1
|
Yang LX, Song K, Wang R, Sun Y, Sun X, Hu Y, Yu B. Novel self-assembled spirochiral nanofluorescent probe for fipronil detection efficiently by PET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125407. [PMID: 39531976 DOI: 10.1016/j.saa.2024.125407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
A novel spirochiral compound S-SPINOL-Y1 (S-6,6'-bis (thiophen-2-yl)-2,2', 3,3'-tetrahydro-1,1'-spirobis[indinee]-7,7'-diol) was synthesized via a Suzuki reaction and self-assembled into nanospheres in ethanol solution. Nano or micron vesicles could be formed by changing the concentration of ethanol solvent. The resulting nanoprobe demonstrated rapid and effective recognition of fipronil (FIP) through the photoinduced electron transfer effect (PET mechanism), as evidenced by complete fluorescence quenching. Concurrently, the spiral chiral S-SPINOL-Y1 and FIP co-assembled into vein-like nanotubes within the ethanol solution by covalent bonding and intermolecular hydrogen bonding.
Collapse
Affiliation(s)
- Li Xue Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rong Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yue Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials iChEM, Fudan University, Shanghai 200433, China
| | - Xiaoxia Sun
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Yu Hu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Beibei Yu
- Jiujiang Five People's Hospital, Jiujiang 332004, China.
| |
Collapse
|
2
|
Geballa-Koukoula A, Willemsen L, Beij E, van Hoof R, Elferink A, Geballa-Koukoulas K, Peters J, Blokland MH, Salentijn GI. Smartcard: an integrated approach for contaminant monitoring, from field to laboratory. Anal Bioanal Chem 2025; 417:69-82. [PMID: 39528785 PMCID: PMC11695648 DOI: 10.1007/s00216-024-05626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Effective food safety monitoring requires a multi-step approach from farm to fork, involving different methods, ranging from convenient screening devices to sophisticated laboratory confirmatory testing. However, sample transportation to routine laboratories is time-consuming and expensive. Simplified on-site sampling followed by laboratory analysis offers a potential solution. Dried blood spot (DBS) cards ensure stability and ease of sample transportation and are used in clinical testing. However, the applicability of such an approach could be broader and include the storage of dried extract from more complex (solid) matrices. Therefore, a simplified approach is presented here, using DBS cards for on-site sampling and subsequent laboratory confirmation for food contaminants. To achieve this, an analytical tool (Smartcard) was designed using 3D-printing technology. As a proof of concept, the approach was applied to detect the pesticide fipronil, which is widely used in ornamental flower production to limit pests and on poultry farms. The Smartcard can securely store the sample extracts on a DBS card (dried extract spot (DExS) card), incorporate the lateral flow immunoassay (LFIA) and immediately provide an estimate of contamination levels. After simplified in-syringe extraction of the sample, the LFIA allows direct screening of fipronil (half maximum inhibitory concentration of 6.5 µg/l with calibration standards), and the same sample extract can be directly applied to the DExS card for storage and transport to the laboratory, where analyte re-extraction and instrumental analysis is performed using ultra high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detecting fipronil down to 0.8 µg/kg.
Collapse
Affiliation(s)
- Ariadni Geballa-Koukoula
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Linda Willemsen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Erik Beij
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Richard van Hoof
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Alexander Elferink
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Khalil Geballa-Koukoulas
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Jeroen Peters
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Marco H Blokland
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Gert Ij Salentijn
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Serebrennikova KV, Komova NS, Barshevskaya LV, Zherdev AV, Dzantiev BB. Highly sensitive SERS-based lateral flow immunoassay of fipronil using bimetallic Au@Ag@Ag nanorods. Mikrochim Acta 2024; 191:749. [PMID: 39556219 DOI: 10.1007/s00604-024-06811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
A bimetallic core-shell-shell nanorods structure with gap-embedded Raman reporter 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) was developed and applied as a SERS-active nanotag in surface-enhanced Raman scattering lateral flow immunoassay (SERS-LFIA) of the insecticide fipronil. Due to the strong SERS signal of the AuDTNB@AgDTNB@AgNRods, fipronil is detected with extremely low detection limit of 4.6 pg/mL. To the best of our knowledge, the proposed technique is the first SERS-LFIA of fipronil, proven to be effective in the selective determination of the target analyte and capable of detecting fipronil in a matrix of food samples (cucumber and apple juice) with recoveries of 97.0-117.0%. Moreover, the applied functionalization of the SERS nanotag with anti-species antibodies has provided a versatile immunoprobe that could improve performance of different LFIAs.
