID: 37030204 DOI: 10.1016/j.foodchem.2023.136106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
To develop new shrimp preservative agents with dual functions of anti-browning and antibacterial, thirteen hydroxypyranone-thiosemicarbazone derivatives were prepared according to molecular hybridization. Thereinto, compound 7j (IC50 = 1.99 ± 0.19 μM) shown the strongest anti-tyrosinase activity and was about twenty-three folds stronger than kojic acid (45.73 ± 4.03 μM). The anti-tyrosinase mechanism of 7j was illustrated through enzyme kinetic, copper ion chelating ability, fluorescence quenching, ultraviolet spectrum, AFM analysis, and molecular docking study. On the other hand, antibacterial assay and time-kill kinetics analysis confirmed that 7j also had good antibacterial activity against V. parahaemolyticus (MIC = 0.13 mM). PI uptake test, SDS-PAGE, and fluorescence spectrometry analysis proved that 7j can affect the bacterial cell membrane. Finally, the shrimp preservation and safety study indicated that 7j has dual effects of inhibiting bacterial growth and preventing enzyme browning, and can be applied to the preservation of fresh shrimp.
Collapse
Affiliation(s)
- Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 55004, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Intelligent colorimetric soy protein isolate-based films incorporated with curcumin through an organic solvent-free pH-driven method: Properties, molecular interactions, and application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Qian Y, Li Y, Tang Z, Wang R, Zeng M, Liu Z. The role of AI-2/LuxS system in biopreservation of fresh refrigerated shrimp: Enhancement in competitiveness of Lactiplantibacillus plantarum for nutrients. Food Res Int 2022; 161:111838. [DOI: 10.1016/j.foodres.2022.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
13
|
Yan F, Zhong J, Chen J, Liu W, Chen X. Application of alginate oligosaccharide produced by enzymatic hydrolysis in the preservation of prawns. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Xia W, Wei XY, Xie YY, Zhou T. A novel chitosan oligosaccharide derivative: Synthesis, antioxidant and antibacterial properties. Carbohydr Polym 2022; 291:119608. [DOI: 10.1016/j.carbpol.2022.119608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/08/2022] [Indexed: 02/05/2023]
|
15
|
Amaral LM, Moniz T, Leite A, Oliveira A, Fernandes P, Ramos MJ, Araújo AN, Freitas M, Fernandes E, Rangel M. A combined experimental and computational study to discover novel tyrosinase inhibitors. J Inorg Biochem 2022; 234:111879. [DOI: 10.1016/j.jinorgbio.2022.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
16
|
Zhu YZ, Chen K, Chen YL, Zhang C, Xie YY, Hider RC, Zhou T. Design and synthesis of novel stilbene-hydroxypyridinone hybrids as tyrosinase inhibitors and their application in the anti-browning of freshly-cut apples. Food Chem 2022; 385:132730. [PMID: 35318180 DOI: 10.1016/j.foodchem.2022.132730] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
In order to develop the tyrosinase inhibitors with potential application in food industry, a series of stilbene-hydroxypyridinone hybrids were prepared. Among these compounds, 1h was found to possess the most potent tyrosinase inhibitory effect on both monophenolase and diphenolase activities, with IC50 values of 2.72 μM and 15.86 μM, respectively. The inhibitory effect of 1h on monophenolase activity was 4.6 times that of kojic acid. An inhibition kinetic assay indicated that 1h was a mixed-type and reversible inhibitor. The copper-binding and reducing ability assays, molecular docking study, intrinsic and ANS-binding fluorescence assays indicated that copper coordination and reduction is likely to be the causative mechanism for 1h-induced inhibition on tyrosinase. The results of color measurement and browning index determination indicated that treatment with 1h retarded effectively the browning of freshly-cut apples during their storage. Meanwhile, PPO and POD activities in apple slices were found to be effectively inhibited.