Collapse
Affiliation(s)
- Kseniya V Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Lyubov V Barshevskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.
| |
Collapse
|
4
|
Li P, Abd El-Aty AM, Jiang H, Shen J, Wang Z, Wen K, Li J, Wang S, Wang J, Hammock BD, Jin M. Immunoassays and Emerging Analytical Techniques of Fipronil and its Metabolites for Food Safety: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2059-2076. [PMID: 38252458 PMCID: PMC11790034 DOI: 10.1021/acs.jafc.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
5
|
Svigelj R, Dassi N, Gorassini A, Toniolo R. A smartphone aptasensor for fipronil detection in honey samples. Anal Bioanal Chem 2024; 416:397-405. [PMID: 37946035 PMCID: PMC10761377 DOI: 10.1007/s00216-023-05026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
In this study, an electrochemical smartphone-based aptasensor for the determination of fipronil was developed by modifying a screen-printed carbon electrode (SPCE). Fipronil is a broad-spectrum insecticide that has been widely used in various applications such as agriculture, veterinary, and household pest control. Recently, its use has raised concerns over the potential impact on the environment and human health. The absence of effective methods for this purpose poses a significant obstacle. To tackle this problem, we have developed a cutting-edge aptamer-based portable sensor capable of rapidly and conveniently detecting fipronil in situ. Considering that the detection of small molecules, such as fipronil, can be a challenging task, a competitive replacement assay was set up based on the aptamer's preference for the free form of fipronil over the immobilized one on the electrode. The analytical performance provided by the sensor on standard solutions of a known fipronil content made it possible to estimate a limit of detection (LOD) equal to 1.07 μg kg-1 and a limit of quantification (LOQ) of 3.21 μg kg-1. Selectivity tests were conducted using atrazine as a possible interferent. The use and performance of the developed portable aptasensor was assessed on honey samples, which were simultaneously analyzed using an HPLC-MS method. This aptasensor could be an affordable and effective tool for accurately quantifying fipronil not only in honey samples but also in other food products.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Noemi Dassi
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andrea Gorassini
- Department of Humanities and Cultural Heritage, University of Udine, Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
6
|
Diniz JA, Okumura LL, Filomena de Souza Silva A, Oliveira AF, Gurgel A, Liberato PA, Aleixo H, Silva JG. Study and voltammetric determination of fipronil in bovine lactose-free milk by differential pulse voltammetry using a carbon paste electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1517-1526. [PMID: 36877144 DOI: 10.1039/d2ay01529c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel voltammetric screening method has been developed for the rapid determination of fipronil (FPN) residues in lactose-free milk samples with the use of a carbon-paste electrode (CPE) by differential-pulse voltammetry (DPV). Cyclic voltammetry indicated the occurrence of an irreversible anodic process at approximately +0.700 V (vs. Ag|AgCl, 3.0 mol L-1 KCl) in a 0.100 mol L-1 NaOH supporting electrolyte prepared as a 30% (v/v) ethanol-water solution. Quantification of FPN was carried out by DPV and analytical curves were constructed. In the absence of a matrix, the limits of detection (LOD) and quantification (LOQ) were 0.568 mg L-1 and 1.89 mg L-1, respectively. In the presence of a lactose-free skim milk matrix, the values of LOD and LOQ were 0.331 mg L-1 and 1.10 mg L-1. The recovery percentages for three different concentrations of FPN in lactose-free skim milk samples ranged between 95.3% and 109%. All assays could be conducted with milk samples without any prior extraction steps or pre-concentration of FPN, making this novel method rapid, simple, and relatively cheap.
Collapse
Affiliation(s)
- Juliana Aparecida Diniz
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Holfs, Viçosa, 3650-900, MG, Brazil.
| | - Leonardo Luiz Okumura
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Holfs, Viçosa, 3650-900, MG, Brazil.
| | | | - André Fernando Oliveira
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Holfs, Viçosa, 3650-900, MG, Brazil.
| | - Alexandre Gurgel
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Holfs, Viçosa, 3650-900, MG, Brazil.
| | - Priscila Azevedo Liberato
- Departamento de Química, Universidade Federal de Viçosa, Av. Peter Henry Holfs, Viçosa, 3650-900, MG, Brazil.
| | - Herbert Aleixo
- Instituto Federal do Espírito Santo, Rodovia ES 320, Km 118, Zona Rural, Três Vendas, Barra de São Francisco, 29800-000, ES, Brazil
| | - Júnio Gonçalves Silva
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|
7
|
Zhang H, Zeng P, Guan Q, Yan X, Yu L, Wu G, Hong Y, Wang C. Combining thin-film microextraction and surface enhanced Raman spectroscopy to sensitively detect thiram based on 3D silver nanonetworks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122073. [PMID: 36399817 DOI: 10.1016/j.saa.2022.122073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
By coupling thin-film microextraction (TFME) with surface enhanced Raman scattering (SERS), a facile method was developed for the determination of thiram in the complex matrix (orange juice or grape peel). The substrate of TFME was made by self-assembling silver sol on the silicon wafer to form a three-dimensional (3D) silver nanonetwork structure, without adding any template, which was used for TFME and SERS detection, respectively. The substrate exhibits high reproducibility with a relative standard deviation of about 7.32 % in spot and spot SERS intensity. The SERS signal intensity at a shift of 1384 cm-1 and the thiram concentration showed good linearity in the range of 0.01-5 µg/L and the linear correlation coefficient was 0.9912. The detection limit for thiram was found to be 0.01 µg/L. The TFME-SERS method was applied for the determination of thiram in fruit juice and the results were obtained very well. Therefore, this method is expected to play a role in the detection of trace pollutants.
Collapse
Affiliation(s)
- Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Xianzai Yan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Lili Yu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Guoping Wu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yanping Hong
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
8
|
Suo D, Song Z, Xiao Z, Zhuang F, Fan L, Fan X. Fipronil and its metabolites in chicken feather: residue analysis, depletion study, and application analysis of pollution sources in laying hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18499-18508. [PMID: 36215024 DOI: 10.1007/s11356-022-23527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
A method based on a multi-mechanism impurity adsorption and ultra-performance liquid chromatography-tandem mass spectrometry was established to detect fipronil and four of its metabolites in chicken feathers. This method was successfully applied to the depletion study of fipronil in feathers of laying hens. Fipronil and two metabolites were found in feathers during treatment. Fipronil concentrations in feathers increased during medication and then regularly decreased during withdrawal, and they were still detected on the 14th day after withdrawal. High residue concentrations were also present in feathers on day 23 of the experimental period. Pollution sources of fipronil can be inferred on the basis of the residue ratio of fipronil metabolites from different pollution modes. Result shows that feathers were an effective matrix for residue monitoring and risk analysis of fipronil in animals and the environment.
Collapse
Affiliation(s)
- Decheng Suo
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, 100081, China.
| | - Zhandeng Song
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Zhiming Xiao
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Fenting Zhuang
- Liaoning Agricultural Development Service Center, Shenyang, Liaoning, 110000, China
| | - Li Fan
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Xia Fan
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, 100081, China
| |
Collapse
|
9
|
Liang Z, Mahmoud Abdelshafy A, Luo Z, Belwal T, Lin X, Xu Y, Wang L, Yang M, Qi M, Dong Y, Li L. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chem 2022; 384:132494. [DOI: 10.1016/j.foodchem.2022.132494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
10
|
Ambrosio IS, Otaviano CM, Castilho LM, Santos AL, Mendonça JS, Faria AM. Development and validation of a solid–liquid extraction with low-temperature partitioning method for the determination of fipronil in turtle eggshell. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zhang H, Guan Q, Zeng P, Wu G, Hong Y, Yang W, Wang C. Ultrasensitive detection of pectin based on the decarboxylation reaction and surface-enhanced Raman spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2266-2276. [PMID: 35621162 DOI: 10.1039/d2ay00463a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, a novel simple and sensitive method was developed for the determination of pectin based on the decarboxylation derivatization reaction and surface-enhanced Raman scattering (SERS) without complicated separation steps. The derivatization reaction can be controlled by the experimental parameters such as reaction time, temperature and the amount of hydrochloric acid. Additionally, the method was used to accurately and reliably detect pectin added in honey or apple, which can be detected at levels as low as 0.5 or 0.01 ppm, respectively. Based on the conventional decarboxylation reaction, a simple and sensitive SERS method was proposed for the detection of pectin, which shows potential for practical application.