Collapse
Affiliation(s)
- Yu-Zhu Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Changjun Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
17
|
Ding X, Cai S, Chen X, Wang L, Hong C, Liu G. Fabrication and Electrochemical Study of [(2,2′-bipy/P2Mo18)10] Multilayer Composite Film Modified Electrode for Electrocatalytic Detection of Tyrosinase in Penaeus vannamei. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Xu X, Lu S, Li X, Bai F, Wang J, Zhou X, Gao R, Zeng M, Zhao Y. Effects of microbial diversity and phospholipids on flavor profile of caviar from hybrid sturgeon (Huso dauricus × Acipenser schrencki). Food Chem 2022; 377:131969. [PMID: 35026473 DOI: 10.1016/j.foodchem.2021.131969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/25/2021] [Accepted: 12/26/2021] [Indexed: 11/04/2022]
Abstract
Thirty-seven volatiles were identified by gas chromatography-ion mobility spectrometry in sturgeon caviar. Alkenes (37, 43), alcohols (30, 36), aldehydes (9, 10), and esters (11, 13) were detected by two-dimensional gas chromatography-time-off-flight mass spectrometry in fresh and stored caviar, respectively. Alkenes (humulene, caryophyllene, longifolene, and d-limonene), aldehydes (heptanal, hexanal, pentanal, and 3-methyl butanal), and 2-ethyl-1-hexanol were sniffed and described as providing fresh, fatty, and fishy attributes by gas chromatography-olfactometry. The fungal genera of Apiotrichum, Penicillium, Filobasidium, Gibberella, and Cladosporium and 16 bacterial genera were significantly correlated with variations in the contents of 25 aldehydes and 11 ketones. Nine strains, 20 fatty acids, and 69 differential phospholipids were isolated and profiled. Glycerophosphoethanolamine (20:2/20:4), glycerophosphoethanolamine (22:6/22:5), and glycerophosphocholine (16:0/13:0) were significantly associated with the formation of odorants and the proposed mechanism of flavor formation from phospholipids is summarized. This study represents a foundation for achieving targeted preservation and flavor control of caviar.
Collapse
Affiliation(s)
- Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shixue Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xuefei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Xiaodong Zhou
- Hisense (Shandong) Refrigerator Co., Ltd., 266100 Qingdao, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
19
|
Xia W, Chakka VP, Chen K, Wang F, Xie YY, Hider RC, Zhou T. A Novel Stilbene Analogue: Antioxidant Activity and Application in Controlling the Quality and Bacterial Growth of Shrimp Refrigerated at 4ºC. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2021.2024636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wei Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Vara Prasad Chakka
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Kai Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Yuan-Yuan Xie
- Department of Food Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P R China
| | - Robert C. Hider
- Division of Pharmaceutical Science, King’s College London, London, UK
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
20
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Peng Z, Li Y, Tan L, Chen L, Shi Q, Zeng QH, Liu H, Wang JJ, Zhao Y. Anti-tyrosinase, antioxidant and antibacterial activities of gallic acid-benzylidenehydrazine hybrids and their application in preservation of fresh-cut apples and shrimps. Food Chem 2022; 378:132127. [PMID: 35033723 DOI: 10.1016/j.foodchem.2022.132127] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 11/04/2022]
Abstract
A series of gallic acid-benzylidenehydrazine hybrids were synthesized and evaluated for their tyrosinase inhibitory activity. Thereinto, compounds 5d and 5f potently inhibited tyrosinase with IC50 of 15.3 and 3.3 μM, compared to kojic acid (44.4 μM). The inhibition mechanism suggested that 5d and 5f not only chelated with Cu2+, but also reduced Cu2+ to Cu1+ in the tyrosinase active site. Additionally, 5d and 5f exhibited strong DPPH scavenging and antibacterial activities against Vibrio parahaemolyticu and Staphylococcus aureus, which can be attributed to the function of gallic acid and hydrazone moiety. These compounds also exhibited capacity to preserve fresh-cut apples and shrimps. Finally, 5d and 5f exhibited low cytotoxic activity in a human cell line (HEK293). Therefore, these compounds possess anti-tyrosinase, antioxidant, and antibacterial activities, and can be used in the development of novel food preservatives.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijun Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan 528000, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Department of Food Science, Foshan University, Foshan 528000, China.
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China.