Collapse
Affiliation(s)
- Huan Zhang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Qi Guan
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Pei Zeng
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Guoqiang Wu
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Yanping Hong
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Wuying Yang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Chunrong Wang
- School of Food Science & Engineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| |
Collapse
|
12
|
Turasan H, Cakmak M, Kokini J. A disposable ultrasensitive surface enhanced Raman spectroscopy biosensor platform fabricated from biodegradable zein nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hazal Turasan
- Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA
| | - Mukerrem Cakmak
- Department of Materials Engineering Purdue University West Lafayette Indiana USA
| | - Jozef Kokini
- Department of Food Science Purdue University West Lafayette Indiana USA
| |
Collapse
|
13
|
Wang C, Zhang H, Wang C. Sensitive detection of ferbam by coupling solid phase microextraction with surface enhanced Raman spectroscopy based on Au nano-glass capillary. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120960. [PMID: 35158138 DOI: 10.1016/j.saa.2022.120960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, we developed an innovative approach that combines solid phase microextraction (SPME) with surface-enhanced Raman spectroscopy (SERS) to detect pesticide ferbam rapidly. An Au nano-glass capillary was fabricated by coating template-freely synthesized three-dimensional network Au nanostructures (3D-NW AuNSs) on the roughened surface of glass capillary and used for SPME and SERS respectively. Significant Raman signals were obtained by the SPME-SERS method, followed by detection of ferbam in water and orange juice samples with only 1 min SPME process. Results showed that Au nano-glass capillaries could achieve the detection of ferbam with limit of detection of 0.05 μg/L, and coefficient of determination (R2) of 0.9913. The recovery of predicted results was in the range of 88.46-103.29% and the relative standard deviation (RSD) was 3.5-8.2%. This study demonstrated potential capability of the SPME-SERS method for rapid (within 1 min) and sensitive detection of organic compounds in complex matrices. The SERS-active Au nano-glass capillary is easy to carry and operate, and is expected to play a role in the detection of trace pollutants.
Collapse
Affiliation(s)
- Cuiping Wang
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Huan Zhang
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Chunrong Wang
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China.
| |
Collapse
|
14
|
Chao K, Schmidt W, Qin J, Kim M. A rapid and precise spectroscopic method for detecting fipronil insecticide on solid surfaces. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01384-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Fipronil and Fipronil Sulfone Distribution in Chicken Feathers and Eggs after Oral and Dermal Exposure. Foods 2021; 10:foods10123077. [PMID: 34945631 PMCID: PMC8702044 DOI: 10.3390/foods10123077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
This work aimed to investigate the bio-distribution and the persistence of fipronil and its primary metabolite fipronil sulfone after oral and dermal administration by simulating natural farming conditions. Fipronil and fipronil sulfone detection and quantification were performed in different poultry matrices using an LC-MS/MS method coupled with modified QuEChERS extraction. After oral administration, fipronil was detected in feathers at each sampling time, in eggs for 28 days, and in the internal organs at the end of the experiment. After dermal administration, high levels of fipronil were detected in feathers, accounting for 195.85 ± 8.54 mg/kg, which were reduced by a third after 60 days. No traces of fipronil were detected in the eggs or internal organs. In addition, fipronil sulfone showed remarkable residues in all samples in trial 2. The data obtained confirmed that inappropriate use of unauthorized pesticides can lead to severe contamination of entire poultry farms. The contemporary presence of fipronil sulfone in feathers and eggs associated with the lack of fipronil in eggs suggests recent dermal contamination or past oral contamination. Moreover, simultaneous analysis of hens’ feathers and eggs could represent a new method to improve large-scale monitoring programs and animal welfare, limiting their slaughter.
Collapse
|
16
|
Aparicio-Muriana MM, Jirková T, Lara FJ, García-Campaña AM. Simple and efficient method for the determination of fipronil and two main metabolites in eggs by capillary liquid chromatography. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Golge O, Liman T, Kabak B. Determination of more than 500 Pesticide Residues in Hen Eggs by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and Gas Chromatography-Tandem Mass Spectrometry (GC/MS/MS). Food Sci Anim Resour 2021; 41:816-825. [PMID: 34632401 PMCID: PMC8460328 DOI: 10.5851/kosfa.2021.e38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022] Open
Abstract
This study aims to validate a fast method of simultaneous analysis of 365 LC-amenable and 142 GC-amenable pesticides in hen eggs by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively, operating in multiple reaction monitoring (MRM) acquisition modes. The sample preparation was based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction. Key method performance parameters investigated were specificity, linearity, limit of quantification (LOQ), accuracy, precision and measurement uncertainty. The method was validated at two spiking levels (10 and 50 μg/kg), and good recoveries (70%-120%) and relative standard deviations (RSDs) (≤20) were achieved for 92.9% of LC-amenable and 86.6% of GC-amenable pesticide residues. The LOQs were ≤10 μg/kg for 94.2% of LC-amenable and 92.3% of GC-amenable pesticides. The validated method was further applied to 100 egg samples from caged hens, and none of the pesticides was quantified.
Collapse
Affiliation(s)
- Ozgur Golge
- Alanya Alaaddin Keykubat University,
Faculty of Tourism, Department of Gastronomy and Culinary
Arts, Alanya, Antalya, Turkey
| | - Turan Liman
- STA Food Quality Control
Laboratory, Akdeniz, Mersin,
Turkey
| | - Bulent Kabak
- Hitit University, Faculty of Engineering,
Department of Food Engineering, TR-19030 Corum,
Turkey
| |
Collapse
|
18
|
Zhang J, Feng T, Zhang J, Liang N, Zhao L. Fluorescence assay for the sensitive detection of fipronil based on an "on-off" oxidized SWCNH/aptamer sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3282-3291. [PMID: 34226905 DOI: 10.1039/d1ay00769f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A simple, quick, effective turn-on fluorescence assay for the determination of fipronil (FIP) was built based on the yellow fluorescence of FAM-aptamer and excellent quenching capability of the oxidized single-walled carbon nanohorns (The oxidized SWCNHs). Oxidized SWCNHs with the great advantage of good dispersibility in solution were generated by link to carboxyl group and were added to a specific FAM-aptamer at an optimal concentration to form an "on-off" oxidized SWCNH/FAM-aptamer fluorescent sensor. The structures of the oxidized SWCNHs were verified, and the comprehensive properties were evaluated by characterization techniques. This paper has exploited oxidized SWCNHs as a quenching agent to detect fipronil for the first time. Under the optimized conditions, the limit of detection (LOD) for fipronil was 3 nM, and the recovery of fipronil varied from 88.6% to 112.7% in different real samples with relative standard deviations (RSDs) not more than 5%. The developed method could be successfully applied for the determination of fipronil in tap water, honey and corn samples.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, China.
| | - Tingting Feng
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province 030619, China
| | - Jiayu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, China.
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
19
|
Pezzotti G, Zhu W, Chikaguchi H, Marin E, Boschetto F, Masumura T, Sato YI, Nakazaki T. Raman Molecular Fingerprints of Rice Nutritional Quality and the Concept of Raman Barcode. Front Nutr 2021; 8:663569. [PMID: 34249986 PMCID: PMC8260989 DOI: 10.3389/fnut.2021.663569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
The nutritional quality of rice is contingent on a wide spectrum of biochemical characteristics, which essentially depend on rice genome, but are also greatly affected by growing/environmental conditions and aging during storage. The genetic basis and related identification of genes have widely been studied and rationally linked to accumulation of micronutrients in grains. However, genetic classifications cannot catch quality fluctuations arising from interannual, environmental, and storage conditions. Here, we propose a quantitative spectroscopic approach to analyze rice nutritional quality based on Raman spectroscopy, and disclose analytical algorithms for the determination of: (i) amylopectin and amylose concentrations, (ii) aromatic amino acids, (iii) protein content and structure, and (iv) chemical residues. The proposed Raman algorithms directly link to the molecular composition of grains and allow fast/non-destructive determination of key nutritional parameters with minimal sample preparation. Building upon spectroscopic information at the molecular level, we newly propose to represent the nutritional quality of labeled rice products with a barcode specially tailored on the Raman spectrum. The Raman barcode, which can be stored in databases promptly consultable with barcode scanners, could be linked to diet applications (apps) to enable a rapid, factual, and unequivocal product identification based on direct molecular screening.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Haruna Chikaguchi
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Kyoto Prefectural University, Kyoto, Japan
| | - Yo-Ichiro Sato
- Research Center for Japanese Food Culture, Kyoto Prefectural University, Kyoto, Japan
| | - Tetsuya Nakazaki
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| |
Collapse
|
20
|
Wang Y, Kumar AKS, Compton RG. Optimising Adsorptive Stripping Voltammetry: Strategies and Limitations. ChemElectroChem 2021. [DOI: 10.1002/celc.202100679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanzhe Wang
- Department of Chemistry Physical and Theoretical Chemistry Laboratory Oxford University South Parks Road Oxford OX1 3QZ UK
| | - Archana Kaliyaraj Selva Kumar
- Department of Chemistry Physical and Theoretical Chemistry Laboratory Oxford University South Parks Road Oxford OX1 3QZ UK
| | - Richard G. Compton
- Department of Chemistry Physical and Theoretical Chemistry Laboratory Oxford University South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
21
|
Lai HL, Ghosh S, Chattopadhyay S. The detection of fipronil residue in egg on layered gold nanorod-graphene oxide-based 3D SERS substrate. Analyst 2021; 146:3557-3567. [PMID: 33904550 DOI: 10.1039/d1an00433f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fipronil and its metabolite fipronil sulfone, when found in some food products, such as eggs, have caused major public health concerns. In this study, we used gold nanorods (AuNRs) and graphene oxide (GO) nanocomposites to fabricate a layer-by-layer assembled three dimensional (3D) substrate for toxin detection by surface enhanced Raman scattering (SERS). The 4-layers of GO-AuNR 3D SERS substrate were optimized using rhodamine 6G. The optimized SERS substrate was used to detect fipronil and fipronil sulfone in spiked eggs. The obtained limit of detection was 10-8 M (∼4.4 ppb), which is below the maximum residue limit in Taiwan of 10 ppb. Egg samples spiked with fipronil (10-7 and 10-3 M) and fipronil sulfone (10-8 and 10-4 M) were measured and the maximum departure of the measured SERS intensity from the calibrated SERS intensity was ∼14%. Thus, a facile screening method for the detection of fipronil/fipronil sulfone in food-grade eggs by SERS is demonstrated.