| |
Collapse
|
22
|
Wei XY, Xia W, Zhou T. Antibacterial activity and action mechanism of a novel chitosan oligosaccharide derivative against dominant spoilage bacteria isolated from shrimp Penaeus vannamei. Lett Appl Microbiol 2021; 74:268-276. [PMID: 34758122 DOI: 10.1111/lam.13596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
With the aim of exploring the potential application of a novel chitosan oligosaccharide derivative (COS-All-Tio) in shrimp preservation, six dominant spoilage bacteria in the spoiled shrimp (Penaeus vannamei) were isolated and identified as Shewanella putrefaciens (RMS1), S. putrefaciens (S2), Pseudomonas weihenstephanensis (P1), P. gessardii (P2), Aeromonas bestiarum (A1) and Aeromonas molluscorum (A2). The antibacterial effect of COS-All-Tio against the six bacterial isolates were studied. Bacterial inhibition zone determination, and minimum inhibitory concentration and minimum bactericidal concentration assays indicated that the antibacterial activity of COS-All-Tio was greatly improved when compared to that of chitosan oligosaccharide (COS). The antibacterial mechanism investigation against S. putrefaciens (RMS1) revealed that COS-All-Tio could inhibit bacterial growth by influencing of membrane integrity. Such disturbance of membrane structure resulted in the leakage of intracellular substance of the bacteria. A strong synergistic antibacterial effect against S. putrefaciens (RMS1) was observed when COS-All-Tio was used in combination with food preservatives (e.g. ε-polylysine hydrochloride). Therefore, COS-All-Tio might have potential in shrimp preservation.
Collapse
Affiliation(s)
- X-Y Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai, P. R. China
| | - W Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, P. R. China
| | - T Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
23
|
Bioevaluation and molecular docking analysis of novel phenylpropanoid derivatives as potent food preservative and anti-microbials. 3 Biotech 2021; 11:70. [PMID: 33489687 DOI: 10.1007/s13205-020-02636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022] Open
Abstract
Novel derivatives were synthesized using natural scaffold, like phenylpropanoids C6-C3 backbone to reduce unfavorable browning of food due to tyrosinase and oxidative spoilage. Most of the compounds displayed mushroom tyrosinase inhibition better than kojic acid. Compound CE48 exhibited better anti-tyrosinase (IC50-29.64 μM) and antioxidant (EC50-12.67 μM) activity than the reference compounds, kojic acid (IC50-50.30 μM) and ascorbic acid (EC50-14.55 μM), respectively. Compounds SAM30, SE78, 11F, and CE48 showed better anti-B. subtilis, anti-S. aureus, and anti-A. niger activity, respectively, compared to their parents. Molecular docking studies between inhibitors and mushroom tyrosinase corroborated the experimental reports, except SAM30 (glide score - 8.117) and SE78 (glide score - 6.151). In silico absorption, distribution, metabolism, excretion/toxicity (ADME/T) and toxicological studies of these newly synthesized compounds exhibited acceptable pharmacokinetic and safety profiles, like good aqueous solubility (- 3.34 to - 7.57), low human oral absorption (e.g., SAM30, SE78, FAM34), low gut-blood barrier permeability [36.67-209.88 nm/s in Cancer coli-2 (Caco-2) cells] and [19.45-91.51 nm/s in Madin-Darby Canine Kidney (MDCK) cells], low blood-brain barrier penetration, non-mutagenicity, and non-carcinogenicity. Interestingly, the synthesized compounds also possessed multifunctional properties, like microbial growth inhibitor, free radicals scavenger, and it also prevented browning of raw fruits and vegetables by inhibiting tyrosinase enzyme. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02636-0.
Collapse
|
24
|
Shakdofa MM, Morsy NA, Rasras AJ, Al‐Hakimi AN, Shakdofa AM. Synthesis, characterization, and density functional theory studies of hydrazone–oxime ligand derived from 2,4,6‐trichlorophenyl hydrazine and its metal complexes searching for new antimicrobial drugs. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohamad M.E. Shakdofa
- Department of Chemistry, College of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Nagy A. Morsy
- Department of Biochemistry, College of Science University of Jeddah Jeddah Saudi Arabia
| | - Anas J. Rasras
- Department of Chemistry, Faculty of Science Al‐Balqa Applied University Al‐Salt 19117 Jordan
| | - Ahmed N. Al‐Hakimi
- Department of Chemistry, College of Science Qassim University Buraidah Saudi Arabia
- Department of Chemistry, Faculty of Science Ibb University Ibb Yemen
| | - Adel M.E. Shakdofa
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
25
|
YAN F, WANG M, CHEN X, LI X, WU Y, FU C. Effects of alginate oligosaccharides treatment on preservation and fresh-keeping mechanism of shrimp during frozen storage. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.27019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Caili FU
- Fuzhou University, China; National University of Singapore, China
| |
Collapse
|
26
|
Zhou X, Xiao R, Chen M, Bai L. Synthesis of Uscharin Oxime Analogues and Their Biological Evaluation as HIF‐1 Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology)
| |
Collapse
|