Collapse
Affiliation(s)
- Hung Lin Lai
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan and Institute of Biophotonics, National Yang-Ming University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan.
| | - Sandip Ghosh
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan and Institute of Biophotonics, National Yang-Ming University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan.
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang Ming Chiao Tung University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan and Institute of Biophotonics, National Yang-Ming University, 155, sec-2 Li Nong Street, Taipei 112, Taiwan.
| |
Collapse
|
22
|
Combination of Modified QuEChERS and Disposable Polyethylene Pipet Assisted DLLME Based on Low Density Solvent Extraction for Rapid and Sensitive Determination of Fipronil and Its Metabolites in Eggs by GC-MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Huang CT, Jan FJ, Chang CC. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection. Molecules 2021; 26:molecules26020281. [PMID: 33429970 DOI: 10.3390/molecules26020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/04/2023] Open
Abstract
In this manuscript, silver nanowire 3D random crossed-wire woodpile (3D-RCW) nanostructures were designed and prepared. The 3D-RCW provides rich "antenna" and "hot spot" effects that are responsive for surface-enhanced Raman scattering (SERS) effects and plasmon-enhanced fluorescence (PEF). The optimal construction mode for the 3D-RCW, based on the ratio of silver nanowire and control compound R6G, was explored and established for use in PEF and SERS analyses. We found that the RCW nanochip capable of emission and Raman-enhanced detections uses micro levels of analysis volumes. Consequently, and SERS and PEF of pesticides (thiram, carbaryl, paraquat, fipronil) were successfully measured and characterized, and their detection limits were within 5 μM~0.05 µM in 20 µL. We found that the designed 3D plasmon-enhanced platform cannot only collect the SERS of pesticides, but also enhance the fluorescence of a weak emitter (pesticides) by more than 1000-fold via excitation of the surface plasmon resonance, which can be used to extend the range of a fluorescence biosensor. More importantly, solid-state measurement using a 3D-RCW nanoplatform shows promising potential based on its dual applications in creating large SERS and PEF enhancements.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Protrustech Co., Ltd., 3F.-1, No.293, Sec. 3, Dongmen Rd. East District, Tainan City 701, Taiwan
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung-Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
24
|
Sass CAB, Pimentel TC, Aleixo MGB, Dantas TM, Cyrino Oliveira FL, Freitas MQ, Cruz AG, Esmerino EA. Exploring social media data to understand consumers' perception of eggs: A multilingual study using Twitter. J SENS STUD 2020. [DOI: 10.1111/joss.12607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | - Tiago Mendes Dantas
- Pontifícia Universidade Católica do Rio de Janeiro (PUC‐RJ) Departamento de Engenharia Industrial Rio de Janeiro Brazil
| | - Fernando Luiz Cyrino Oliveira
- Pontifícia Universidade Católica do Rio de Janeiro (PUC‐RJ) Departamento de Engenharia Industrial Rio de Janeiro Brazil
| | | | - Adriano Gomes Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) Departamento de Alimentos Rio de Janeiro Brazil
| | - Erick Almeida Esmerino
- Universidade Federal Fluminense (UFF) Faculdade de Medicina Veterinária Niterói Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) Departamento de Alimentos Rio de Janeiro Brazil
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rodovia BR‐465 Km 07 ‐ Instituto de Tecnologia ‐ Departamento de Tecnologia de Alimentos Rio de Janeiro Brazil
| |
Collapse
|
25
|
Akgün B, Hamzaoğlu M, Tosunoğlu H, Demir S, Deniz A, Zengingönül Gökçay R. A survey of 59 pesticide residues in Turkish chicken eggs using LC-MS/MS. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:252-259. [PMID: 32498611 DOI: 10.1080/19393210.2020.1767218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An LC-MS/MS multi-residue method was validated for the determination of 59 pesticide residue levels in a chicken egg by using QuEChERS extraction method. The validation parameters used were taken from the SANTE/11813/2017 guideline. The calibration curves for each target pesticide had a good linearity in a range of 1.0 or 2.5 to 100.0 µg kg-1 (r2 ≥ 0.995). Ten per cent of the total pesticides had LOQ values less than 5.0 µg kg-1 or LOQ values from 5.0 to 10.0 µg kg-1. The LOQ values were below the MRLs set by the European Commision (EC). Average recoveries (70-120%) and relative standard deviations (RSDs≤20%) were achieved for 59 selected pesticides at different concentrations (5 or 10 and 200 µg kg-1). All expanded measurement uncertainties were lower than 50%. The occurrence of these pesticides was evaluated in 35 commercially available chicken eggs. No MRL exceedance was identified.
Collapse
Affiliation(s)
- Banu Akgün
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Mertin Hamzaoğlu
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Hakan Tosunoğlu
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Sema Demir
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Altan Deniz
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| | - Remziye Zengingönül Gökçay
- Food Additives and Residues Department, Central Research Institute of Food and Feed Control , Bursa, Turkey
| |
Collapse
|
26
|
Kim TY, Lim JW, Lim MC, Song NE, Woo MA. Aptamer-based Fluorescent Assay for Simple and Sensitive Detection of Fipronil in Liquid Eggs. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0358-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Li X, Ma W, Li H, Zhang Q, Ma Z. Determination of residual fipronil and its metabolites in food samples: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Huang D, Zhao J, Wang M, Zhu S. Snowflake-like gold nanoparticles as SERS substrates for the sensitive detection of organophosphorus pesticide residues. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106835] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Maulidiyah M, Azis T, Lindayani L, Wibowo D, Salim LOA, Aladin A, Nurdin M. Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide. J ELECTROCHEM SCI TE 2019. [DOI: 10.33961/jecst.2019.00178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zhao H, Huang D, Zhu S. Multibranch Gold Nanoparticles as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Fipronil in Eggs. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5354. [PMID: 31817310 PMCID: PMC6960814 DOI: 10.3390/s19245354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
A sensitive strategy to rapidly detect fipronil residues in eggs using multibranch gold nanoparticles (AuNPs) as the substrate of surface-enhanced Raman spectroscopy (SERS) was investigated in this study. Under optimized conditions, fipronil molecules preferentially deposited on the multibranch gold nanoparticles with preferential (111) facet-oriented growth due to its low surface energy. This anisotropic growth promoted the increase of SERS "hot spots", inducing a huge enhancement of Raman signals of the fipronil. An external standard calibration method was employed for quantitative analysis, and the method was validated for linearity, sensitivity, repeatability and recovery. Good linearity were found in the concentration range of 10 ng/L~10 mg/L in fipronil acetone solution (R2 = 0.9916) and 8 × 10-5 mg/m2 to 0.8 mg/m2 on eggshells (R2 = 0.9906), respectively. The recovery rate based on acetone recovered fipronil on eggshells and in egg liquids was 80.13%~87.87%, and 81.34%~88.89%, respectively. The SERS assay was successfully used to monitor fipronil in eggs.
Collapse
Affiliation(s)
| | - Dandan Huang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271000, China;
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271000, China;
| |
Collapse
|
31
|
Yang C, Wang L, Zhang Z, Chen Y, Deng Q, Wang S. Fluorometric determination of fipronil by integrating the advantages of molecularly imprinted silica and carbon quantum dots. Mikrochim Acta 2019; 187:12. [DOI: 10.1007/s00604-019-4005-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
|
32
|
Aparicio-Muriana MM, Lhotská I, García-Campaña AM, Lara FJ. A first approach using micellar electrokinetic capillary chromatography for the determination of fipronil and fipronil-sulfone in eggs. Electrophoresis 2019; 41:202-208. [PMID: 31785119 DOI: 10.1002/elps.201900291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023]
Abstract
Fipronil is an insecticide that is not approved in the European Union in food. In 2017, fipronil was involved in a European health alert due to its presence in fresh hen eggs because of an illicit use in poultry farms, so reliable methods are needed to determine fipronil and its main metabolites in these matrixes. In this work, we report the first approach to the study of fipronil and two metabolites, fipronil-sulfone and fipronil-sulfide by CE. MEKC mode was employed using a solution of 50 mM ammonium perfluorooctanoate pH 9.0 with 10% (v/v) methanol as background electrolyte. The proposed method was combined with a simple sample treatment based on salting-out assisted LLE (SALLE) using acetonitrile as extraction solvent and ammonium sulfate as salt. The SALLE-MEKC-UV method allowed the simultaneous quantification of fipronil and fipronil-sulfone. Validation parameters yielded satisfactory results, with precision, expressed as relative SD, below 14% and recoveries higher than 83%. Limits of detection were 90 µg/kg for fipronil and 150 µg/kg for fipronil-sulfone, so in terms of sensitivity further studies of sample treatments allowing extra preconcentration or the use of more sensitive detection, such as MS, would be needed.
Collapse
Affiliation(s)
- M Mar Aparicio-Muriana
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ivona Lhotská
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Prague, Czech Republic
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Anagnostopoulos C, Ampadogiannis G, Bempelou E, Liapis K, Kastellanou E. The 2017 fipronil egg contamination incident: The case of Greece. J Food Saf 2019. [DOI: 10.1111/jfs.12727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chris Anagnostopoulos
- Laboratory of Pesticide Residues, Department of Pesticides Control and PhytopharmacyBenaki Phytopathological Institute Athens Greece
| | - George Ampadogiannis
- Laboratory of Pesticide Residues, Department of Pesticides Control and PhytopharmacyBenaki Phytopathological Institute Athens Greece
| | - Eleftheria Bempelou
- Laboratory of Pesticide Residues, Department of Pesticides Control and PhytopharmacyBenaki Phytopathological Institute Athens Greece
| | - Konstantinos Liapis
- Laboratory of Pesticide Residues, Department of Pesticides Control and PhytopharmacyBenaki Phytopathological Institute Athens Greece
| | | |
Collapse
|
34
|
Song NE, Lee JY, Mansur AR, Jang HW, Lim MC, Lee Y, Yoo M, Nam TG. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chem 2019; 298:125050. [DOI: 10.1016/j.foodchem.2019.125050] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/01/2019] [Accepted: 06/18/2019] [Indexed: 02/03/2023]
|
35
|
A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO 2@Au core/shell nanoparticles. Talanta 2019; 207:120324. [PMID: 31594576 DOI: 10.1016/j.talanta.2019.120324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
Fipronil is a phenylpyrazole insecticide commonly used in agriculture and residential applications. In this paper, we reported a novel label-free surface-enhanced Raman spectroscopy (SERS) method for detection of fipronil residues in chicken eggs (mostly accumulated on the egg membrane). We fabricated the SERS substrates composed of the SiO2@Au core/shell nanoparticles and probed the contamination of fipronil residue on the egg membrane. The identification of the characteristic Raman bands of fipronil was achieved with the aid of density functional theory (DFT) calculation, with which we could analyzed the trace amount of fipronil in a quantitative way. As such, this work may provide a practical solution to quick inspection of fipronil contamination in chicken eggs or other foods.
Collapse
|
36
|
Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. SENSORS 2019; 19:s19061355. [PMID: 30889914 PMCID: PMC6471083 DOI: 10.3390/s19061355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023]
Abstract
This work presents a surface-enhanced Raman scattering (SERS) and density functional theory (DFT) study of a fipronil adsorbed on colloidal silver nanoparticles (AgNPs). A standard curve was established to quantify fipronil within a range of 0.0001⁻0.1 ppm (r² ≥ 0.985), relying on the unique fipronil Raman shift at ~2236 cm-1 adsorbed on AgNPs. DFT calculations suggest that the nitrile moiety (C≡N) binding should be slightly more favorable, by 1.92 kcal/mol, than those of the nitrogen atom of the pyrazole in fipronil and Ag₆ atom clusters. The characteristic peaks of the SERS spectrum were identified, and both the calculated vibrational wavenumbers and the Raman intensity pattern were considered. The vibrational spectra of fipronil were obtained from the potential energy distribution (PED) analysis and selective Raman band enhancement.
Collapse
|